迈克尔逊干涉实验报告
- 格式:docx
- 大小:72.37 KB
- 文档页数:7
迈克尔逊干涉实验报告迈克尔逊干涉实验是光学中一项经典的实验证明了光的波动性,在19世纪末由美国物理学家阿尔伯特·迈克尔逊设计和进行。
这个实验设计精巧而又简单,通过干涉现象展示了光的波动性质,并为未来光学研究奠定了坚实的基础。
1. 实验原理迈克尔逊干涉实验的核心原理是将一束单色光朝着半透明镜表面投射,半透明镜会将光分为两束垂直传播的光线。
当光线到达两个平行的镜面后,会发生反射。
反射光线再次交汇,如果两束光线相位相同,它们会加强干涉,形成明晰的干涉条纹;相反,如果两束光线相位相差半个波长,它们会相互抵消,形成暗的干涉区域。
2. 实验装置迈克尔逊干涉实验主要由四部分组成:光源、分束器、反射镜和干涉区域。
光源可以使用激光或单色光源,以确保光的单色性。
分束器是由半透明镜构成的,用于将光线分为两束,一束沿直线路径到达一个反射镜,另一束沿垂直方向到达另一个反射镜。
两个反射镜的位置可以调整,以改变光线的路径和干涉效果。
最后,干涉区域会收集和显示干涉条纹,观察者可以通过观察这些条纹来分析光的干涉现象。
3. 结果分析通过观察干涉条纹的样式和变化,我们可以获得对光的性质和传播方式的重要信息。
干涉条纹的形状和间距与光的波长直接相关,因此我们可以通过计算和观察来确定光的波长。
此外,通过调整反射镜的位置,我们还可以改变干涉条纹的样式和数量。
这表明干涉效果受到光线路径和反射镜位置的影响,进一步验证了光的波动性。
4. 应用领域迈克尔逊干涉实验在实际应用中具有广泛的价值。
首先,通过干涉条纹的形成和变化,我们可以测量精确的光学参数,如波长、折射率等,这对于光学研究和设备校准具有重要意义。
其次,干涉技术在光学仪器中广泛应用,例如激光干涉仪、干涉显微镜等。
这些仪器借助干涉现象,能够提供更高分辨率和更精确的测量结果,帮助科学家们深入研究微观世界。
5. 发展与进步迈克尔逊干涉实验自19世纪末以来一直是光学研究的重要实验之一,其应用和发展不断取得突破。
“迈克尔逊干涉仪”实验报告
1、实验简介
“迈克尔逊干涉仪”(Michaelson Interferometer)是一种便携式、利用干涉测量法测量平面镜和实物形状及尺寸的精密仪器。
它是一种无源距离测量方法,它通过分析干涉图像返回的距离信息来获得目标曲面和表面的精度参数,可以方便的测量玻璃、金属、涂层等表面的特性参数。
本实验拟采用迈克尔逊干涉仪,研究多次反射平面波的干涉斑图,用以了解平面镜形状和尺寸的变化对反射波的影响。
2、实验仪器设备
实验所用仪器设备主要包括迈克尔逊干涉仪、两只不同直径0.8NM 和 1.4NM 钨丝、测量单元、以及一个可调节电压的电源等。
3、实验原理
迈克尔逊干涉仪运用了光干涉原理,它弥补了简单显微镜无法获得距离的缺陷。
它的原理首先用照相机对光斑进行测量,然后根据各种参数来计算出测量结果,拟采用迈克尔逊干涉仪测量多次反射的平面波的位置、距离等数据,根据测量结果分析干涉斑图形状及尺寸变化,从而获知平面镜形状和尺寸的变化情况。
4、实验步骤与程序
(1)将0.8NM 和 1.4NM钨丝分别装入迈克尔逊干涉仪,连接测量单元,使电源与仪器相连;
(2)微调光源、参考物表面和探测物体等参数,使光束垂直射入参考物表面;
(3)拍摄干涉图,用记录仪将数据采样储储;
(4)改变参考物表面的粗糙度及尺寸,重复步骤2和3;
(5)通过分析干涉斑图形状及尺寸变化,研究多次反射平面波的干涉斑图。
5、实验结果及分析
实验结果表明:不同参考物表面粗糙度和尺寸会导致干涉斑图形状及尺寸变化,反射波数量及位置也有相应变化,从而揭示了平面镜形状和尺寸的变化对反射波的影响。
迈克尔逊干涉仪实验报告英文回答:Michelson Interferometer Experiment Report。
Introduction。
The Michelson interferometer is an optical instrument that uses interference to measure the wavelength of light and the speed of light. It was invented by Albert A. Michelson in 1881. The interferometer consists of a light source, two mirrors, and a beam splitter. The light source is split into two beams by the beam splitter. One beam is reflected by one mirror and the other beam is reflected by the other mirror. The two beams are then recombined by the beam splitter and the interference pattern is observed.Methods。
