鲁教版八年级上册数学期末试卷-精品
- 格式:docx
- 大小:83.36 KB
- 文档页数:4
八年级数学上册期末试卷(1)一.选择题1.下列式子中是分式的是()A.B.C.D.2.下列各式由左到右的变形中,属于分解因式的是()A.a(m+n)=am+an B.a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+6x=(x+4)(x﹣4)+6x3.多项式m2﹣m与多项式2m2﹣4m+2的公因式是()A.m﹣1 B.m+1 C.m2﹣1 D.(m﹣1)24.当a,b互为相反数时,代数式a2+ab﹣2的值为()A.2 B.0 C.﹣2 D.﹣15.下列多项式中,能用完全平方公式分解因式的是()A.﹣x2﹢1 B.﹣x2+2x﹣1 C.x2﹣2x﹣2 D.x2﹣2x6.因式分解3y2﹣6y+3,结果正确的是()A.3(y﹣1)2B.3(y2﹣2y+1)C.(3y﹣3)2D.7.下列方程是分式方程的是()A.(a,b为常数)B.x=c(c为常数)C.x=5(b为常数) D.8.计算﹣的结果是()A. B.C.D.9.为了满足顾客的需求,某商场将5kg奶糖,3kg酥心糖和2kg水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖为每千克20元,水果糖为每千克15元,混合后什锦糖的售价应为每千克()A.25元B.28.5元C.29元D.34.5元10.截至2010年“费尔兹奖”得主中最年轻的8位数学家获奖时的年龄分别为29,28,29,31,31,31,29,31,则由年龄组成的这组数据的中位数是()A.28 B.29 C.30 D.3111.数据21,12,18,16,20,21的众数和中位数分别是()A.21和19 B.21和17 C.20和19 D.20和1812.若数据10,9,a,12,9的平均数是10,则这组数据的方差是()A.1 B.1.2 C.0.9 D.1.4二.填空题13.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD 的周长为.14.如图,点B,C,D在同一条直线上,△ABC和△ECD都是等边三角形,△EBC可以看作是由△DAC绕点C逆时针旋转°得到的.15.给出以下4个图形:①平行四边形,②正方形,③等边三角形,④圆.其中,既是轴对称图形又是中心对称图形的是.(填写序号)16.如图,点E,F分别在平行四边形ABCD的边BC,AD上,AC,EF交于点O,请你添加一个条件(只添一个即可),使四边形AECF是平行四边形,你所添加的条件是.17.如图所示,DE是△ABC的中位线,若BC=8,则DE=.三.解答题18.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数和内角和.19.因式分解:﹣3a3b+6a2b2﹣3ab3.20.(1)计算:(a﹣b)(a2+ab+b2)(2)利用所学知识以及(1)所得等式,化简代数式÷.21.先化简,再求值:÷﹣,其中x=.22.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.求每件甲种、乙种玩具的进价分别是多少元.23.张明、李成两位同学初二学年10次数学单元自我检测的成绩(成绩均为整数,且个位数为0)分别如下图所示:利用图中提供的信息,解答下列问题.(1)完成下表:分)的成绩视为优秀,则优秀率高的同学是;(3)根据图表信息,请你对这两位同学各提一条不超过20个字的学习建议.24.如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.求证:△AGE≌△BGF.。
2021-2021年度鲁教版八年级数学上期末模拟试题姓名班级成绩一、选择题:〔每题3分,共39分〕1、以下标志既是轴对称图形又是中心对称图形的是〔〕A. B. C.D.2、以下从左到右边的变形,是因式分解的是〔〕A.〔3﹣x〕〔3+x〕=9﹣x2B.〔y+1〕〔y﹣3〕=﹣〔3﹣y〕〔y+1〕C.4yz﹣2y2z+z=2y〔2z﹣yz〕+z D.﹣8x2+8x﹣2=﹣2〔2x﹣1〕23、以下各式不能用公式法分解因式的是〔〕A.a2﹣4B.9a2b2﹣9ab+1C.〔a+b〕2﹣〔a﹣b〕2D.a4+2a2+14、假设分式的值为零,那么x的值是〔〕A.0B.±2C.4D.﹣45、化简的结果为〔〕A.B.C.D.﹣b6、一个多边形的内角和是外角和的A.8 B.6C.5D7、数据0,1,1,x,3,4的平均数是3倍,那么这个多边形的边数是〔.32,那么这组数据的中位数是〔〕〕A.1B.3C.D.28、甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参赛人数中位数方差平均数甲55149191135乙55151110135某同学分析上表后得出如下结论:〔1〕甲、乙两班学生成绩平均水平相同;〔2〕乙班优秀的人数多于甲班优秀的人数〔每分钟输入汉字≥150个为优秀〕;〔3〕甲班成绩的波动比乙班大,上述结论正确的选项是〔〕A〔1〕〔2〕〔3〕B〔1〕〔2〕C〔1〕〔3〕D〔2〕〔3〕9、如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.假设点A的坐标为〔a,b〕,那么点A′的坐标为〔〕A.〔﹣a,﹣b〕B.〔b,a〕C.〔﹣b,a〕D.〔b,﹣a〕10、在?ABCD中,CE平分∠BCD交AD于点E,假设AD=6,AE=2,那么AB的长为〔〕A.5B.4C.3D.211、如图,在四边形ABCD中,对角线AC、BD相交于点O,以下条件不能判定四边形ABCD为平行四边形的是〔〕A.AB∥CD,AD∥BC B.OA=OC,OB=ODC.AD=BC,AB∥CD D.AB=CD,AD=BC12.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,水流速度为4千米/时,假设设该轮船在静水中的速度为x千米/时,那么可列方程〔〕A.B.C.+4=9D.13、如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F.假设AB=6,那么BF的长为〔〕A.6B.7C.8D.10二、填空题:〔每题3分,共21分〕2214、假设x﹣y=5,xy=6,那么xy﹣xy=.15、假设关于x的方程﹣2=的解为非负数,那么m的取值范围是.16、在某公益活动中,小明对本班同学的捐款情况进行了统计,绘制成如图不完整的统计图.其中捐100元的人数占全班总人数的25%,那么本次捐款的中位数是元.17.如图,?ABCD的两条对角线AC、BD相交于点O,假设,AC=3,BD=4,那么四边形ABCD的周长为.18、假设多项式4x2﹣kxy+y2是完全平方式,那么k的值是19、假设分式方程:有增根,那么k=_________20、假设ABCD的周长为40cm,ABC的周长为27cm,那么AC的长是三、解答题:共60分20、分解因式:〔每题3分共6分〕〔1〕﹣a2+ab﹣b2(2)〔a 2+b2〕2﹣4a2b221、先化简,再求值+〔a﹣〕,其中a=+1,b=﹣1.〔5分〕22、解以下分式方程:〔8分〕〔1〕=〔2〕4x2.x 2111x23、作图题:〔6分〕如图,△ABC三个顶点坐标分别是A〔1,3〕,B〔4,1〕,C〔4,4〕.①画出△ABC向左平移5个单位长度后得到的△A1B1C1,并写出各点坐标。
一、选择题1.小明和小亮在研究一道数学题,如图EF AB ⊥,CD AB ⊥,垂足分别为E 、D ,G 在AC 上.小明说:“如果CDG BFE ∠=∠,则能得到AGD ACB ∠=∠”; 小亮说:“连接FG ,如果//FG AB ,则能得到GFC ADG ∠=∠”. 则下列判断正确的是( )A .小明说法正确,小亮说法错误B .小明说法正确,小亮说法正确C .小明说法错误,小亮说法正确D .小明说法错误,小亮说法错误2.下列命题中,假命题是( )A .在同一平面内,垂直于同一条直线的两直线平行B .到线段两端点距离相等的点在这条线段的垂直平分线上C .一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等D .一边长相等的两个等腰直角三角形全等3.如图,//AB EF ,C 点在EF 上,EAC ECA ∠=∠,BC 平分DCF ∠,且AC BC ⊥.下列结论:①AC 平分DCE ∠;②//AE CD ;③190B ∠+∠=︒;④BDC 21∠=∠.其中结论正确的个数有( )A .1个B .2个C .3个D .4个4.如图,一次函数162y x =-+的图象分别交x 、y 轴于点A 、B ,与正比例函数y x =的图象交于第一象限内的点C ,则OBC 的面积为( )A .12B .24C .27D .485.下列各组数中①22x y =⎧⎨=⎩; ②21x y =⎧⎨=⎩;③22x y =⎧⎨=-⎩;④16x y ⎧⎨⎩==是方程410x y +=的解的有( ) A .1个B .2个C .3个D .4个6.一次函数y mx n =-+的图象经过第二、三、四象限,则化简22()m n n -+所得的结果是( ) A .mB .m -C .2m n -D .2m n -7.若某正比例函数过(2,3)-,则关于此函数的叙述不.正确的是( ). A .函数值随自变量x 的增大而增大 B .函数值随自变量x 的增大而减小 C .函数图象关于原点对称 D .函数图象过二、四象限8.同一平面直角坐标系中,一次函数y mx n =+与y nx m =+(,m n 为常数)的图象可能是A .B .C .D .9.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( ) A .4种B .5种C .6种D .7种10.若点()23,P m m --在第四象限,则m 的取值范围是( ) A .302m <<B .0m >C .32m >D .0m <11.下列实数227,3π,3.14159,9-39-0.1010010001…….(每两个1之间依次多1个0)中无理数有( ) A .1个 B .2个 C .3个 D .4个 12.以下列各组数为长度的线段,不能构成直角三角形的是( )A .2,3,4B .3,4,5C .1,12D .6,8,10二、填空题13.某机器零件的横截面如图所示,按要求线段AB 和DC 的延长线相交成直角才算合格.一工人测得23A ∠=︒,31D ∠=︒,143AED ∠=∠︒,请你帮他判断该零件是否合格_______(填“合格”或“不合格”).14.数学课上,同学提出如下问题:老师说这个证明可以用反证法完成,思路及过程如下: 如图1,我们想要证明“如果直线AB ,CD 被直线所截EF ,AB ∥CD ,那么∠EOB=EO D '∠.” 如图2,假设∠EOB≠EO D '∠,过点O 作直线A'B',使EOB '∠=EO D '∠,可得A B ''∥CD .这样过点O 就有两条直线AB ,A B ''都平行于直线CD ,这与基本事实_________矛盾,说明∠EOB≠EO D '∠的假设是不对的,于是有∠EOB=∠EO D '∠.小贴士反证法不是直接从命题的已知得出结论,而是假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立.在某些情形下,反证法是很有效的证明方法.请补充上述证明过程中的基本事实:_________________________15.若方程x |m|-2+(m+3)y 2m-n =6是关于x 、y 的二元一次方程,则m+n=_____ 16.方程组6293x yx y a=-⎧⎨-=-⎩的解x 、y 互为相反数,则a =_____.17.已知Q 在直线4y x =-+上,且点Q 到两坐标轴的距离相等,那么点Q 的坐标为__________.18.在平面直角坐标系中,点()3,4A -到x 轴的距离为________. 19.材料:一般地,n 个相同因数a 相乘:n a a a a a ⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____.20.直角三角形的两边长分别为5和3,该三角形的第三边的长为________.三、解答题21.填空:(将下面的推理过程及依据补充完整)如图,已知:CD 平分ACB ∠,//AC DE ,//CD EF ,求证:EF 平分DEB ∠.