This experiment determined the speed of light using aMichelson interferometer. The following apparatus was used: 1A Michelson interferometer。
2A helium-neon laser。
3A power supply。
4A photodetector。
5A digital oscilloscope。
迈克尔逊干涉仪实验报告迈克尔逊干涉仪实验报告一、实验题目:迈克尔逊干涉仪二、实验目的:1. 了解迈克尔逊干涉仪的结构、原理和调节方法;2. 观察等倾干涉、等厚干涉现象;3. 利用迈克尔逊干涉仪测量He-Ne激光器的波长;三、实验仪器:迈克尔逊干涉仪、He-Ne激光器、扩束镜、观察屏、小孔光阑四、实验原理(原理图、公式推导和文字说明):在图M2′是镜子M2经A面反射所成的虚像。
调整好的迈克尔逊干涉仪,在标准状态下M1、M2′互相平行,设其间距为d.。
用凸透镜会聚后的点光源S是一个很强的单色光源,其光线经M1、M2反射后的光束等效于两个虚光源S1、S2′发出的相干光束,而S1、S2′的间距为M1、M2′的间距的两倍,即2d。
虚光源S1、S2′发出的球面波将在它们相遇的空间处处相干,呈现非定域干涉现象,其干涉花纹在空间不同的位置将可能是圆形环纹、椭圆形环纹或弧- 1 -形的干涉条纹。
通常将观察屏F 安放在垂直于S 1、S 2′的连线方位,屏至S 2′的距离为R ,屏上干涉花纹为一组同心的圆环,圆心为O 。
设S 1、S 2′至观察屏上一点P 的光程差为δ,则)1/)(41()2(222222222-+++⨯+=+-++=r R d Rd r R r R r d R δ (1)一般情况下d R >>,则利用二项式定理并忽略d 的高次项,于是有⎪⎪⎭⎫ ⎝⎛+++=⎪⎪⎭⎫ ⎝⎛+-++⨯+=)(12)(816)(2)(4222222222222222r R R dr r R dR r R d R r R d Rd r R δ (2)所以)sin 1(cos 22θθδRdd += (3) 由式(3)可知:1. 0=θ,此时光程差最大,d 2=δ,即圆心所对应的干涉级最高。
旋转微调鼓轮使M 1移动,若使d 增加时,可以看到圆环一个个地从中心冒出,而后往外扩张;若使d 减小时,圆环逐渐收缩,最后消失在中心处。
迈克尔逊⼲涉实验报告迈克尔逊⼲涉实验【实验⽬的】⑴了解迈克尔逊⼲涉仪的结构、原理,学习使⽤迈克尔逊⼲涉仪产⽣⼲涉的⽅法。
⑵观察⾮定域等倾⼲涉条纹与定域等厚⼲涉条纹,巩固和加深对⼲涉理论的理解。
⑶测量 He—Ne 激光波长λ,并⽤逐差法处理数据。
⑷侧量钠光的相⼲长度 L (选做)。
【实验仪器】迈克尔逊⼲涉仪、 He—Ne、激光器、扩束镜、光栏(选做:钠光灯、⽩光光源、⽑玻璃)等。
(迈克尔逊⼲涉仪的结构与光路介绍见附页。
)1.结构迈克尔逊⼲涉仪的结构如图 7—20 所⽰,M1( 6)和M2(7)是两个精磨的平⾯反射镜。
峡固定在座上.背⾯的 3 个螺丝和在它下⾯的 2 个互相垂直的螺丝可⽤来精确地调节从镜的倾斜度。
镜可沿导轨移动,它由⼀套精密齿轮来调节。
M1卡在螺距为1mm 的丝杆上,丝杆由⼀个100分格的粗调⼿轮带动,因此,⼿轮每转⼀格,M1前进或后退1/100 mm(这是粗调部分);粗调⼿轮右侧有⼀个微调⼩⿎轮,微调⼩⿎轮也是100分格的,微调⼩⿎轮每转l圈.粗调⼿轮前进l格,M1前进或后退1/10 000mm(这是微调部分),这样,最⼩读数可估读到10-5mm 。
G1(10),G2(9)是两块折射率和厚度都相同的平⾯玻璃板,在仪器上平⾏放置,与M1和M2约成45度⾓,分别称为分光板和补偿板。
G1的⼀⾯镀有银或铝.形成半反射⾯。
2光路其光路如图7—21所⽰,从光源S来的光在G1的半反射⾯H上被分成反射光束1和透射光束l,两束光的强度近似相等。
光束l射向平⾯镜M1反射折回通过G1;光束2通过G2:射⾄G1,的半反射⾯ H 处再次反射。
最后这两束相⼲光在空间相遇产⽣⼲涉。
⽤屏E和通过望远镜等可以观察到它们的⼲涉条纹。
补偿板G2是为了消除光束1和光束2的光程不对称⽽设置的。
如果没有 G2从分光处起,光束1通过玻璃板1次,⽽光束1没有通过玻璃板;加上G2后,光束2也就通过玻璃板2次。
因⽽,光束2在光程L得到补偿,从⽽避免了因光路不对称⽽产⽣的附加光程差。
迈克尔逊干涉仪实验报告
实验目的:
通过迈克尔逊干涉仪实验,验证干涉现象,并测量出光的波长。
实验原理:
迈克尔逊干涉仪是一种利用干涉现象来测量光波长的仪器。
它
由半透镜、分束镜、反射镜等部件组成。
当光线通过分束镜后被分
成两束光线,分别经过反射镜反射后再次汇聚在半透镜上,产生干
涉现象。
通过移动一个反射镜,观察干涉条纹的移动,可以测量出
光的波长。
实验步骤:
1. 调整迈克尔逊干涉仪,使得两束光线在半透镜上产生干涉现象。
2. 通过微调反射镜的位置,观察干涉条纹的变化。
3. 记录不同位置下的干涉条纹的位置。
4. 根据干涉条纹的移动情况,计算出光的波长。
实验结果:
经过实验测量,我们得到了光的波长为XXX纳米。
实验结论:
通过迈克尔逊干涉仪实验,我们验证了光的干涉现象,并成功测量出了光的波长。
实验结果与理论值相符,实验达到了预期的目的。
自查报告:
在实验过程中,我们注意到了一些问题。
首先,在调整干涉仪时,需要保证光线的稳定,避免外界干扰。
其次,在测量干涉条纹位置时,需要精确记录数据,以减小误差。
在今后的实验中,我们将更加注意这些细节,以提高实验的准确性和可靠性。
迈克尔逊干涉仪实验报告,误差分析迈克尔逊干涉仪实验报告一、实验目的通过迈克尔逊干涉仪的实验,了解干涉现象的基本原理,学习如何利用干涉仪测量光源的波长和介质的折射率。
二、实验原理迈克尔逊干涉仪是利用光的干涉现象测量光源的波长或介质的折射率的一种仪器。
它由一个分束器、两个反射镜和一个合束器组成。
当一束单色光通过分束器后,会被分成两束光,分别沿着两个不同的光程传播,然后再由合束器合成一束光,形成干涉现象。
当两束光的光程差为波长的整数倍时,出现明条纹;当两束光的光程差为波长的半整数倍时,出现暗条纹。
通过对条纹的观察和计数,可以测量光源的波长或介质的折射率。
三、实验步骤1. 将迈克尔逊干涉仪放置在光学实验台上,调整分束器和反射镜的位置,使得光线正常传播。
2. 打开光源,调节分束器和反射镜的位置,使得在观察屏上形成明条纹。
3. 记录反射镜的位置和观察屏上的明条纹数目。
4. 移动一个反射镜,使得观察屏上的明条纹数目减少一半,记录反射镜的位置。
5. 根据实验数据计算出光源的波长和介质的折射率。
四、实验数据和结果根据实验步骤记录的数据,可以计算出光源的波长和介质的折射率。
在计算过程中,需要考虑各种可能的误差,并进行误差分析。
五、误差分析在迈克尔逊干涉仪实验中,可能存在以下几种误差:1. 光源的波长可能存在一定的波动,导致测量结果的误差。
为了减小这种误差,可以使用稳定的光源并进行多次测量取平均值。
2. 分束器和反射镜的位置调节可能存在误差,使得光线传播的路径发生偏差。
为了减小这种误差,可以使用精确的调节装置,并注意调节时的稳定性。
3. 观察屏上的明条纹数目的测量可能存在主观误差。
为了减小这种误差,可以使用显微镜等放大器具进行观测,并多次观测取平均值。
4. 在计算光源的波长和介质的折射率时,可能存在计算公式的近似误差。
为了减小这种误差,可以使用更精确的计算公式,并进行精确计算。
六、实验结论通过迈克尔逊干涉仪实验,我们可以测量光源的波长和介质的折射率。
迈克尔逊干涉仪实验报告
前言
迈克尔逊干涉仪是一种通过干涉现象测量光波长和折射率的仪器。
本次实验旨在通过搭建迈克尔逊干涉仪并测量干涉条纹的间距,以及通过对比干涉条纹的变化来计算空气的折射率。
实验装置
•激光器
•两块反射镜
•半反射镜
•三角架
•平移台
•动态计算机显示器
实验步骤
1.将激光器直接指向半反射镜,将半反射镜的一面对着一个反射镜后照
到墙上观察。
根据反射光路情况能看到一条条垂直的光便是干涉条纹,即洛伦兹-费涅尔干涉条纹。
2.将一个反射镜固定在三角架上的一侧,尽量调节反光镜的髙度与半反
射镜朝向垂直。
3.调整半反射镜的朝向,使反射光与反射光垂直,即把距离半反射镜
50%的光反并到一起。
4.将另一个反射镜点在电子器上,利用电子计算器的平移台,将该反射
镜移动,则会发现干涉条纹的位置也随之移动。
实验结果
我们使用一个动态计算机显示器观察到了干涉条纹的变化。
通过实验我们得到了横向移动距离与干涉条纹间隔的线性关系,我们成功的利用迈克尔逊干涉仪对空气的折射率进行测量,并得到了较为准确的结果。
本次实验成功地搭建了迈克尔逊干涉仪,并对干涉条纹的间距进行了测量。
我们通过干涉条纹的变化成功的计算出了空气的折射率。
迈克尔逊干涉仪作为一种精密测量仪器被广泛应用于光学、物理、电子等学科领域,本次实验为我们提供了实践的机会,也为我们将来学习和研究这一领域提供了基础。
迈克尔逊干涉仪实验报告迈克尔逊干涉仪,听起来高大上,其实就是一种用来测量光波性质的仪器。
它的设计精巧得很,主要用来研究干涉现象。
说起干涉,简单来说,就是两束光波相遇时,可能会互相增强或抵消。
这样的现象在科学研究中非常重要。
一、迈克尔逊干涉仪的结构与原理1.1 结构迈克尔逊干涉仪由几个主要部分构成。
首先,有个光源。
然后是分光镜,把光分成两束。
接着,有两个反射镜,光线在这儿反射后,再次汇聚。
最后,合光的地方就是观察屏。
想象一下,光线就像两条小路,互相交叉。
这个设计让我们能够清晰地看到干涉条纹,神奇吧?1.2 原理干涉的原理其实很简单。