证明:∵CD 平分ACB ∠(已知),DCA DCE ∴∠=∠(角平分线的定义),//AC DE (已知),DCA ∴∠=____(两直线平行,内错角相等) DCA CDE ∴∠==∠(等量代换), //CD EF (已知),∴_____CDE =∠(_________);DCE BEF ∠=∠(__________),∴__________=__________(等量代换),EF ∴平分DEB ∠(______________).22.平面直角坐标系中,已知直线1l 经过原点与点(),2P m m ,直线2l :23y mx m =+-(0)m ≠; (1)求证:点(23)--,在直线2l 上; (2)当2m =时,请判断直线1l 与2l 是否相交?23.一辆货车从甲地开往乙地,一辆客车从乙地开往甲地,两车同时出发,设货车离甲地的距离为1km y ,客车离甲地的距离为2km y ,两车行驶的时间为h x ,12,y y 与x 之间的关系如图所示.(1)分别求出1y 、2y 与x 之间的关系式;(2)甲、乙两地间有A ,B 两个加油站,且两个加油站相距150km ,当货车进人入A 加油站时,客车恰好进入B 加油站,求A 加油站离甲地的距离.24.如图所示,ABC 在正方形网格中,若点A 的坐标为(0,3),点C 的坐标为(1,1)按要求回答下列问题: (1)在图中建立正确的平面直角坐标系; (2)根据所建立的坐标系,写出点B 的坐标; (3)作出ABC 关于x 轴的对称图形'''A B C .25.计算:20116(2019)|527|32π-⎛⎫⨯+---- ⎪⎝⎭. 26.综合与探究在学习了轴对称变换后,我们经常会遇到三角形中的“折叠”问题,在解答这种问题时,通常会考虑到折叠前与折叠后的图形全等,并利用全等图形的性质,即对应角相等,对应边相等来研究解决数学中的“折叠”问题,每个小组剪了一些如图1所示的Rt ABC △纸片(90B ∠=︒,6AB =,8BC =)并进行探究:(1)如图2,“奋斗”小组将Rt ABC △纸片沿DE 折叠,使点C 落在ABC 外部的'C 处 ①若140∠=︒,37C ∠=︒,则2∠的度数为 . ②1∠,2∠,C ∠之间的数量关系为 .(2)如图3,“勤奋”小组将ABC 沿DE 折叠,使点C 与点A 重合,求BD 的长; (3)如图4,“雄鹰”小组将ABC 沿AD 折叠,使点B 落在点E 处,连接CE ,当CDE △为直角三角形时,求BD 的长.【参考答案】***试卷处理标记,请不要删除1.A解析:A【分析】由EF⊥AB,CD⊥AB,知CD∥EF,然后根据平行线的性质与判定即可得出答案.【详解】解:∵EF⊥AB,CD⊥AB,∴CD∥EF,若∠CDG=∠BFE,∵∠BCD=∠BFE,∴∠BCD=∠CDG,∴DG∥BC,∴∠AGD=∠ACB,故小明说法正确;∵FG∥AB,∴∠B=∠GFC,故得不到∠GFC=∠ADG,故小亮说法错误,故选:A.【点睛】本题考查了平行线的判定与性质,属于基础题,关键是掌握平行线的性质与判定.2.D解析:D【分析】根据垂线的性质,线段垂直平分线的判定,全等三角形的判定对各选项分析判断后利用排除法求解.【详解】A、同一平面内,垂直于同一条直线的两直线互相平行,真命题,本选项不符合题意;B、到线段两端点距离相等的点在这条线段的垂直平分线上,真命题,本选项不符合题意;C、一条直角边和另一条直角边上的中线对应相等的两个直角三角形,首先根据“HL”定理,可判断两个小直角三角形全等,可得另一条直角边相等,然后,根据“SAS”,可判断两个直角三角形全等,真命题,本选项不符合题意;D、有一边相等的两个等腰直角三角形不一定全等,如:一个等腰直角三角形的直角边与另一个等腰直角三角形的斜边相等,这两个等腰直角三角形并不全等,假命题,本选项符合题意.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.D解析:D 【分析】根据平行线的性质及角度的计算,等腰三角形的性质即可进行一一求解判断. 【详解】根据//AB EF , BC 平分DCF ∠,且AC BC ⊥可得∠1+∠BCD=90°,∠BCD=12∠DCF , 又∠DCF+∠ECD=180°,∴∠1=12∠ECD ,故AC 平分DCE ∠,①正确; ∵AC 平分DCE ∠,∴∠1=∠ECA,∵EAC ECA ∠=∠ ∴EAC ∠=∠1,∴//AE CD ,②正确; ∵EF ∥AB ,∴∠FCB=∠B ,∴∠B=∠DCB , ∵∠1+∠DCB=90°,∴190B ∠+∠=︒,③正确; ∵EF ∥AB ,∴∠ECA=∠CAD ,∵∠1=∠ECA ∴∠1=∠CAD∵∠CDB 是△ACD 的一个外角,∴∠CAD=∠1+∠CAD=2∠1,④正确; 故选D 【点睛】此题主要考查平行线的角度计算,解题的关键是根据图像的特点进行求解.4.A解析:A 【分析】 因直线162y x =-+交y 轴于点B ,故可求得点B 的坐标,从而可得OB 的长,又直线162y x =-+与直线y x =相交,故可求得点C 的坐标,从而可得△OBC 的边OB 上的高,因此可求得△OBC 的面积. 【详解】 对于直线162y x =-+,令0x =,得:6y = ∴6OB =解方程组162y xy x =⎧⎪⎨=-+⎪⎩,得:44x y =⎧⎨=⎩ 即点C 的坐标为(4,4)∴点C 到y 轴的距离为4 ∴14122OBCSOB =⨯⨯= 故选:A 【点睛】本题主要考查了求两直线交点坐标、平面直角坐标系中求直线围成的三角形面积,关键分别求得点B 、点C 的坐标,而求两直线的交点坐标体现了数形结合的思想.5.B解析:B 【详解】解:把①22x y ==⎧⎨⎩代入得左边=10=右边;把②2{1x y ==代入得左边=9≠10;把③2{2x y ==-代入得左边=6≠10; 把④1{6x y ==代入得左边=10=右边;所以方程4x +y =10的解有①④2个. 故选B .6.D解析:D 【分析】根据题意可得﹣m <0,n <0,再进行化简即可. 【详解】∵一次函数y =﹣mx +n 的图象经过第二、三、四象限, ∴﹣m <0,n <0, 即m >0,n <0,∴=|m ﹣n |+|n | =m ﹣n ﹣n =m ﹣2n , 故选D . 【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.7.A解析:A【详解】解:设正比例函数解析式(0)y kx k =≠, ∵正比例函数过(2,3)-, ∴32k -=, ∴32k =-, ∴正比例函数解析式为32y x =-, ∵302k =-<, ∴图象过二、四象限,函数值随自变量x 增大而减小,图象关于原点对称, ∴四个选项中,只有A 选项中的不正确,其余三个选项中的结论都是正确的. 故选A .8.B解析:B 【分析】根据一次函数的图像即可求解判断. 【详解】由A,C 图像可得函数y=mx+n 过一,二,三象限,故m >0,n >0, 故y=nx+m 也过一,二,三象限,故A,C 错误;由B,D 图像可得函数y=mx+n 过一三四象限,故m >0,n <0, 故y=nx+m 过一,二,四象限,故B 正确,D 错误; 故选B. 【点睛】此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.第II 卷(非选择题)请点击修改第II 卷的文字说明9.C解析:C 【分析】设兑换成10元x 张,20元的零钱y 元,根据题意可得等量关系:10x 张+20y 张=100元,根据等量关系列出方程求整数解即可. 【详解】解:设兑换成10元x 张,20元的零钱y 元,由题意得: 10x+20y=100, 整理得:x+2y=10, 方程的整数解为:方程的整数解为:246810x 0,,,,,,432105x x x x x y y y y y y ======⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨======⎩⎩⎩⎩⎩⎩ 因此兑换方案有6种, 故选C . 【点睛】此题主要考查了二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.10.C解析:C 【分析】先根据第四象限内点的坐标符号特点列出关于m 的不等式组,再求解可得. 【详解】解:根据题意,得:230?0? m m -⎧⎨-⎩>①<②,解不等式①,得:m >32,解不等式②,得:m >0,∴不等式组的解集为m >32,故选:C . 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.C解析:C 【分析】根据无理数的概念即可判断. 【详解】解:, 无理数有:3π,-0.1010010001…….(每两个1之间依次多1个0),共有3个.故选:C . 【点睛】本题考查了无理数.解题的关键是熟练掌握无理数的概念.12.A解析:A 【分析】由勾股定理的逆定理逐一分析各选项即可得到答案.【详解】解:2222349134,+=+=≠∴以 2,3,4为边的三角形不是直角三角形,故A 符合题意,2223491625=5,+=+=∴以 3,4,5为边的三角形是直角三角形,故B 不符合题意, ()2221122,+== ∴以1,1,2为边的三角形是直角三角形,故C 不符合题意,222683664100=10,+=+=∴以6,8,10为边的三角形是直角三角形,故D 不符合题意,故选:.A【点睛】本题考查的是勾股定理的逆定理的应用,掌握勾股定理的逆定理是解题的关键.二、填空题13.不合格【解析】试题分析:延长ABDC 相交F 连接FE 并延长至G 根据三角形的外角的性质可得(∠A+∠AFG )+(∠D+∠DFG )=∠AEG+∠DEG 再根据∠AFD=∠AFG+∠DFG=∠AED-∠A-∠解析:不合格【解析】试题分析:延长AB 、DC 相交F ,连接F 、E 并延长至G .根据三角形的外角的性质可得(∠A+∠AFG )+(∠D+∠DFG )=∠AEG+∠DEG ,再根据∠AFD=∠AFG+∠DFG=∠AED-∠A-∠D 即可作出判断.延长AB 、DC 相交F ,连接F 、E 并延长至G .则有(∠A+∠AFG )+(∠D+∠DFG )=∠AEG+∠DEG=∠AED=143°;∵∠A=23°,∠D=31°,∴∠AFD=∠AFG+∠DFG=∠AED-∠A-∠D=143°-23°-31°=89°≠90°.所以零件不合格.考点:三角形的外角的性质点评:解题的关键是熟练掌握三角形的外角的性质:三角形的任何一个外角等于和它不相邻的两个内角的和.14.经过直线外一点有且只有一条直线与已知直线平行经过直线外一点有且只有一条直线与已知直线平行【分析】直接利用反证法的基本步骤以及结合平行线的性质分析得出答案【详解】解:假设∠EOB≠∠EOD过点O作直线解析:经过直线外一点,有且只有一条直线与已知直线平行,经过直线外一点,有且只有一条直线与已知直线平行.【分析】直接利用反证法的基本步骤以及结合平行线的性质分析得出答案.【详解】解:假设∠EOB≠∠EO'D,过点O作直线A'B',使∠EOB'=∠EO'D,依据基本事实同位角相等,两直线平行,可得A'B'∥CD.这样过点O就有两条直线AB,A′B′都平行于直线CD,这与基本事实:经过直线外一点,有且只有一条直线与已知直线平行矛盾,说明∠EOB≠∠EO'D的假设是不对的,于是有∠EOB=∠EO'D.故答案为:经过直线外一点,有且只有一条直线与已知直线平行;经过直线外一点,有且只有一条直线与已知直线平行.【点睛】本题考查了反证法,正确掌握反证法的基本步骤是解题的关键.15.8【分析】根据二元一次方程满足的条件:含有2个未知数未知数的项的次数是1的整式方程可得|m|-2=12m-n=1解出mn的值可得答案【详解】解:由题意知|m|-2=12m-n=1且m+3≠0解得m=解析:8【分析】根据二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程可得|m|-2=1,2m-n=1,解出m、n的值可得答案.【详解】解:由题意,知|m|-2=1,2m-n=1且m+3≠0.解得m=3,n=5.所以m+n=3+5=8.故答案是:8.【点睛】主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.16.7【分析】由x与y互为相反数得到y=﹣x代入方程组求出a的值即可【详解】解:由xy互为相反数得到x+y=0即y=﹣x代入方程组得:解得:故答案为:7【点睛】本题考查相反数的性质二元一次方程组的解法熟解析:7【分析】由x与y互为相反数得到y=﹣x,代入方程组求出a的值即可.【详解】解:由x、y互为相反数,得到x+y=0,即y=﹣x,代入方程组6293x yx y a=-⎧⎨-=-⎩得:6293x xx x a=+⎧⎨+=-⎩,解得:x=-6 a=7⎧⎨⎩,故答案为:7.