当两束光波相遇时,如果它们的波峰和波峰重合,就会加强;如果波峰和波谷重合,就会相互抵消。
这就是干涉现象的根本。
通过这种方式,迈克尔逊干涉仪能够测量光的波长,甚至是微小的变化。
二、实验步骤与过程2.1 准备工作在开始实验之前,首先要确保仪器各部分安装牢固。
光源要亮,分光镜要摆正。
这样的准备工作虽然麻烦,但非常关键。
小细节决定成败,大家懂的。
2.2 调整仪器调整仪器是个技术活。
反射镜的角度要调得刚刚好。
要是角度偏了,干涉条纹就模糊不清。
像个画家,认真地调整每一个细节,才能呈现出最美的画面。
2.3 观察干涉条纹一切准备就绪后,打开光源。
光线经过分光镜,形成两束光。
这时,观察屏上会出现一系列明暗相间的条纹。
哇,那感觉就像在看一幅动人的画卷!每一条条纹都在告诉我们光的奥秘,真是让人惊叹不已。
三、数据记录与分析3.1 数据记录实验过程中,要仔细记录每一次观察到的干涉条纹数量和相应的光源波长。
这些数据非常重要,可以帮助我们进一步分析干涉现象。
科学实验就是这样,数据就是我们的金钥匙。
3.2 数据分析分析数据时,要认真对比干涉条纹与光波长的关系。
每次计算都要小心翼翼,不能出错。
通过这些数据,我们能了解光的性质,还能探索更多未知的领域。
科学的魅力就在于此,永远有新的发现等着我们。
四、总结迈克尔逊干涉仪的实验不仅让我领略了光的奇妙,也让我体会到科学探索的乐趣。
迈克尔逊干涉仪实验报告引言迈克尔逊干涉仪是一种利用光的干涉现象测量间距的仪器。
它是由美国物理学家亚伯拉罕·迈克尔逊于1881年发明的。
迈克尔逊干涉仪广泛应用于光学、激光技术、光纤通信等领域。
本实验旨在通过搭建迈克尔逊干涉仪并进行实验,了解其原理和应用。
实验设备•He-Ne氦氖激光器•1/10波片•片玻璃•半反射膜•波长计•读数显微镜•测距器实验原理迈克尔逊干涉仪利用光的波动性和波的干涉原理进行测量。
它由一个分束器、一面半反射镜、两面平行平板镜和一个光源组成。
光源发出的光经过分束器分为两束,一束经过半反射镜反射,另一束直接透射,然后它们分别在两面平行平板镜上反射,并最后再次汇聚在一起。
当两束光相遇时,会产生干涉现象。
通过调节其中一个平板镜的位置,可以使反射光程差发生变化,从而观察到干涉现象的变化。
实验步骤1.搭建迈克尔逊干涉仪。
安装好分束器、半反射镜和两面平行平板镜,并精确调整位置和方向。
2.打开He-Ne氦氖激光器,并调整光源位置和方向,使得光能够正常通过分束器。
3.将1/10波片放置在半反射镜旁边的光路上,调整它的角度,使得一部分光能够通过。
4.在反射光路上插入片玻璃,观察干涉条纹。
5.通过调整其中一个平板镜的位置,改变反射光程差,观察干涉条纹的变化。
6.使用读数显微镜和测距器,测量不同光程差下的干涉条纹的移动和位置。
实验结果与分析在实验中,我们观察到了干涉条纹的变化。
随着平板镜位置的调整,干涉条纹的位置发生了移动。
通过测量不同光程差下的干涉条纹的移动,我们得到了一组数据。
根据这组数据,我们可以计算出光的波长。
结论通过利用迈克尔逊干涉仪进行实验,我们成功观察到了干涉条纹的变化,并进行了测量。
实验结果证实了迈克尔逊干涉仪的原理,并且得到了光的波长的计算值。
迈克尔逊干涉仪在光学和激光技术中有着广泛的应用,了解和掌握它的原理和使用方法对于进一步研究和应用光学技术具有重要意义。
参考文献1.Smith, Robert W. (1998).。
迈克尔逊干涉仪实验报告
实验目的:
本实验旨在通过迈克尔逊干涉仪观察干涉条纹的形成,并测量出光的波长。
实验仪器:
迈克尔逊干涉仪、激光光源、平面镜、半反射镜、测微器、光屏等。
实验步骤:
1. 将激光光源发出的光线分为两路,一路经过半反射镜反射,另一路经过平面镜反射。
2. 两路光线再次相遇,形成干涉,通过调节平面镜的位置使得在光屏上观察到清晰的干涉条纹。
3. 通过测微器测量平面镜位置的微小变化,从而计算出光的波
长。
实验结果:
通过实验观察,我们成功地在光屏上观察到了清晰的干涉条纹,并且通过测量得出了光的波长为XXX纳米。
实验分析:
在实验过程中,我们发现调节平面镜位置对干涉条纹的清晰度
有很大影响,需要耐心细致地调整。
同时,测量过程中也需要注意
测微器的精确度,避免误差的产生。
实验结论:
通过本次实验,我们成功地观察到了迈克尔逊干涉仪的干涉现象,并且通过测量得出了光的波长。
实验结果与理论值基本吻合,
实验达到了预期的目的。
自查报告:
在实验过程中,我们注意到了一些细节问题,比如调节仪器的
耐心和细致度,测量的精确性等方面还需要进一步提高。
在今后的实验中,我们将更加重视这些细节问题,以确保实验结果的准确性和可靠性。
迈克尔逊干涉实验报告一、实验目的1、了解迈克尔逊干涉仪的结构和工作原理。
2、掌握迈克尔逊干涉仪的调节方法。
3、观察等倾干涉和等厚干涉条纹,测量激光的波长。
二、实验原理迈克尔逊干涉仪是一种分振幅双光束干涉仪,其光路图如下图所示。
光源 S 发出的光经分光板 G1 分成两束,一束透过 G1 到达反射镜M1 后反射回来,另一束经 G1 反射到达反射镜 M2 后反射回来,两束光在 G1 处再次相遇并发生干涉。
若 M1 和 M2 严格垂直,则观察到的是等倾干涉条纹。
此时,两束光的光程差为:\\Delta = 2d\cos\theta\其中,d 为 M1 和 M2 之间的距离,θ 为入射光与 M1 法线的夹角。
当 M1 和 M2 不严格垂直时,观察到的是等厚干涉条纹。
三、实验仪器迈克尔逊干涉仪、HeNe 激光器、扩束镜、毛玻璃屏。
四、实验步骤1、仪器调节调节迈克尔逊干涉仪的底座水平,使干涉仪大致水平放置。
调节 M1 和 M2 背后的三个螺丝,使 M1 和 M2 大致垂直。
打开激光器,使激光束通过扩束镜后大致垂直入射到迈克尔逊干涉仪上。
调节 M2 下方的两个微调螺丝,使屏幕上出现清晰的干涉条纹。
2、观察等倾干涉条纹缓慢转动微调手轮,观察干涉条纹的变化。
记录条纹的形状、疏密和中心的“吞吐”情况。
3、测量激光波长先记录 M1 位置的读数 d1。
沿某一方向转动微调手轮,使中心条纹“吐出”或“吞进”一定数量 N (如 50 条)。
再次记录 M1 位置的读数 d2。
则激光波长λ可由下式计算:\lambda =\frac{2|d2 d1|}{N}\4、观察等厚干涉条纹调节 M2 背后的螺丝,使 M1 和 M2 有一定夹角。
观察等厚干涉条纹的形状和变化。
五、实验数据及处理1、测量激光波长的数据记录|次数| d1 (mm) | d2 (mm) | N (条) ||||||| 1 | 25123 | 25635 | 50 || 2 | 25234 | 25756 | 50 || 3 | 25345 | 25878 | 50 |2、数据处理分别计算每次测量的波长λ,然后取平均值。
1.等倾干涉的特点等倾干涉:厚度一定的薄膜,其光程差只由入射角决定,即干涉条纹只随入射角的变化而变化。
薄膜参数h、n、n1、n2及入射光波长λ等保持不变,总光程差Δl或总相位差δ仅仅随光束入射角θ(或光束在薄膜内的折射角i)的不同而变化。
反射光总光程差:干涉条纹特点:具有相同入射角的光线与薄膜表面交点的轨迹对应干涉条纹的相同级次。
点光源垂直照明:同心圆环条纹扩展光源垂直照明:无限多个点源产生的位置重合的同心圆环条纹的强度和仍为同心圆环条纹——透镜总会把平行光会聚到同一点。
干涉图样形成的位置:无限远处或透镜的像方焦平面上。
以反射光为例,并设n1,n2<n,则亮纹条件:暗纹条件:相邻亮纹或暗纹间距:入射角很小时:第N个条纹附近相邻两圆环间的角间距(亮条纹中心到相邻暗条纹中心的角距离):圆环形干涉条纹半径和条纹间距:等倾干涉条纹为一组中心疏,边缘密的不等间距的同心圆环,干涉级次为内高外低,且中心级次最高。
薄膜厚度越大,中心条纹级次越大。
中心级次改变±1时,相应的薄膜厚度变化变化为2.关于迈克尔逊的历史美国物理学家。
1852 年12月19日出生于普鲁士斯特雷诺(现属波兰),后随父母移居美国,1837年毕业于美国海军学院,曾任芝加哥大学教授,美国科学促进协会主席,美国科学院院长;还被选为法国科学院院士和伦敦皇家学会会员,1931年5月9日在帕萨迪纳逝世。
迈克尔逊主要从事光学和光谱学方面的研究,他以毕生精力从事光速的精密测量,在他的有生之年,一直是光速测定的国际中心人物。
他发明了一种用以测定微小长度、折射率和光波波长的干涉仪(迈克尔逊干涉仪),在研究光谱线方面起着重要的作用。
1887年他与美国物理学家E.W.莫雷合作,进行了著名的迈克尔逊-莫雷实验,这是一个最重大的否定性实验,它动摇了经典物理学的基础。
他研制出高分辨率的光谱学仪器,经改进的衍射光栅和测距仪。
迈克尔逊首倡用光波波长作为长度基准,提出在天文学中利用干涉效应的可能性,并且用自己设计的星体干涉仪测量了恒星参宿四的直径。
迈克尔逊干涉仪实验报告迈克尔逊干涉仪实验报告引言:干涉是光学中的重要现象,通过干涉实验可以研究光的波动性质。
迈克尔逊干涉仪是一种经典的干涉实验装置,由美国物理学家迈克尔逊于1887年发明。
本实验旨在通过迈克尔逊干涉仪,观察和分析干涉现象,探索光的波动性质。
实验装置:迈克尔逊干涉仪由一个光源、一个半透明平板、两个反射镜和一个观察屏组成。
光源发出的光经过半透明平板后,一部分光被反射镜1反射,另一部分光经过反射镜1后被反射镜2反射,然后两束光在观察屏上相遇形成干涉条纹。
实验过程:1. 调整干涉仪的反射镜,使两束光线平行并重合在观察屏上。
观察屏上出现明暗相间的干涉条纹。
2. 逐渐移动反射镜2,观察屏上的干涉条纹发生变化。
当反射镜2移动一个波长的距离时,干涉条纹由明变暗或由暗变明。
3. 测量反射镜2移动的距离,以及由明变暗或由暗变明的干涉条纹的数量,计算出光的波长。
实验结果:通过实验,我们得到了反射镜2移动的距离和干涉条纹的数量的测量数据。
根据这些数据,我们计算出了光的波长为X纳米。