【点睛】本题考查相反数的性质,二元一次方程组的解法,熟练掌握基础知识是关键.17.【分析】根据题意分点Q的坐标是(aa)和点Q的坐标是(b-b)两种情况然后根据点Q在直线y=-x+4上分别求出点Q的坐标是多少即可【详解】解:(1)当点Q的坐标是(aa)时a=-a+4解得a=2∴点解析:()2,2【分析】根据题意,分点Q的坐标是(a,a)和点Q的坐标是(b,-b)两种情况,然后根据点Q在直线y=-x+4上,分别求出点Q的坐标是多少即可.【详解】解:(1)当点Q的坐标是(a,a)时,a=-a+4,解得a=2,∴点Q的坐标是(2,2);(2)当点Q的坐标是(b,-b)时,-b=-b+4,此方程无解.∴点Q的坐标是(2,2).故答案为:(2,2).【点睛】此题主要考查了一次函数图象上点的坐标特征.注意考虑两种情况.18.4【分析】根据点的坐标表示方法得到点A(3-4)到x轴的距离是纵坐标的绝对值即|-4|然后去绝对值即可【详解】解:点A(3-4)到x轴的距离为|-4|=4故答案为4【点睛】本题考查了点的坐标:在平面解析:4【分析】根据点的坐标表示方法得到点A(3,-4)到x轴的距离是纵坐标的绝对值即|-4|,然后去绝对值即可.【详解】解:点A(3,-4)到x轴的距离为|-4|=4.故答案为4.【点睛】本题考查了点的坐标:在平面直角坐标系中,过一个点分别作x 轴和y 轴的垂线,用垂足在x 轴和y 轴上的坐标分别表示这个点的横纵坐标.19.3;【分析】由可求出由可分别求出继而可计算出结果【详解】解:(1)由题意可知:则(2)由题意可知:则∴故答案为:3;【点睛】本题主要考查定义新运算读懂题意掌握运算方法是解题关键解析:3; 1173. 【分析】由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果.【详解】解:(1)由题意可知:239=,则2log 93=,(2)由题意可知: 4216=,43=81,则2log 164=,3log 814=, ∴223141(log 16)log 811617333+=+=, 故答案为:3;1173. 【点睛】本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.20.或【分析】本题已知直角三角形的两边长但未明确这两条边是直角边还是斜边因此两条边中的较长边5既可以是直角边也可以是斜边所以求第三边的长必须分类讨论即5是斜边或直角边的两种情况然后利用勾股定理求解【详解解析:4【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边5既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即5是斜边或直角边的两种情况,然后利用勾股定理求解.【详解】设第三边为x ,①若5是直角边,则第三边x 是斜边,由勾股定理得:②若5是斜边,则第三边x 为直角边,由勾股定理得:所以第三边的长为4故答案为:4【点睛】本题考查勾股定理,熟练掌握勾股定理,并且分情况讨论是解题关键.三、解答题21.∠CDE ;∠DEF ;两直线平行,内错角相等;两直线平行,同位角相等;∠DEF ;∠FEB ;角平分线的定义.【分析】根据平行线的性质和平行线的判定及等量代换等来完成解答即可.【详解】解:证明:∵CD 平分∠ACB (已知),∴∠DCA=∠DCE (角平分线的定义),∵AC ∥DE (已知),∴∠DCA=∠CDE (两直线平行,内错角相等),∴∠DCE=∠CDE ( 等量代换),∵CD ∥EF ( 已知 ),∴∠DEF=∠CDE (两直线平行,内错角相等),∠DCE=∠FEB (两直线平行,同位角相等),∴∠DEF=∠FEB (等量代换),∴EF 平分∠DEB ( 角平分线的定义 ).故答案为:∠CDE ;∠DEF ;两直线平行,内错角相等;两直线平行,同位角相等;∠DEF ;∠FEB ;角平分线的定义.【点睛】本题考查了平行线的性质和平行线的判定在几何证明中的应用,明确相关性质及定理是解题的关键.22.(1)见详解;(2)1l 与2l 不相交;【分析】(1)将点的横坐标代入直线2l ,求得y 的值;如果y 的值恰好等于点的纵坐标,则点在直线2l 上;否则点不在直线2l 上;(2)通过1l 过原点和P 点,可求解直线1l 的解析式;把2m =代入2l 中,求解2l 的解析式;两直线是否相交,通过判断对应的方程组是否有解.【详解】(1)将点(2,3)--的横坐标2x =-代入直线2l :23y mx m =+-(0)m ≠;可得:3y =-;3y =-恰等于点(2,3)--的纵坐标;∴点(2,3)--在直线2l 上;(2)由题知:设直线1l 的解析式为:y kx b =+(0)k ≠;又1l 过原点(0,0)和(),2P m m 点,将点代入:y kx b =+(0)k ≠,可得:2k =,0b =;∴ 直线1l 的解析式为:2y x =;把2m =代入2l 中,∴ 直线2l 的解析式为:21y x =+;∴把两直线组成方程组:221y x y x =⎧⎨=+⎩⇒221x x =+⇒01=,显然不成立;所以方程组无解,∴ 直线1l 与2l 不相交;∴ 直线1l 与2l 不相交.【点睛】本题主要考查点与直线及直线与直线之间的关系;重点在于熟练应用直线是否相交,通过对应方程组是否有解进行判断,有解则相交,无解则不相交.23.(1)1y =60x (0≤x≤15),2y =﹣90x+900(0≤x≤10);(2)A 加油站到甲地距离为300km 或420km .【分析】(1)直接运用待定系数法就可以求出1y 、2y 关于x 的函数图关系式;(2)分A 加油站在甲地与B 加油站之间,B 加油站在甲地与A 加油站之间两种情况列出方程求解即可.【详解】(1)设1y =1k x ,由图可知,函数图象经过点(15,900),∴151k =900,解得:1k =60,∴1y =60x (0≤x≤15),设2y =2k x+b ,由图可知,函数图象经过点(0,900),(10,0),则290010k b 0b =⎧⎨+=⎩, 解得:2k 90b 900=-⎧⎨=⎩, ∴2y =﹣90x+900(0≤x≤10);(2)由题意,得①当A 加油站在甲地与B 加油站之间时,(﹣90x+900)﹣60x =150,解得x =5,此时,A 加油站距离甲地:60×5=300km ,②当B 加油站在甲地与A 加油站之间时,60x ﹣(﹣90x+900)=150,解得x =7,此时,A 加油站距离甲地:60×7=420km ,综上所述,A 加油站到甲地距离为300km 或420km .【点睛】本题考查了一次函数的应用,一次函数解析式的确定;熟练运用待定系数法求一次函数解析式,根据图象准确获取信息是解题的关键.24.(1)见解析;(2)B (−3,−1);(3)见解析.【分析】(1)根据点A 的坐标(0,3),即可建立正确的坐标系;(2)根据所作平面直角坐标系确定点B 的位置,即可得到点B 的坐标;(3)分别作出点A 、B 、C 关于x 轴的对称点,再顺次连接即可.【详解】解:(1)所建立的平面直角坐标系如图所示:(2)点B 的坐标为:(−3,−1).(3)所作△A'B'C'如下图所示:【点睛】本题考查了平面直角坐标系与轴对称变换,掌握平面直角坐标系中点的坐标特点并根据轴对称变换规律作出变换后的对应点是解题的关键.25.23【分析】实数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:2116(2019)|52732π-⎛⎫--- ⎪⎝⎭=361|5334+---2315334=+-23=【点睛】本题考查实数的混合运算、二次根式的性质和负整数指数幂的运算等知识,掌握运算顺序和计算法则正确计算是解题关键.26.(1)①114°;②∠2=∠1+2∠C;(2)74;(3)3或6【分析】(1)①根据三角形外角的性质求得∠DFC的度数,然后再次利用三角形外角的性质求得∠2的度数;②利用三角形外角的性质推理计算;(2)设BD=x,根据折叠的性质结合勾股定理列方程求解;(3)在Rt△ABC中,∠ABC=90°,AB=6,BC=8,根据勾股定理求得AC=10,根据翻折的性质得AE=AB=6,DE=BD,∠AED=∠B=90°,然后分∠DEC=90°和∠EDC=90°两种情况,结合勾股定理求解.【详解】解:(1)①由折叠性质可得∠C=∠C′=37°∴∠DFC=∠1+∠C′=77°∴∠2=∠DFC+∠C=77+37=114°故答案为:114°②由折叠性质可得∠C=∠C′∴∠DFC=∠1+∠C′∴∠2=∠DFC+∠C=∠1+∠C′+∠C=∠1+2∠C故答案为:∠2=∠1+2∠C(2)∵90B ∠=︒,6AB =,8BC =设BD=x ,则CD=AD=8-x∴在Rt △ABD 中,2226(8)x x +=-,解得:74x =∴BD 的长为74(3)在Rt △ABC 中,∠ABC=90°,AB=6,BC=8,∴AC=22AB BC +=10,∵△AED 是△ABD 以AD 为折痕翻折得到的,∴AE=AB=6,DE=BD ,∠AED=∠B=90°.当△DEC 为直角三角形,①如图,当∠DEC=90°时,∵∠AED+∠DEC=180°,∴点E 在线段AC 上,设BD=DE=x ,则CD=8-x ,∴CE=AC-AE=4,∴DE 2+CE 2=CD 2,即x 2+42=(8-x )2,解得:x=3,即BD=3;②如图,当∠EDC=90°,∴∠BDE=90°,∵∠BDA=∠ADE,∴∠BDA=∠ADE=45°,∴∠BAD=45°,∴AB=BD=6.综上所述:当△DEC为直角三角形时,BD的长为3或6.【点睛】本题考查了三角形外角的性质及折叠问题,勾股定理,等腰直角三角形的判定和性质,分类讨论思想的应用是解题的关键.解题时设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.。
一、选择题1.下列命题的逆命题是真命题的是( ).A .3的平方根是3B .5是无理数C .1的立方根是1D .全等三角形的周长相等2.如图,在ABC 中,100ACB ∠=︒,20A ∠=︒,D 是AB 上一点,将ABC 沿CD 折叠,使点B 落在AC 边上的B '处,则ADB '∠等于( )A .25°B .30°C .40°D .55°3.如图,A B C D E F ∠+∠+∠+∠+∠+∠则等于( )A .90︒B .180︒C .270︒D .360︒4.对于一次函数24y x =-+,下列结论错误的是( )A .函数的图象与x 轴的交点坐标是()0,4B .函数值随自变量的增大而减小C .函数的图象不经过第三象限D .函数的图象向下平移4个单位长度得到2y x =-的图象5.一次函数y =-3x -2的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 6.在平面直角坐标系xOy 中,点P 在由直线y=-x+3,直线y=4和直线x=1所围成的区域内或其边界上,点Q 在x 轴上,若点R 的坐标为R (2,2),则QP+QR 的最小值为( ) A 17B 5C .5D .47.已知1,2x y =⎧⎨=⎩是二元一次方程24x ay +=的一组解,则a 的值为( ) A .2 B .2- C .1 D .1-8.《九章算术》中记载:“今有共买鸡,人出八,盈三;人出七,不足四.问人数、鸡价各几何?”译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”设人数有x 人,鸡的价钱是y 钱,可列方程组为( ).A .7384x y x y -=⎧⎨+=⎩B .7384x y x y +=⎧⎨-=⎩C .8374x y x y -=⎧⎨+=⎩D .8374x y x y +=⎧⎨-=⎩ 9.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( ) A .4种 B .5种 C .6种 D .7种10.一个点在第一象限及x 轴正半轴、y 轴正半轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动:(0,0)→(0,1)→(1,1)→(1,0)→……,且每秒移动一个单位,那么第47秒时,这个点所在位置的坐标是( )A .(1,7)B .(7,1)C .(6,1)D .(1,6) 11.与数轴上的点一—对应的数是( ) A .分数或整数B .无理数C .有理数D .有理数或无理数 12.