讨论与分析:1. 干涉条纹的形成:干涉条纹的出现是由于光的波动性质造成的。
当两束光线相遇时,它们会相互干涉,形成明暗相间的干涉条纹。
2. 干涉条纹的变化:反射镜2的移动导致干涉条纹的变化。
当反射镜2移动一个波长的距离时,两束光线的光程差发生变化,导致干涉条纹由明变暗或由暗变明。
3. 光的波长计算:通过测量反射镜2移动的距离和干涉条纹的数量,我们可以计算出光的波长。
这个结果与已知的光的波长进行比较,验证了实验的准确性。
4. 实验误差分析:在实验中,存在一些误差来源,例如仪器精度、环境因素等。
为了提高实验结果的准确性,我们可以采取一些措施,如增加测量次数、减小仪器误差等。
结论:通过迈克尔逊干涉仪的实验,我们观察到了干涉现象,计算出了光的波长。
这个实验不仅帮助我们理解光的波动性质,还展示了光学实验的重要性和实验方法的应用。
通过不断改进和深入研究,我们可以进一步探索光的性质,为光学科学的发展做出贡献。
精选全文完整版可编辑修改大学物理实验报告3. 实验原理(请用自己的语言简明扼要地叙述,注意原理图需要画出,测试公式需要写明)(1)迈克耳孙干涉仪的结构与光路如图5.3. 1所示为迈克耳孙干涉仪的侧视图图与俯视图,导轨7固定在一只稳定的底座上,底座由三颗调平螺丝9及其锁紧螺丝10来调平。
丝杠6螺距为1mm,转动粗调手轮2,经一对齿轮带动丝杠转动,进而带动移动镜M在导轨上滑动。
移动距离可在毫米刻度尺5上读到1 mm,在窗口3中的刻度盘上读到0.01 mm。
转动微调手轮1,经1:100的蜗轮传动,可实现微动。
微动手轮上的最小刻度为0.0001 mm,可估读到0.00001 mm 。
分光板G1和补偿板G2固定在基座上,不得强扳,且不能用手接触其光学表面。
固定参考镜(定镜)13和移动镜(动镜)11后各有三颗螺丝,用于粗调两者相互垂直,不能拧得太紧或太松,以免使其变形或松动。
固定参考镜13的一侧和下部各有一颗微调螺丝 14和15,可用来微调13的左右偏转和俯视,微调螺丝也不能拧得太松或太紧。
丝杠的顶进力由丝杠顶进螺帽8来调整。
迈克尔逊干涉仪的实验原理如图5.3.2所示。
由光源S发出一束光,射到分光板G1的半透半反膜L上,L使反射光和反射的光强基本相同,所以称G1为分光板。
透过膜层L的光束(1)经G2到达参考镜M1后,被反射回来;被反射的光束(2) 到达移动镜M2后,也被反射回来。
由于(1)、(2)两束光满足光的相干条件,各自反射回来在膜层L所在表面相遇后,就发生干涉,在E处即可观察到干涉条纹。
G2是补偿板,它使光束(1)和(2)经过玻璃的次数相同,当使用白光作为光源时,G2还可以补偿G1的色散。
M1’是在G1中看到的M1的虚像。
(2) 单色点光源等倾干涉条纹的观察及波长的测量如图5.3.3所示,由He-Ne激光器发出的细束平行激光经过以钠光入射,它有两条谱线,对应空气中波长分别为λ 1和λ 2(设λ 1>λ 2),彼此十分接近,就会出现这样一种情况: 当d 为某一定值d1时,对同一入射角θi,有2d1cos θi=k λ2,且2d1cos θi=(k+1/2) λ 1,此时λ 2的k 级明条纹与λ1的k 级暗条纹重叠,视场中干涉条纹的可见度最低,如图5.3.5所示。
迈克尔逊干涉仪测量光波的波长实验报告实验名称,迈克尔逊干涉仪测量光波的波长。
实验目的,利用迈克尔逊干涉仪测量光波的波长,了解光的干涉现象,并掌握实验操作技巧。
实验原理,迈克尔逊干涉仪是一种利用干涉现象测量光波波长的仪器。
它由半透明玻璃片、反射镜、光源等组成。
当光波通过半透明玻璃片后,会被分成两束光线,分别经过两个反射镜反射后再次相遇,产生干涉现象。
通过调节反射镜的位置,使得两束光线的光程差为整数倍的波长,观察到明暗条纹,从而可以计算出光波的波长。
实验步骤:
1. 调整迈克尔逊干涉仪,使得两束光线相互垂直并能够相遇。
2. 调节反射镜的位置,观察干涉条纹的变化,并记录下位置。
3. 根据干涉条纹的位置计算出光波的波长。
实验结果,通过实验测得光波的波长为XXX纳米。
实验结论,通过迈克尔逊干涉仪测量光波的波长,我们成功地
观察到了干涉条纹,并计算出了光波的波长。
实验结果与理论值基
本吻合,证明了迈克尔逊干涉仪可以准确地测量光波的波长。
同时,通过实验,我们也加深了对光的干涉现象的理解,并掌握了实验操
作技巧。
存在问题及改进措施,在实验过程中,可能会受到外界光线的
干扰,导致干涉条纹不够清晰。
为了减少干扰,可以在实验室中选
择光线较暗的时段进行实验,或者采取遮光措施。
实验人员签名,_________ 日期,_________。
一、实验目的1、掌握迈克尔逊干涉仪的调节方法并观察各种干涉图样。
2、区别等倾干涉、等厚干涉和非定域干涉,测定 He-Ne 激光波长二、实验仪器迈克尔逊干涉仪、 He-Ne 激光器及光源、小孔光阑、扩束镜(短焦距会聚镜)、毛玻璃屏等。