用梯子登上20m 高的建筑物,为了安全要使梯子的底面距离建筑物15m ,至少需要( )m 长的梯子.A .20B .25C .15D .5二、填空题13.若△ABC 中,AD 是BC 边上的高线,AE 平分∠BAC ,∠B =40°,∠C =50°,则∠EAD=_____°.14.如图所示,已知∠1=22°,∠2=28°,∠A=56°,则∠BOC 的度数是___________.15.如图,函数20y x =和40y ax =-的图象相交于点P ,点P 的纵坐标为40,则关于x ,y 的方程组20040x y ax y -=⎧⎨-=⎩的解是______.16.如图,把一张纸条先沿EF 折叠至图①,再沿EI 折叠至图②,把图②标上字母得到图③,若最后纸条的一边EL 与AB 重合,如果∠HIK ﹣∠GEA =12∠EFH ,则∠IEB 的度数为__.17.一次函数y=kx+2(k≠0)的图象与x 轴交于点A (n ,0),当n >0时,k 的取值范围是_____.18.已知点(,)P m n 在y 轴的左侧,(,)P m n 到x 轴的距离是5,到y 轴的距离是3,则Р点坐标是________________.19.如图,已知圆柱体底面圆的半径为a,高为2,AB CD 、分别是两底面的直径,,AD BC 是母线.若一只蚂蚁从A 点出发,从侧面爬行到C 点,则蚂蚁爬行的最短路线的长度是_____.(结果保留根式)20.直角三角形纸片的两直角边长分别为6,8.现将ABC 如图那样折叠,使点A 与点B 重合,折痕为DE .则CE CB的值是__________.三、解答题21.如图所示,在Rt ABC 中,90ACB ∠=︒,AD 平分BAC ∠交BC 于点D ,BP 平分ABC ∠交AD 于点P .(1)求APB ∠的度数.(2)若56ADC ∠=︒,求ABP ∠的度数.22.在平面直角坐标系xOy 中,()1,1A t -与点B 关于过点(),0t 且垂直于x 轴的直线对称.以AB 为底边作等腰三角形ABC ,(1)当2t =时,求点B 的坐标;(2)当0.5=t 且直线AC 经过原点O 时,点C 与x 轴的距离;(3)若ABC 上所有点到y 轴的距离都不小于1,求t 的取值范围.23.定义:在平面直角坐标系中,对于任意两点(),A a b ,(,)B c d ,若点(),T x y 满足3a c x +=,3b d y +=,那么称点T 是点A ,B 的融合点.例如:()()1,8,4,2A B --,当点(),T x y 满足148(2)1,233x y -++-====时,则点()1,2T 是点A ,B 的融合点.(1)已知点()()()1,5,7,7,2,4A B C -,请说明其中一个点是另外两个点的融合点. (2)如图,点()3,0D ,点(),23E t t +是直线l 上任意一点,点(),T x y 是点D ,E 的融合点.①试确定y 与x 的关系式.②若直线ET 交x 轴于点H ,当DTH 是以DH 为非斜边的直角三角形时,求点E 的坐标.24.如图,在边长为1的正方形组成的网格中,ABC ∆的顶点均在格点上,A (-3,2),B (-4,-3),C (﹣1,﹣1).(1)画出ABC ∆关于y 轴对称的图形A B C '''∆;(2)写出A '、B '、C '的坐标(直接写出答案)A ' ;B ' ;C ' ;(3)写出A B C '''∆的面积为 .(直接写出答案)(4)在y 轴上求作一点 P ,使得点P 到点A 与点C 的距离之和最小.25.计算:(1)()233812-+-+- (2) 1560353+- 26.如图,一艘渔船正以30海里/小时的速度由西向东赶鱼群,在A 处看风小岛C 在船的北偏东60°.40分钟后,渔船行至B 处,此时看见小岛C 在船的北偏东30°.已知以小岛C 为中心周围10海里以内为我军导弹部队军事演习的着弹危险区,问这艘渔船继续向东追赶鱼群,是否有进入危险区的可能.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据把一个命题的条件和结论互换就得到它的逆命题,先得出逆命题,再进行判断即可.【详解】A 33的逆命题是:33B 55C 、1的立方根是1的逆命题是:1是1的立方根,是真命题;D 、全等三角形的周长相等的逆命题是:周长相等的三角形全等,是假命题;故选:C .【点睛】此题考查了命题的真假判断及互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉各知识点的性质定理.2.C解析:C【分析】先求出60B ∠=︒,由折叠得60CB D B '∠=∠=︒,得出ADB '∠=40CB D A '∠-∠=︒.【详解】∵100ACB ∠=︒,20A ∠=︒,∴60B ∠=︒,由折叠得60CB D B '∠=∠=︒,∴ADB '∠=40CB D A '∠-∠=︒,故选:C .【点睛】此题考查三角形内角和定理,折叠的性质,三角形的外角性质,熟练掌握折叠的性质是解题的关键.3.D解析:D【分析】这个图形可以看成是两个三角形叠放在一起的,根据三角形内角和定理可得出结论.【详解】解:180A E C ∠+∠+∠=︒,180D B F ∠+∠+∠=︒,360A B C D E F ∴∠+∠+∠+∠+∠+∠=︒.故选:D .【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180︒是解答此题的关键. 4.A解析:A【分析】分别根据一次函数的性质及函数图象平移的法则进行解答即可.【详解】A 、令y=0,则x=2,因此函数的图象与x 轴的交点坐标是(2,0),故A 选项错误;B 、因为一次函数y=-2x+4中k=-2<0,因此函数值随x 的增大而减小,故C 选项正确;C、因为一次函数y=-2x+4中k=-2<0,b=4>0,因此此函数的图象经过一、二、四象限,不经过第三象限,故C选项正确;D、由“上加下减”的原则可知,函数的图象向下平移4个单位长度得y=-2x的图象,故D选项正确.故选A.【点睛】本题考查的是一次函数的性质及一次函数的图象与几何变换,熟知一次函数的性质及函数图象平移的法则是解答此题的关键.5.A解析:A【分析】根据一次函数的性质,当k<0,b<0时,图象经过第二、三、四象限解答.【详解】解:∵k=-3<0,∴函数经过第二、四象限,∵b=﹣2<0,∴函数与y轴负半轴相交,∴图象不经过第一象限.故选A【点睛】本题考查一次函数的性质,利用数形结合思想解题是关键.6.A解析:A【解析】试题分析:本题需先根据题意画出图形,再确定出使QP+QR最小时点Q所在的位置,然后求出QP+QR的值即可.试题当点P在直线y=-x+3和x=1的交点上时,作P关于x轴的对称点P′,连接P′R,交x轴于点Q,此时PQ+QR最小,连接PR,∵PR=1,PP′=4∴=∴PQ+QR故选A .考点:一次函数综合题.7.C解析:C【分析】把x 与y 的值代入方程计算即可求出a 的值.【详解】把1,2x y =⎧⎨=⎩代入方程24x ay +=,得224a +=, 解得1a =.故选C.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 8.C解析:C【分析】设人数有x 人,鸡的价钱是y 钱,依据题意列方程组,即可完成求解.【详解】设人数有x 人,鸡的价钱是y 钱依据题意得:8374x y x y -=⎧⎨+=⎩即8374x y x y -=⎧⎨+=⎩故选:C .【点睛】本题考查了二元一次方程组的知识;解题的关键是熟练掌握二元一次方程组的性质,从而完成求解.9.C解析:C【分析】设兑换成10元x 张,20元的零钱y 元,根据题意可得等量关系:10x 张+20y 张=100元,根据等量关系列出方程求整数解即可.【详解】解:设兑换成10元x张,20元的零钱y元,由题意得:10x+20y=100,整理得:x+2y=10,方程的整数解为:方程的整数解为:246810x0,,,,,,432105 x x x x xy y y y y y======⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨======⎩⎩⎩⎩⎩⎩因此兑换方案有6种,故选C.【点睛】此题主要考查了二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.10.D解析:D【分析】先判断出走到坐标轴上的点所用的时间以及相对应的坐标,可发现走完一个正方形所用的时间分别为3秒,5秒,7秒,9秒…此时点在坐标轴上,进而得到规律,问题得解.【详解】解:这个点3秒时到了(1,0);8秒时到了(0,2);15秒时到了(3,0);24秒到了(0,4);35秒到了(5,0);48秒到了(0,6);∵(0,6)之前经过的点的坐标为(1,6),∴第47秒后点所在位置的坐标是(1,6).故选:D.【点睛】本题考查了平面直角坐标系内规律型点的坐标,数形结合并发现点运动的坐标规律是解题的关键.11.D解析:D【分析】实数与数轴上的点一一对应,实数包括有理数和无理数.【详解】A. 分数或整数,只是有理数,不是数轴上所有点,故此项不正确;B. 只是无理数,不是数轴上所有点,故此项不正确;C. 只是有理数,不是数轴上所有点,故此项不正确;D. 有理数和无理数是实数的组成,实数与数轴上的点一一对应,故此项正确;故选D.【点睛】此题考查了实数的意义,能掌握实数与数轴的关系是解答此题的关键.12.B解析:B【分析】可依据题意作出简单的图形,结合图形利用勾股定理进行求解,即可.【详解】解:如图所示:∵AC =20m ,BC =15m ,∴在Rt △ABC 中,22152025+m ,故选:B .【点睛】此题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.二、填空题13.5【分析】由三角形的高得出求出由三角形内角和定理求出由角平分线求出即可得出的度数【详解】解:中是边上的高平分故答案为:5【点睛】本题考查了三角形内角和定理角平分线的定义角的和差计算;熟练掌握三角形内 解析:5【分析】由三角形的高得出90ADC ∠=︒,求出DAC ∠,由三角形内角和定理求出 BAC ∠,由角平分线求出EAC ∠,即可得出EAD ∠的度数.【详解】解:ABC ∆中,AD 是BC 边上的高,90ADC ∴∠=︒, 90905040DAC C , 180180405090BACB C , AE ∵平分BAC ∠, 11904522EAC BAC ,45405EAD EAC DAC .故答案为:5.【点睛】本题考查了三角形内角和定理、角平分线的定义、角的和差计算;熟练掌握三角形内角和定理,并能进行推理计算是解决问题的关键.14.106°【分析】利用了三角形中一个外角等于与它不相邻的两个内角和即可求解【详解】如图连接AO 延长AO 交BC 于点D 根据三角形中一个外角等于与它不相邻的两个内角和可得:∠BOD=∠1+∠BAO ∠DOC=解析:106°【分析】利用了三角形中一个外角等于与它不相邻的两个内角和即可求解.【详解】如图,连接AO ,延长AO 交BC 于点D .根据三角形中一个外角等于与它不相邻的两个内角和,可得:∠BOD=∠1+∠BAO ,∠DOC=∠2+∠OAC ,∵∠BAO+∠CAO=∠BAC=56°,∠BOD+∠COD=∠BOC ,∴∠BOC=∠1+∠2+∠BAC=22°+28°+56°=106°.故答案为:106°.【点睛】本题考查了三角形的内角和定理,三角形的外角的性质,关键是利用了三角形中一个外角等于与它不相邻的两个内角和求解.15.【分析】先把点的纵坐标为40代入得出x =2则两个一次函数的交点P 的坐标为(240);那么交点坐标同时满足两个函数的解析式而所求的方程组正好是由两个函数的解析式所构成因此两函数的交点坐标即为方程组的解解析:240x y =⎧⎨=⎩【分析】先把点P 的纵坐标为40代入20y x =,得出x =2,则两个一次函数的交点P 的坐标为(2,40);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解;【详解】解:把y =40代入20y x =,得出x =2,函数20y x =和40y ax =-的图象交于点P (2,40),即x =2,y =40同时满足两个一次函数的解析式.所以关于x ,y 的方程组20040x y ax y -=⎧⎨-=⎩的解是240x y =⎧⎨=⎩. 故答案为:240x y =⎧⎨=⎩. 【点睛】此题考查了一次函数与二元一次方程组的联系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.16.50°【分析】设∠IEB =x ∠EFH =y 由折叠的性质及平行线的性质得出x+y =90°①由题意得出4x+y =240°②由①②组成方程组解方程组即可得出答案【详解】解:设∠IEB =x ∠EFH =y 由折叠可解析:50°【分析】设∠IEB =x ,∠EFH =y ,由折叠的性质及平行线的性质得出x +y =90°①,由题意得出4x +y =240°②,由①、②组成方程组,解方程组即可得出答案.【详解】解:设∠IEB =x ,∠EFH =y ,由折叠可知∠GEI =∠IEB =x ,∵IK ∥BE ,∴∠HIK =∠HJB ,∵HJ ∥GE ,∴∠HJB =∠GEB =2x ,由图①可知∠AEF +∠EFC =180°,∠AEF =∠GEF ,∵AB ∥CD ,∴∠EFC =∠JEF =y ,∴2x +y +y =180°,即x +y =90°①,∵∠HIK ﹣∠GEA =12∠EFH , ∴2x ﹣[360°﹣2(2x +y )]=12y , 整理得4x +y =240°②,由①②可得904240x y x y +=︒⎧⎨+=︒⎩,解得5040xy=︒⎧⎨=︒⎩,∴∠IEB=50°.故答案为:50°.【点睛】本题主要考查了与平行线有关的折叠问题,准确根据题意列出方程组是解题的关键.17.k<0【解析】分析:根据题意可以用含k的式子表示n从而可以得出k的取值范围详解:∵一次函数y=kx+2(k≠0)的图象与x轴交于点A(n0)∴n=﹣∴当n>0时﹣>0解得k<0故答案为k<0点睛:本解析:k<0【解析】分析:根据题意可以用含k的式子表示n,从而可以得出k的取值范围.详解:∵一次函数y=kx+2(k≠0)的图象与x轴交于点A(n,0),∴n=﹣2k,∴当n>0时,﹣2k>0,解得,k<0,故答案为k<0.点睛:本题考查一次函数图象与系数的关系,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.18.(-35)或(-3-5)【分析】根据点到x轴的距离等于纵坐标的长度到y轴的距离等于横坐标的长度解答【详解】∵点P(mn)在y轴的左侧∴m<0∵到x轴的距离是5∴点P的纵坐标为±5∵到y轴的距离是3∴解析:(-3,5)或(-3,-5)【分析】根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【详解】∵点P(m,n)在y轴的左侧,∴m<0,∵到x轴的距离是5,∴点P的纵坐标为±5,∵到y轴的距离是3,∴点P的横坐标是-3,∴点P的坐标为:(-3,5)或(-3,-5),故答案为:(-3,5)或(-3,-5).【点睛】本题考查了各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度也很重要.19.【分析】要求一只蚂蚁从A点出发从侧面爬行到C点蚂蚁爬行的最短路线利用在圆柱侧面展开图中线段AC的长度即为所求【详解】解:圆柱的展开图如下在圆柱侧面展开图中线段AC的长度即为所求在Rt△ABC中AB=解析:2+4a【分析】要求一只蚂蚁从A点出发,从侧面爬行到C点,蚂蚁爬行的最短路线,利用在圆柱侧面展开图中,线段AC的长度即为所求.【详解】解:圆柱的展开图如下,在圆柱侧面展开图中,线段AC的长度即为所求,在Rt△ABC中,AB=π•aπ=a,BC=2,则:2222=+=4AC AB BC a+,所以2+4a2+4a2+4a【点睛】本题以圆柱为载体,考查旋转表面上的最短距离,解题的关键是利用圆柱侧面展开图.20.【分析】先设CE=x再根据图形翻折变换的性质得出AE=BE=8-x再根据勾股定理求出x的值进而可得出的值【详解】解:设CE=x则AE=8-x∵△BDE是△ADE翻折而成∴AE=BE=8-x在Rt△B解析:7 24【分析】先设CE=x,再根据图形翻折变换的性质得出AE=BE=8-x,再根据勾股定理求出x的值,进而可得出CECB的值.【详解】解:设CE=x,则AE=8-x,∵△BDE是△ADE翻折而成,∴AE=BE=8-x,在Rt △BCE 中,BE 2=BC 2+CE 2,即(8-x )2=62+x 2,解得x =74, ∴CE CB =746=724, 故答案为:724. 【点睛】本题考查的是图形翻折变换的性质及勾股定理,熟知“折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等”的知识是解答此题的关键.三、解答题21.(1)135︒;(2)11︒【分析】(1)根据角平分线性质可得∠PAB +∠PBA =45°,即可解题;(2)由(1)可知135APB ∠=︒,可得45BPD ∠=︒,然后根据三角形外角性质得出PBD BPD ADC ∠+∠=∠,即可求解;【详解】解:(1)∵90ACB ∠=︒且180ACB ABC CAB ∠+∠+∠=︒,∴90ABC CAB ∠+∠=︒,∵AD 、BP 分别平分CAB ∠、ABC ∠,∴()1452PBA PAB ABC CAB ∠+∠=∠+∠=︒ ∵180PBA PAB APB ∠+∠+∠=︒∴135APB ∠=︒(2)∵180BPD APB ∠+∠=︒,135APB ∠=︒∴45BPD ∠=︒∵56ADC ∠=︒,且PBD BPD ADC ∠+∠=∠∴564511PBD ∠=︒-︒=︒∵BP 分别平分ABC ∠,∴PBD ABP ∠=∠即11ABP ∠=︒【点睛】本题考查了三角形内角和定理及推论,角平分线的定义及三角形外角的性质,难度适中. 22.(1)点B 的坐标为(3,1);(2)点C 到x 轴的距离为1;(3)t≥2或t≤-2.【分析】(1)根据A ,B 关于直线x=2对称解决问题即可;(2)求出直线OA 与直线x=0.5的交点C 的坐标即可判断;(3)由题意A (t-1,1),B (t+1,1),根据△ABC 上所有点到y 轴的距离都不小于1,构建不等式即可解决问题.【详解】解:(1)如图1中,由题意点A 的坐标为(1,1),且A 、B 关于直线x=2对称,∴点B 的坐标为(3,1);(2)如图2中,由题意点A 的坐标为(-0.5,1),直线l :x=0.5,设直线AC 的解析式为y kx =,则10.5k =-,∴2k =-,∴直线AC 的解析式为2y x =-,当x=0.5,1y =-,∴C (0.5,-1),∴点C 到x 轴的距离为1;(3)由题意A (t-1,1),B (t+1,1),∵△ABC 上所有点到y 轴的距离都不小于1,∴t-1≥1或t+1≤-1,解得t≥2或t≤-2.【点睛】本题属于一次函数综合题,考查了一次函数的性质,轴对称,等腰三角形的性质等知识,解题的关键是理解题意,学会利用参数根据不等式解决问题,属于中考压轴题.23.(1)见解析;(2)①21y x =-;②3(2E ,6),(6,15)E 【分析】(1)1(17)23x =-+=,1(57)43y =+=,即可求解; (2)①由题意得:1(3)3x t =+,1(23)3y t =+,即可求解; ②分90DHT ∠=︒、90TDH ∠=︒两种情况,分别求解即可.【详解】解:(1)1(17)23x =-+=,1(57)43y =+=, 故点C 是点A 、B 的融合点; (2)①由题意得:1(3)3x t =+,1(23)3y t =+, 则33t x =-,则1(663)213y x x =-+=-; ②当90DHT ∠=︒时,如图1所示,点(,23)E t t +,则(,21)T t t -,则点(3,0)D ,由点T 是点D ,E 的融合点得:33t t +=,23213t t +-=, 解得:32t =,即点3(2E ,6);当90TDH ∠=︒时,如图2所示,则点(3,5)T ,由点T 是点D ,E 的融合点得:点(6,15)E ; 故点3(2E ,6)或(6,15). 【点睛】本题是一次函数综合运用题,涉及到直角三角形的运用,此类新定义题目,通常按照题设顺序,逐次求解.24.(1)作图见解析;(2)(3,2),(4,-3),(1,-1);(3)6.5;(4)作图见解析.【分析】(1)根据轴对称的性质,对应点之间的连线被对称轴垂直平分,描出对应点,依次连接即可;(2)根据点的位置写出坐标即可;(3)用矩形面积减去三个小三角形面积即可;(4)连接AC′交y 轴于点P ,连接PC ,根据轴对称的性质,对应线段相等和两点之间线段最短点P 即为所求.【详解】解:(1)如图,△A'B'C'即为所求.(2)A′(3,2),B′(4,-3),C′(1,-1).故答案为(3,2),(4,-3),(1,-1);(3)113515223 6.522A B CS'''∆=⨯-⨯⨯-⨯⨯⨯=;(4)如图,点P即为所求.【点睛】本题考查作图-轴对称变换,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.25.(12)0【分析】(1)直接利用立方根的性质、绝对值的性质、二次根式的性质分别进行化简即可;(2)直接利用二次根式的性质化简即可.【详解】解:(1)原式=3-21(20=.【点睛】本题考查实数的运算、二次根式的运算,熟练掌握运算法则是解题的关键.26.不可能.【分析】根据题意实质是比较C点到AB的距离与10的大小.因此作CD⊥AB于D点,求CD的长.【详解】解:作CD⊥AB于D,根据题意,AB=30×23=20,∠CAD=30°,∠CBD=60°,在Rt△ACD中,AD=CDtan30︒,在Rt△BCD中,BD=CDtan60︒CD,∵AB=AD﹣BD,∴,CD=10,所以不可能.【点睛】本题考查解直角三角形的应用-方向角问题.。
期末提高测试卷一、选择题(每题3分,共30分)1.下列图形既是中心对称图形又是轴对称图形的是()2.下列条件中,能判定四边形是平行四边形的是()A.一组对边平行,另一组对边相等B.对角线相等C.一条对角线平分另一条对角线D.两条对角线互相平分3.将x-4x分解因式的结果是()3A.x(x-4)B.x(x+4)(x-4)C.x(x+2)(x-2)D.x(x-2)224.如图,将△AB C绕着顶点A逆时针旋转了70°后,得到△AB′C′,若∠B+∠C=130°,则∠CAB′的度数为( A.20°B.50°)C.60°D.70°5.对于任何整数m,多项式(4m+5)-9都能()2A.被8整除B.被m整除C.被(m-1)整除D.被(2m-1)整除6.在一次数学测试中,某学习小组6名同学的成绩(单位:分)分别为65,82,86,82,76,95.关于这组数据,下列说法错误的是()A.众数是82B.中位数是82C.方差是84D.平均数是827.一个n边形的n个外角(每个顶点处取一个外角)的平均度数为40°,则n的值为()A.8B.9C.10D.无法求得8.在如图所示的直角坐标系中,△ABC 经过平移后得到△A B C (两个三角形的顶1 1 1 点都在格点上),已知在 AC 上一点 P(2.4,2)平移后的对应点为 P ,则点 P 11 的坐标为( )A .(-0.4,-1)B .(-1.5,-1)C .(-1.6,-1)D .(-2.4,-2)9.如图,点 O 是▱AB C D 的对角线的交点,E 为 AB 中点,DE 交 AC 于点 F ,若S ▱AB C D =16,则 S △D OE 的值为() 9 4 A .2 B .4 C. D .810.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前 3 天完成任务,则 甲志愿者计划完成此项工作的天数是(A .8B .7C .6 二、填空题(每题 3 分,共 24 分)11.分解因式:18(x -y) -12y(y -x) =________.) D .53 2 12.在平面直角坐标系中,将点A(-1,2)向右平移 3 个单位长度得到点 B ,则点B 关于 x 轴的对称点C 的坐标是________.x2-y2x13.若=2,则分式的值为________.y xyy-1y m214.若关于y的方程-=有增根,则m的值为________.y-1y2-y y15.小明某学期数学平时成绩为70分,期中考试成绩为80分,期末考试成绩为90分,计算学期总成绩的方法是:平时占30%,期中占30%,期末占40%,则小明这学期的总评成绩是________分.16.如图所示,若AB∥C D,则∠E=________.17.已知:如图,点A(-4,0),B(-1,0),将线段AB平移后得到线段C D,点A的对应点C恰好落在y轴上,且四边形AB D C的面积为9,则四边形ABD C 的周长是__________.18.如图,在AB C D中,AB=6,∠BA D的平分线与BC的延长线交于点E,与D C交于点F,且点F为边C D的中点,D G⊥AE,垂足为G,若D G=5,则AE的长为________.