(图一)(图二)三、实验原理①用 He-Ne 激光器做光源,使激光通过扩束镜会聚后发散,此时就得到了一个相关性很好的点光源,射到分光板 P1和 P2上后就将光分成了两束分别射到 M1 和 M2 上,反射后通过 P1 、 P2 就可以得到两束相关光,此时就会产生干涉条纹。
②产生干涉条纹的条件,如图 2 所示, B 、 C 是两个相干点光源,则到 A 点的光程差δ =AB-AC=BCcosi , 若在 A 点出产生了亮条纹,则δ =2dcosi=k λ (k 为亮条纹的级数 ) ,因为 i 和 k 均为不可测的量,所以取其差值,即λ =2 Δ d/ Δ k。
四、实验步骤1、打开激光电源,先不要放扩束镜,让激光照到分光镜 P1 上,并调节激光的反射光照射到激光筒上。
2、调节 M2 的位置使屏上两排光中最亮的两个光点重回,并调至其闪烁。
3、将扩束镜放于激光前,调节扩束镜的高度和偏角,使光能照在 P1分光镜上,看显示屏上有没有产生同心圆的干涉条纹图案。
没有的话重复 2 、 3 步骤,直到产生同心圆的干涉条纹图案。
4、微调 M2是干涉图案处于显示屏的中间。
5、转动微量读数鼓轮,使 M1 移动,可以看到中心条纹冒出或缩进,若看不到此现象,先转动可度轮,再转动微量读数鼓轮。
记下当前位置的读数 d0 ,转动微量读数鼓轮,看到中心条纹冒出或缩进 30 次则记一次数据,共记录 10 次数据即 d0、 d1 (9)6、关闭激光电源,整理仪器,处理数据。
五、实验数据处理数据记录:数据处理:Δd0=d5-d0=0.05202mm Δd1=d6-d1=0.05225mm Δd2=d7-d2=0.04077mm Δd3=d8-d3=0.04077mm Δd4=d9-d4=0.05071mmΔd(平均)=(Δd0+Δd1+Δd2+Δd3+Δd4)/5 =0.047304mmA类不确定度σ=*10-6mΔk=150所以λ(平均)=2Δd(平均)/Δk = nmB类不确定度: UΔB=*10-7 m总不确定度: UΔd =*10-6 mUλ =2UΔd/Δk = nm所以λ=λ(平均)+Uλ= + nmEλ=()/ *100% =%。
φ
M 1
d
L 2d
S 1’
S 2’
G
S
M 1’
M 2 迈克尔逊干涉实验
39042122 吴淼
摘要:迈克尔逊干涉仪是一个经典迈克尔逊和莫雷设计制造出来的精密光学仪器,在近代物理和近代计量技术中都有着重要的应用。
通过迈克尔逊干涉的实验,我们可以熟悉迈克尔逊干涉仪的结构并掌握其调整方法,认识电光源非定域干涉条纹的形成与特点,部分从并利用干涉条纹的变化测定光源的波长。
实验原理:
(1)迈克尔逊干涉仪的光路
迈克尔逊干涉仪的光路图如图(一)所示。
从光源S 发出的一束光
摄在分束板G1上,将光束分为两部分:一部分从G1半反射膜处反射,射向平面镜M2;另一部分从G1透射,射向平面镜M1。
因G1和全反射平面镜M1、M2均成45°角,所以两束光均垂直射到M1、M2上。
从M2反射回来的光,透过半反射膜;从M2反射回来的光,为半反射膜反射。
二者汇集成一束光,在E 处即可观察到干涉条纹。
光路中另一平行平板G2与G1平行,其材料厚度与G1完全相同,以补偿两束光的光程差,称为补偿板。
在光路中,M1’是M1被G1半反射膜反射所形成的虚像,两束相干光相当于从M1’和M2反射而来,迈克尔逊干涉仪产生的干涉条纹如同M2和M1’之间的空气膜所产生的干涉条纹一样。
(2)单色电光源的非定域干涉条纹
M2平行M1’且相距为d ,
S 发出的光对M2来说,如S’发出的光,而对于E 处的观察者来说,S’如位于S2’一样。
又由于半反
射膜G 的作用,M1如同处于S1’的位
图(一) 迈克尔孙干涉仪光路
置,所以E 处观察到的干涉条纹,犹如S1’、S2’发出的球面波,它们在空间处处相干,把观察屏放在E 空间不同位置,都可以看到干涉花纹,因此 这一干涉为非定域干涉。
如果把观察屏放在垂直于S1’、S2’的位置上,则可以看到一组同心圆,而圆心就是S1’,、S2’的连线与屏的交点E 。
设E 处
(ES2’=L )的观察屏上,离中心E 点远处某一点P ,EP 的距离为R ,则两束光的光程差为
2222)2(R L R d L L +-++=∆
L>>d 时,展开上式并略去d ²/L ²,则有
ϕcos 2/222d R L Ld L =+=∆
式中φ是圆形干涉条纹的倾角。
所以亮纹条件为 2dcos φ=k λ (k=0,1,2,…) ①
由此式可知,当k 、φ一定时,如果d 逐渐减小,则cos φ将增大,即φ角逐渐减小。
也就是说,同一k 级条纹,当d 减小时,该圆环半径减小,看到的现象是干涉圆环内缩;如果d 逐渐增大,同理看到的现象是干涉条纹外扩。
对于中央条纹,若内缩或外扩N 次,则光程差变化为2Δd=Nλ.式中,Δd 为d 的变化量,所以有
λ=2Δd/N ②
通过此式则能有变化的条纹数目求出光源的波长。
实验仪器:
迈克尔逊干涉仪、氦氖激光器、小孔、扩束镜、毛玻璃。
实验步骤:
(1)迈克尔逊干涉仪的调整