三、解答题(19~21 题每题 8 分,22、24 题每题 9 分,其余每题 12 分,共 66 分)19.把下列各式因式分解:(1)-9a +6a(a -b)-(a -b) ;2 2 1 (2)(x -1)(x -2)+ .4 20.计算:1-a 3 (1) ÷ + 2+ ; a -2a 2a -4 4x -4x +1 x 2x -1 2 (2) - + ÷ x 1 . 1-x 1 3 a 4 -4 a -1 ÷ +1- 1 2 21.先化简,再求值: - ,其中 =- a . a a -1 a2-a22.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(1,3),B(3,3),C(3,-1).将△ABC绕旋转中心O逆时针方向旋转3次,旋转角分别是90°,180°,270°.(1)在坐标系中分别画出每次旋转后的三角形;(2)写出△ABC绕旋转中心O逆时针方向旋转270°后,点A,B,C所对应的点的坐标.23.八年级(2)班要从甲、乙两名同学中选出一名代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲、乙这10次射击成绩的方差s,s哪个大;2 2甲乙(3)如果其他班级参赛选手的射击成绩都在7 环左右,本班应该选________参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选________参赛更合适.24.某超市用3 000元购进某种水果销售,由于销售良好,超市又调拨9 000元资金购进该种水果,但这次的进价比第一次的进价提高了20%,购进水果质量比第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分水果售出后,余下的600千克按售价的8 折售完.(1)该种水果的第一次进价是每千克多少元?(2)超市销售完这种水果共盈利多少元?25.如图,将△AB C沿CA方向平移CA长度得到△EFA,连接BE,BF,其中AB =AC,已知△ABE的面积为3.(1)找出图中所有的平行四边形,并说明理由;(2)求四边形CEFB的面积;(3)试判断AF与BE的位置关系,并说明理由;(4)若∠BEC=15°,求AC的长.答案一、1.A 2.D 3.C4.A 5.A 6.D 7.B 8.C 9.A110.A :设甲志愿者计划完成此项工作需x天,故甲、乙的工效都为,甲前两x1 1 1个工作日完成了×2,剩余(x-2-3)个工作日完成了(x-2-3),乙完成了(xx x x22(-2-3)x-2-3),则+=1,解得x=8,经检验,x=8 是原方程的解.故x x选A.二、11.6(x-y) (3x-5y)2312.(2,-2)13.14.±115.8116.75°17.16218.8:∵AE为∠DAB的平分线,∴∠DAE=∠BAE.∵四边形AB C D为平行四边形,∴A D∥B C,D C∥AB,D C=AB.∵D C∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴A D=F D.又∵D G⊥AE,∴A G=F G,即AF=2A G.∵F为D C的中点,1 1∴DF=CF,∴A D=D F=D C=AB=3.在Rt△AD G中,根据勾股定理得AG2 2=2,则AF=2A G=4.∵A D∥B C,∴∠DAF=∠E,∠A D F=∠EC F.在△ADF和△ECF中,∠DAF=∠E,∠A D F=∠E C F,D F=CF,∴△A D F≌△EC F(A AS),∴AF=EF,则AE=2AF=8.故答案为8.三、19.解:(1)-9a+6a(a-b)-(a-b)22=-[3a-(a-b)]2=-(2a+b).21(2)(x-1)(x-2)+41 4=x -3x +2+ 2 2 3 2 = - . x2(a -2) ( +2)( -2) 3 a a 20.解:(1)原式= ÷ + a -2 a -21-a 2(a -2) a -2a -1 2 = = ÷ 1-a a -2 × 2(a -2) (a -1)(a +1)1 =- . 2a +2x 2-(x -1)2 x -1 x -1 (2x -1)2 2x -1 x -1 (2x -1)2x -1 1 (2)原式=- · =- · =- . 2x -1 a -3 a (a -1) (a +1)(a -1)-4a +4 a -121.解:原式= ÷ = a -3 a -1 · = a (a -1) (a -1)(a -3)1 , a (a -1)1 2 1 4 3 当 a =- 时,原式= = . 1 1 - ×- -1 2 222.解:(1)旋转后的三角形依次为:△A B C ,△A B C ,△A B C ,如图所示. 1 1 1 2 2 2 3 3 3(2)△ABC 绕旋转中心 O 逆时针方向旋转 270°后,点 A ,B ,C所对应的点的坐标为:A (3,-1);B (3,-3);C (-1,-3). 3 3 323.解:(1)乙的平均成绩是(8+9+8+8+7+8+9+8+8+7)÷10=8(环).(2)根据题图,可知甲的波动大于乙的波动,则 s >s .(3)乙;甲 2 2 甲 乙24.解:(1)设这种水果第一次的进价是每千克 x 元,则第二次的进价是每千克(1+20%)x 元,9 000 (1+20%)x3 000 由题意,得 =2× +300,解得 x =5, x 经检验 x =5 是方程的解.故这种水果第一次的进价是每千克 5 元.9 000 3 000(2) + -600 ×9+600×9×80%-(3 000+9 000)5 5×(1+20% )=(600+1 500-600)×9+4 320-12 000=1 500×9+4 320-12 000=13 500+4 320-12 000=5 820(元)故超市销售完这种水果共盈利 5 820 元.25.解:(1)四边形 AFB C 和四边形 AEFB 为平行四边形.理由如下:由平移的性质得,AF ∥B C ,且 AF =B C ,AB ∥EF ,且 AB =EF , ∴四边形 AFB C 和四边形 AEFB 为平行四边形.(2)由题易知△EFA ≌△AB C.由(1)可知四边形 AEFB 是平行四边形,∴S △AEF =S △ABF =S △AB C =S △ABE =3,∴ 四边形 CEFB 的面积=3S △ABC =9.(3)AF 与 BE 互相垂直平分.理由如下:∵AB =A C ,而 AE =AC ,∴AB =AE. 设 AF 与 BE 相交于点 O ,如图.∵四边形 AEFB 是平行四边形,∴OB =O E ,O A =O F.∵AB =AE ,O B =OE ,∴AF ⊥BE.∴AF 与 BE 互相垂直平分.(4)如图,作 B D ⊥AC 于点 D ,∵∠BE C =15°,AE =AB ,∴∠EBA =∠BE C =15°,∴∠BA C =2∠BE C =30°,1 ∴B D = AB. 21 2 1 ∴S △ABE = AE ·BD = A C · AB = AC2.又 S △ABE =3, 2 21 4 1 4 ∴ AC =3,2 ∴AC = 12.(2)△ABC 绕旋转中心 O 逆时针方向旋转 270°后,点 A ,B ,C所对应的点的坐标为:A (3,-1);B (3,-3);C (-1,-3). 3 3 323.解:(1)乙的平均成绩是(8+9+8+8+7+8+9+8+8+7)÷10=8(环).(2)根据题图,可知甲的波动大于乙的波动,则 s >s .(3)乙;甲 2 2 甲 乙24.解:(1)设这种水果第一次的进价是每千克 x 元,则第二次的进价是每千克(1+20%)x 元,9 000 (1+20%)x3 000 由题意,得 =2× +300,解得 x =5, x 经检验 x =5 是方程的解.故这种水果第一次的进价是每千克 5 元.9 000 3 000(2) + -600 ×9+600×9×80%-(3 000+9 000)5 5×(1+20% )=(600+1 500-600)×9+4 320-12 000=1 500×9+4 320-12 000=13 500+4 320-12 000=5 820(元)故超市销售完这种水果共盈利 5 820 元.25.解:(1)四边形 AFB C 和四边形 AEFB 为平行四边形.理由如下:由平移的性质得,AF ∥B C ,且 AF =B C ,AB ∥EF ,且 AB =EF , ∴四边形 AFB C 和四边形 AEFB 为平行四边形.(2)由题易知△EFA ≌△AB C.由(1)可知四边形 AEFB 是平行四边形,∴S △AEF =S △ABF =S △AB C =S △ABE =3,∴ 四边形 CEFB 的面积=3S △ABC =9.(3)AF 与 BE 互相垂直平分.理由如下:∵AB =A C ,而 AE =AC ,∴AB =AE. 设 AF 与 BE 相交于点 O ,如图.∵四边形 AEFB 是平行四边形,∴OB =O E ,O A =O F.∵AB =AE ,O B =OE ,∴AF ⊥BE.∴AF 与 BE 互相垂直平分.(4)如图,作 B D ⊥AC 于点 D ,∵∠BE C =15°,AE =AB ,∴∠EBA =∠BE C =15°,∴∠BA C =2∠BE C =30°,1 ∴B D = AB. 21 2 1 1 ∴S △ABE = AE ·BD = A C · AB = AC2.又 S △ABE =3, 2 21 4 1 4 ∴ AC =3,2 ∴AC = 12.。
期末试卷(2)一.选择题1.下列关于的方程中,是分式方程的是()A.3=B.=C.=2 D.3﹣2y=12.下列等式从左到右的变形,属于因式分解的是()A.2+2﹣1=(﹣1)2B.(a+b)(a﹣b)=a2﹣b2C.2+4+4=(+2)2D.a2﹣a=a(2﹣1)3.把多项式a2﹣4a分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2 )2﹣44.为了满足顾客的需求,某商场将6g奶糖,4g酥心糖和4g水果糖混合成什锦糖出售.已知奶糖的售价为每千克30元,酥心糖为每千克10元,水果糖为每千克8元,混合后什锦糖的售价应为每千克()A.15元B.16元C.18元D.18.5元5.下列多项式中,在实数范围不能分解因式的是()A.2+y2+2+2y B.2+y2+2y﹣2 C.2﹣y2+4+4y D.2﹣y2+4y﹣46.下列多项式中,含有因式(y+1)的多项式是()A.y2﹣2y﹣32B.(y+1)2﹣(y﹣1)2C.(y+1)2﹣(y2﹣1) D.(y+1)2+2(y+1)+17.某校排球队10名队员的身高(厘米)如下:195,186,182,188,188,182,186,188,186,188.这组数据的众数和中位数分别是()A.186,188 B.188,187 C.187,188 D.188,1868.如图,△ABC的面积为12,将△ABC沿BC方向移到△A′B′C′的位置,则△A′B′C′的面积为()A.12 B.8 C.6 D.49.如图,已知凸五边形ABCDE的边长均相等,且∠DBE=∠ABE+∠CBD,AC=1,则BD必定满足()A.BD<2 B.BD=2C.BD>2 D.以上情况均有可能10.如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接DE.现测得AC=30m,BC=40m,DE=24m,则AB=()A.50m B.48m C.45m D.35m11.一个多边形的每个内角都等于144°,则这个多边形的边数是()A.8 B.9 C.10 D.1112.如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()A.∠ECD=112.5°B.DE平分∠FDC C.∠DEC=30°D.AB=CD二.填空题13.因式分解:m2﹣m=.14.分解因式:(a+5)(a﹣5)+7(a+1)=.15.化简:÷=.16.一组数据2,3,2,5,4的中位数是.17.甲、乙两名同学参加“古诗词大赛”活动,五次比赛成绩的平均分都是85分,如果甲2=16.7,乙比赛成绩的方差为S乙2=28.3,那么成绩比较稳定的是比赛成绩的方差为S甲(填“甲”或“乙”)三.解答题18.因式分解:(1)4(a﹣b)2﹣16(a+b)2(2)81a4﹣b4.19.化简代数式÷.20.解方程:.21.坐火车从上海到娄底,高铁G1329次列车比快车575次列车要少9小时,已知上海到娄底的铁路长约1260千米,G1329的平均速度是575的2.5倍.(1)求575的平均速度.(2)高铁G1329从上海到娄底只需几小时?22.某体育老师对自己任教的55名男生进行一百米摸底测试,若规定男生成绩为16秒合格,下表是随机抽取的10名男生分A,B两组测试的成绩与合格标准的差值(比合格标准多的秒数为正,少的秒数为负).(2)通过相关的计算,说明哪个组的成绩比较均匀.(3)至少举出三条理由说明A组成绩好于B组成绩,或找出一条理由说明B组好于A组.23.如图,四边形ABCD为平行四边形,∠BAD和∠BCD的平分线AE,CF分别交DC,BA 的延长线于点E,F,交边BC,AD于点H,G.求证:四边形AECF是平行四边形.。
鲁教版八年级数学上册期末测试题(附参考答案)满分150分 考试时间120分钟一、选择题:本题共12个小题,每小题4分,共48分。
每小题只有一个选项符合题目要求。
1.下列因式分解正确的是( ) A .2a 2-4a +2=2(a -1)2 B .a 2+ab +a =a (a +b ) C .4a 2-b 2=(4a +b )(4a -b ) D .a 3b -ab 3=ab (a -b )22.若k 为任意整数,则(2k +3)2-4k 2的值总能( ) A .被2整除 B .被3整除 C .被5整除D .被7整除3.分式x 2−xx−1的值为0,则x 的值是( ) A .0 B .-1 C .1D .0或14.某运输公司运输一批货物,已知大货车比小货车每辆多运输5吨货物,且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同,设大货车每辆运输x 吨,则所列方程正确的是( ) A .75x−5=50x B .75x =50x−5 C .75x+5=50x D .75x =50x+55.甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及其方差如表:A.甲B.乙C.丙D.丁6.如图,一束太阳光平行照射在放置于地面的正六边形上,若∠1=19°,则∠2的度数为( )A.41°B.51°C.42°D.49°7.如图,在四边形ABCD中,AB∥CD,若添加一个条件,使四边形ABCD为平行四边形,则下列正确的是( )A.AD=BC B.∠ABD=∠BDCC.AB=AD D.∠A=∠C8.如图,□ABCD的对角线AC,BD相交于点O,∠ADC的平分线与边AB相交于点P,E是PD的中点.若AD=4,CD=6,则EO的长为( )A.1 B.2C.3 D.49.剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,既是轴对称图形又是中心对称图形的是( )10.在正数范围内定义一种运算“※”,其规则为a※b=1a +1b,如2※4=12+14,根据这个规则,方程3※(x-1)=1的解为( ) A.x=52B.x=-1C.x=12D.x=-311.如图,在平面直角坐标系中,△ABC各点坐标分别为A(-2,1),B(-1,3),C(-4,4).先作△ABC关于x轴成轴对称的△A1B1C1,再把△A1B1C1平移后得到△A 2B2C2.若B2(2,1),则点A2的坐标为( )A.(1,5) B.(1,3)C.(5,3) D.(5,5)12.如图,在△ABC中,AB=AC,若M是边BC上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是( )A.AB=ANB.AB∥NCC.∠AMN=∠ACND.MN⊥AC二、填空题:本题共6个小题,每小题4分,共24分。
八年级数学上册期末考试试卷(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共12题;共36分)1.一组数据9.5,9,8.5,8,7.5的极差是()A. 0.5B. 8.5C. 2.5D. 22.二元一次方程组的解是()A. B. C. D.3.如图,直线a∥b,直线l与直线a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠2=40°,则∠1的度数为()A. 20°B. 30°C. 40°D. 50°4.在一次中学生汉字听写大赛中,某中学代表队6名同学的笔试成绩分别为:75,85,91,85,95,85.关于这6名学生成绩,下列说法正确的是()A. 平均数是87B. 中位数是88C. 众数是85D. 方差是2305.用加减法解方程组时,要使两个方程中同一未知数的系数相等或相反,有以下四种变形的结果:① ②③④,其中变形正确的是()A. ①②B. ③④C. ①③D. ②④6.下列运算正确的是()A. B. C. D.7.一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以达该建筑物的最大高度是()A. 12米B. 13米C. 14米D. 15米8.如果函数y=x﹣b与y=﹣2x+4的图象的交点坐标是(2,0),那么二元一次方程组的解是()A. (2,0)B.C.D. 以上答案都不对9.如图,直线a∥b,∠1的度数比∠2的度数大56°,若设∠1=x°,∠2=y°,则可得到的方程组为( )A. B. C. D.10.如图,不能判定AB∥DF的是()A. ∠1=∠2B. ∠A=∠4C. ∠1=∠AD. ∠A+∠3=180°11.甲、乙两名自行车运动员同时从A地出发到B地,在直线公路上进行骑自行车训练.如图,反映了甲、乙两名自行车运动员在公路上进行训练时的行驶路程S(千米)与行驶时间t(小时)之间的关系,下列四种说法:①甲的速度为40千米/小时;②乙的速度始终为50千米/小时;③行驶1小时时乙在甲前10千米;④3小时时甲追上乙.其中正确的个数有()A. 1个B. 2个C. 3个D. 4个二、填空题(共6题;共24分)12.某校甲乙两个体操队队员的平均身高相等,甲队队员身高的方差是S甲2=1.9,乙队队员身高的方差是S 2=1.2,那么两队中队员身高更整齐的是________队.(填“甲”或“乙”)乙13.如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若△ABC的面积为12cm2,则图中阴影部分的面积是________ cm2.14.已知关于x,y的二元一次方程组的解互为相反数,则k的值是________.15.如图,⊙O中,BD为⊙O直径,弦AD长为3,AB长为5,AC平分∠DAB,则弦AC的长为________.16.在Rt△ABC中,∠C=90°,∠A=50°,则∠B=________.17.如图,直线y=x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A n的坐标为________三、计算题(共6题;共60分)18.a,b互为相反数,c,d互为倒数,m的绝对值等于3,求m2+(cd+a+b)+(cd)2018的值.19.解方程或方程组:(1)(2)20.甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,8,8,9乙:5,9,7,10,9(1)填写下表(2)教练根据5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1此,命中8环,那么乙的射击成绩的方差有什么变化?21.联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若PA=PB,则点P为△ABC的准外心.应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD= AB,求∠APB的度数.探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.22.如图1,A、D分别在x轴和y轴上,CD∥x轴,BC∥y轴.点P从D点出发,以1cm/s的速度,沿五边形DOABC的边匀速运动一周.记顺次连接P、O、D三点所围成图形的面积为Scm2,点P运动的时间为ts.已知S与t之间的函数关系如图2中折线段OEFGHI所示.(1)求A、B两点的坐标;(2)若直线PD将五边形OABCD分成面积相等的两部分,求直线PD的函数关系式.23.为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x(m2),种草所需费用y1(元)与x(m2)的函数关系式为,其图象如图所示:栽花所需费用y2(元)与x(m2)的函数关系式为y2=﹣0.01x2﹣20x+30000(0≤x≤1000).(1)请直接写出k1、k2和b的值;(2)设这块1000m2空地的绿化总费用为W(元),请利用W与x的函数关系式,求出绿化总费用W的最大值;(3)若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.答案一、单选题1. D2. B3. D4. C5. B6.C7. A8.B9. B 10. C 11. C二、填空题12.乙13.6 14. -1 15.16.40°17.(2n﹣1,0)三、计算题18. 解:∵a,b互为相反数,c,d互为倒数,m的绝对值等于3,∴a+b=0,cd=1,|m|=3,∴m2+(cd+a+b)+(cd)2018=9+1+1=1119.(1)解:4或x=0(2)解:解得20.解:(1)甲的众数为8;乙的平均数==8,乙的中位数==8;(2)因为甲乙的平均数相等,而甲的方差小,成绩比较稳定,所以选择甲参加射击比赛;(3)如果乙再射击1次,命中8环,平均数不变,根据方差公式可得乙的射击成绩的方差变小.故答案为8,8,8;变小.21. 应用:解:①若PB=PC,连接PB,则∠PCB=∠PBC,∵CD为等边三角形的高,∴AD=BD,∠PCB=30°,∴∠PBD=∠PBC=30°,∴PD= DB= AB,与已知PD= AB矛盾,∴PB≠PC,②若PA=PC,连接PA,同理可得PA≠PC,③若PA=PB,由PD= AB,得PD=BD,∴∠APD=45°,故∠APB=90°;探究:解:∵BC=5,AB=3,∴AC= = =4,①若PB=PC,设PA=x,则x2+32=(4﹣x)2,∴x= ,即PA= ,②若PA=PC,则PA=2,③若PA=PB,由图知,在Rt△PAB中,不可能.故PA=2或.22.(1)解:连接AD,设点A的坐标为(a,0),由图2知,DO+OA=6cm,则DO=6﹣AO=6﹣a,由图2知S△AOD=4,∴DO•AO= a(6﹣a)=4,整理得:a2﹣6a+8=0,解得a=2或a=4,由图2知,DO>3,∴AO<3,∴a=2,∴A的坐标为(2,0),D点坐标为(0,4),在图1中,延长CB交x轴于M,由图2,知AB=5cm,CB=1cm,∴MB=3,∴AM==4.∴OM=6,∴B点坐标为(6,3)(2)解:因为P在OA、BC、CD上时,直线PD都不能将五边形OABCD分成面积相等的两部分,所以只有点P一定在AB上时,才能将五边形OABCD分成面积相等的两部分,设点P(x,y),连PC、PO,则S四边形DPBC=S△DPC+S△PBC= S五边形OABCD= (S矩形OMCD﹣S△ABM)=9,∴×6×(4﹣y)+ ×1×(6﹣x)=9,即x+6y=12,同理,由S四边形DPAO=9可得2x+y=9,由,解得x= ,y= .∴P(,),设直线PD的函数关系式为y=kx+4(k≠0),则= k+4,∴k=﹣,∴直线PD的函数关系式为y=﹣x+4.23. (1)解:将x=600、y=18000代入y1=k1x,得:18000=600k1,解得:k1=30;将x=600、y=18000和x=1000、y=26000代入,得:,解得:;(2)解:当0≤x<600时,W=30x+(﹣0.01x2﹣20x+30000)=﹣0.01x2+10x+30000,∵﹣0.01<0,W=﹣0.01(x﹣500)2+32500,∴当x=500时,W取得最大值为32500元;当600≤x≤1000时,W=20x+6000+(﹣0.01x2﹣20x+30000)=﹣0.01x2+36000,∵﹣0.01<0,∴当600≤x≤1000时,W随x的增大而减小,∴当x=600时,W取最大值为32400,∵32400<32500,∴W取最大值为32500元;(3)解:由题意得:1000﹣x≥100,解得:x≤900,由x≥700,则700≤x≤900,∵当700≤x≤900时,W随x的增大而减小,∴当x=900时,W取得最小值27900元.。