①调节激光器,使激光束水平地射到M1、M2反射镜中部并垂直于仪器导轨。
首先将M1、M2背面的三个螺钉及两个微调拉簧均拧成半松,然后上下移动、左右旋转激光器俯仰,使激光器入射到M1、M2反射镜中心,并使M1、M2放射回来的光点回到激光束输出镜面中心。
②调节M1、M2互相垂直
在光源前放置一小孔,让激光束通过小孔入射到M1、M2上,根据放射光点的位置对激光束做进一步细调,在此基础上调整M1、M2背面的三个方位螺钉,使两镜的反射光斑均与小孔重合,这时M1于M2基本垂直。
(2)点光源非定域干涉条纹的观察和测量
①将激光器用扩束镜扩束,以获得点光源,这时毛玻璃观察屏上应出现条纹。
②调节M1镜下方微调拉簧,使之产生圆环非定域干涉条纹,这时M1与M2
的垂直程度进一步提高。
③将另外一块毛玻璃放到扩束镜与干涉仪之间以获得面光源。
放下毛玻璃观察
屏,用眼睛直接观察干涉环,同时仔细调节M1的两个微调拉簧,直至眼睛上下左右晃动时,各干涉环大小不变,即干涉环中心没有被吞吐,只是圆环整体随眼睛一起平动。
此时得到面光源定域等倾干涉条纹,说明M1与M2严格垂直。
④移走小块毛玻璃,将毛玻璃观察屏放回原处,仍观察点光源等倾干涉条纹。
改变d值,使条纹外扩或内缩,利用公式λ=2Δd/N测出激光的波长。
要求圆环中心每吞吐1000个条纹,即明暗变化100次记下一个d值,连续测量10个d值。
数据记录与处理:
实验次数0 1 2 3 4 5
读数d\mm 41.33654 41.36896 41.40095 41.43260 41.46397 41.49571 实验次数 6 7 8 9 10
读数d\mm 41.52704 41.55958 41.59163 41.62375 41.65653
i
1 2 3 4 5 6 i i N x = 0
100
200
300
400
500
i i d y =
41.33654 41.36896 41.40095 41.43260 41.46397 41.49571
i i N N x -=∆+1σσ
600 600 6000 600 600
mm d d y i i i /-=∆+σσ 0.19050
0.19062 0.19068 0.19115 0.19256
i
7 8 9 10 11 i i N x = 600
700
800
900
1000
i i d y =
41.52704 41.55958 41.59163 41.62375 41.65653
由Δd=λN/2,可得
mm d d N N N d d b i i
i n i i i n i i n 45
1
511018503.3)(5151-=+=++⨯=-∆=--=∑∑σ mm b 01.6372==λ
mm y y
y u i i
a 45
1
108085.34
5)
()(-=⨯=⨯-∆=
∆∑
mm y u b 5108868.23
)(-⨯=∆=
∆
[][]mm y u y u y u b a 42
2108194.3)()()(-⨯=∆+∆=
∆
57735.03
1)()(==
=N u N u b
nm N N u y y u u 4)()(2)(2
2
=⎥
⎦⎤
⎢⎣⎡+⎥⎦
⎤⎢⎣⎡∆∆=λλ nm u )4637()(±=±λλ
误差分析:
① 实验中空程没能完全消除;
② 实验对每一百条条纹的开始计数点和计数结束点的判定存在误差; ③ 实验中读数时存在随机误差;
④ 实验器材受环境中的振动等因素的干扰产生偏差。
感想:
迈克尔逊和·莫雷以迈克尔逊干涉仪为基础共同进行了著名的迈克耳逊-莫雷实验,这个试验排除了以太的存在,为狭义相对论的诞生提供了基础,同时迈克尔逊也因此获得1907年的诺贝尔奖,足可见迈克尔逊干涉仪的重要性。
时至今日,迈克尔逊干涉仪作为紧密测量仪器的始祖,其地位不但没有降低,而是在科学界和生活中继续发挥着重要的作用。
在传统精密测量方面,迈克尔逊干涉仪可以用来进行微小位移量和微振动的测量,进行压电材料的逆压电效应研究,实现纳米量级位移的测量、薄透明体的厚度及折射率的同时测量、气体浓度的测量和引力波探测,组装后也能测量微小的角度。
随着光纤技术的产生,随即又产生了光纤迈克尔逊干涉仪,光纤迈克尔逊干涉仪可用来进行混凝土内部应变的测量、地震波加速度的测量和温度的测量,应用范围扩展到民用。
同时,迈克尔逊干涉仪作为傅里叶红外吸收光谱仪、干涉成象光谱技术、光学相干层析成像系统及微型集成迈克尔逊干涉仪的核心仪器,其作用更是不可忽略。
一个迈克尔逊实验,不但让我领悟到迈克尔逊设计干涉仪的巧妙和智慧,也更让我知道了做实验要有耐心和恒心,哪怕实验再麻烦,也必须坚持不懈,注重细节,这样才能真正
地把实验做好!
参考文献:
[1]李朝荣,徐平,唐芳,王慕冰.基础物理实验(修订版)[M].北京:北京航空航天大学出版社,2010:197—205.
[2]吴百诗主编.大学物理学下册[M].北京:高等教育出版社,2004:221—226.。