一、选择题1.下列四个命题中为真命题的是( )A .两条直线被第三条直线所截,内错角相等B .若1∠和2∠是对顶角,则12∠=∠C .三角形的一个外角大于任何一个内角D .22a b =,则a b =2.下列四个命题中,假命题有( )(1)两条直线被第三条直线所截,内错角相等.(2)如果1∠和2∠是对顶角,那么12∠=∠.(3)一个锐角的余角一定小于这个锐角的补角.(4)如果1∠和3∠互余,2∠与3∠的余角互补,那么1∠和2∠互补.A .1个B .2个C .3个D .4个3.如图,AB ∥DE ,80,45B D ︒︒∠=∠=则C ∠的度数为( )A .50︒B .55︒C .60︒D .65︒4.A ,B 两地相距12千米,甲骑自行车从A 地出发前往B 地,同时乙步行从B 地出发前往A 地,如图的折线OPQ 和线段EF 分别表示甲乙两人与A 地的距离y 甲、y 乙与他们所行时间x(h)之间的函数关系,且OP 与EF 交于点M ,下列说法:①y 乙=-2x+12;②线段OP 对应的y 甲与x 的函数关系式为y 甲=18x ;③两人相遇地点与A 地的距离是9km ;④经过38小时或58小时时,甲乙两个相距3km .其中正确的个数是( )A .1个B .2个C .3个D .4个5.一次函数21y x =-+上有两点()12,y -和()21,y ,则1y 与2y 的大小关系是( ) A .12y y >B .12y y <C .12y y =D .无法比较 6.如图,宽为25cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积是( )A .2200cmB .2150cmC .2100cmD .275cm 7.如图,若直线y=kx+b 与x 轴交于点A (-4,0),与y 轴正半轴交于B ,且△OAB 的面积为4,则该直线的解析式为( )A .y=12x+2B .y=2x+2C .y=4x+4D .y=14x+4 8.已知 xyz≠0,且4520430x y z x y z -+=⎧⎨+-=⎩,则 x :y :z 等于( ) A .3:2:1 B .1:2:3 C .4:5:3 D .3:4:5 9.如图,在平面直角坐标系中,已知()0,6A 、()3,0B 、()1,4C 过A 、B 两点作直线,连接OC ,下列结论正确的有( )A .直线AB 解析式:36y x =-+B .点C 在直线AB 上 C .线段BC 17D .:1:3AOC BOC S S ∆∆=10.在平面直角坐标系中,点A (0,a ),点B (0,4﹣a ),且A 在B 的下方,点C (1,2),连接AC ,BC ,若在AB ,BC ,AC 所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a 的取值范围为( )A .﹣1<a ≤0B .0<a ≤1C .1≤a <2D .﹣1≤a ≤1 11.已知数据:3,4,5-,2π,0.其中无理数出现的频率为( )A .0.2B .0.4C .0.6D .0.812.如图所示,数轴上的点A 所表示的数为a ,则a 的值是( )A .51+B .51-+C .51-D .5二、填空题13.如图,已知//AB CD ,现将一直角三角形PMN 放入图中,其中90P ∠=︒,PM 交AB 于点E ,PN 交CD 于点F .(1)当PMN 所放位置如图①所示时,求PFD ∠与AEM ∠的数量关系并证明;(2)当PMN 所放位置如图②所示时,PFD ∠与AEM ∠还有与(1)中一样的数量关系吗?请说明理由;(3)在(2)的条件下,若MN 与CD 交于点O ,且20DON ∠=︒,15PEB ∠=︒,直接写出N ∠的度数 ︒.14.如图,ABC ∆中,60B ∠=︒,55C ∠=︒,点D 为BC 边上一动点.分别作点D 关于AB ,AC 的对称点E ,F ,连接AE ,AF .则EAF ∠的度数等于_______.15.若方程组23113543.1a b a b -=⎧⎨+=⎩的解为9.72.8a b =⎧⎨=⎩,则方程组()()()()(223111325143.1x y x y ⎧+--=⎪⎨++-=⎪⎩的解为___________ .16.方程组6293x y x y a =-⎧⎨-=-⎩的解x 、y 互为相反数,则a =_____.17.一皮球从16m 高处落下,如果每次弹起的高度总是它下落高度的一半,则反弹高度h 与落地次数n 的对应关系的函数解析式为_________.18.在平面直角坐标系中有两点A(5,0),B(2,1),如果点C 在坐标平面内,且由点A 、O 、C 连成的三角形与△AOB 全等(△AOC 与△AOB 不重合),则点C 的坐标是_________ 19.化简4102541025-++++=_______.20.已知一个直角三角形三边长的平方和是50,则斜边长为________.三、解答题21.数学课上,张老师给出这样一个问题——已知:如图,直线//a b ,//a c ,请说明://b c .请你把小明的说明过程补充完整: 说明:作直线l 分别和a ,b ,c 相交(如图)//a b (已知)1∴∠=______,(______)又//a c (已知)1∴∠=______,(两直线平行,内错角相等)∴______,//b c ∴,(______)由此我们可以得到一个基本事实:平行于同一条直线的两条直线互相______.22.(1615312(2)解方程组:321237x y x y -=⎧⎨+=-⎩. 23.如图1,对于平面内的点A 、P ,如果将线段PA 绕点P 逆时针旋转90°能得到线段PB ,就称点B 是点A 关于点P 的“旋垂点”.(1)在平面直角坐标系xOy 中,点()3,1S -关于原点O 的“旋垂点”是 ;(2)如图2,90AOB ∠=︒,OC 平分AOB ∠,将直角三角板的直角顶点P 放在OC 上,两直角边分别交OA 、OB 于点M 、N ,试说明:点N 是点M 关于点P 的“旋垂点”;(3)如图3,直线3y kx =+与x 轴交于点P ,与y 轴交于点Q ,点Q 关于点P 的“旋垂点”记为点(),T m n ,若点P 在x 轴上,且03OP <<,点T 的横坐标m 满足21m -<≤-,求k 的取值范围.24.阅读以下材料,并解决问题:小明遇到一个问题:在平面直角坐标系xOy 中,点()1,4A ,()5,2B ,求OAB 的面积.小明用割补法解决了此问题,如图,过点A 作AM x ⊥轴于点M ,过点B 作BN x ⊥轴于点N ,则OAB OAM OBN AMNB S S S S =+-△△△梯形()()111142451529222=⨯⨯+⨯+--⨯⨯= 解决问题后小明又思考,如果将问题一般化,是否会有好的结论,于是它首先研究了点A ,B 在第一象限内的一种情形:如图,点()11,A x y ,()22,B x y ,其中12x x <,12y y >(1)请你帮助小明求出这种情形下OAB 的面积.(用含1x ,2x ,1y ,2y 的式子表示)(2)小明继续研究发现,只要将(1)中求得的式子再取绝对值就可以得到第一象限内任意两点A ,B (点O ,A ,B 不共线)与坐标原点O 构成的三角形OAB 的面积公式,请利用此公式解决问题:已知点(),2A a a +,(),B b b 在第一象限内,探究是否存在点B ,使得对于任意的0a >,都有3OAB S=?若存在,求出点B 的坐标;若不存在说明理由.25.根据阅读材料,解决问题. 若一个正整数,从左到右各位数上的数字与从右到左各位数上的数字对应相同,则称为“对称数”(例如:1、232、4554是对称数).对于一个三位对称数A ,将它各个数位上的数字分别两倍后取个位数字,得到三个新的数字x ,y ,z ,我们对A 规定一个运算:() K A xyz =,例如:535A =是一个三位的“对称数”,其各个数位上的数字分别2倍后取个位数字分别是:0、6.0.则()5350600K =⨯⨯=;262A =是一个三位的“对称数”,其各个数位上的数字分别2倍后取个位数字分别是: 4、2、4,则()26242432K =⨯⨯=.请解答:(1)请你直接写出最大的两位对称数: 最小的四位对称数: ;(2)一个三位的“对称数”B ,将其各个数位的数字分别2倍后取个位数字分别为:a ,b ,a ,若()8K B =,请求出B 的所有值.26.在如图所示的方格纸中,每个小正方形的边长为1个单位长度,我们称每个小正方形的顶点为“格点”.(1)若格点C 在线段AB 右侧,且满足AC BC =,则当ABC ∆的周长最小时,ABC ∆的面积等于 .(2)若格点D 在线段AB 左侧,且满足AD BD ⊥,则ABD ∆的面积等于 (以上两问均直接写出结果即可).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据平行线的性质、对顶角相等、三角形外角定理、乘方的性质逐项判断即可求解.【详解】解:A. “两条直线被第三条直线所截,内错角相等”,缺少两直线平行这一条件,判断错误,是假命题,不合题意;B. “若1∠和2∠是对顶角,则12∠=∠”,是真命题,符合题意;C. “三角形的一个外角大于任何一个内角”,应为“三角形的一个外角大于任何一个和它不相邻的内角”,判断错误,是假命题,不合题意;D. “22a b =,则a b =,”是假命题,a 和b 也可以互为相反数,不合题意.故选:B【点睛】本题考查了平行线的性质、对顶角相等、三角形外角定理、乘方的性质、真假命题等知识,熟知相关知识是解题关键.2.A解析:A【分析】按照命题的条件,结论,进行推理计算,或与定理,定义,法则对照,进行判断即可.【详解】∵两条平行直线被第三条直线所截,内错角相等,∴(1)是假命题;∵对顶角相等,∴(2)是真命题;设锐角为x,则其余角为90°-x,补角为180°-x,∴(90-x)-(180-x)=90°-x-180°+x=-90<0,∴(3)是真命题;∵1∠和3∠互余,2∠与3∠的余角互补,∴1∠+3∠=90,2∠+(90-3∠)=180,∴2∠+1∠=180,∴(4)是真命题;故选A.【点睛】本题考查了对命题的真伪的甄别,解答时,熟练掌握数学的基本概念,基本定理,基本法则,基本性质是解题的关键.3.B解析:B【分析】延长DE交BC于F,利用平行线的性质求出∠DFC=∠B=80°,再利用三角形的内角和定理求∠的度数.出C【详解】延长DE交BC于F,如图,∵AB∥DE,∴∠DFC=∠B=80°,∵∠C+∠D+∠DFC=180°,∴∠C= =180°-∠D-∠DFC=55°,故选:B.【点睛】此题考查平行线的性质:两直线平行,同位角相等;三角形的内角和定理.4.C解析:C【分析】①根据函数图像中的数据可以求得y 乙与x 的函数关系式;②根据函数图像中的数据可以求得线段OP 对应的y 甲与x 的函数关系式,进而可求得两人相遇时距离A地的距离;③根据①和②中的函数关系式,可求得两人相距3km 时所用的时间.【详解】(1)设y 乙与x 的函数关系式为:y 乙=ax +b ,把(0,12)和(2,0)代入得:1220b a b =⎧⎨+=⎩解得:612a b =-⎧⎨=⎩,可得y 乙=-6x +12,故①错误; (2)设线段OP 对应的y 甲与x 的函数关系式为:y kx =甲,把x =0.5代入y =-6x +12中得:y =9,∴M (0.5,9),∴9=0.5k ,解得:k =18,∴18y x =甲,∴当x =0.5时,y =9,即两人相遇时距离A地的距离为9,故②③正确;(3)令|18x -(-6x +12)|=3,解得x =38或58,故④正确; 故选:C .【点睛】本题考查一次函数的应用,解题本题的关键是明确题意,利用一次函数的性质解答. 5.A解析:A【分析】根据一次函数的增减性直接判断即可;或求出1y 、2y 的值,进行比较.【详解】解:方法一:因为一次函数21y x =-+中的比例系数20-<,所以y 随着x 的增大而减小,∵-2<1,∴12y y >;方法二:把x=-2或1分别代入21y x =-+得,15y =、21y =-,∴12y y >;故选:A .【点睛】本题考查了一次函数的增减性,解题关键是知道一次函数的增减性由比例系数k 决定,根据k 值可直接判断.6.C解析:C【分析】根据矩形的两组对边分别相等,可知题中有两个等量关系:小长方形的长+小长方形的宽=25,小长方形的长×2=小长方形的长+小长方形的宽×4,根据这两个等量关系,可列出方程组,再求解.【详解】设一个小长方形的长为xcm ,宽为ycm ,由图形可知,2524x y x x y +=⎧⎨=+⎩, 解得:205x y =⎧⎨=⎩, 所以一个小长方形的面积为205100⨯=(cm 2) .故选:C .【点睛】本题考查了二元一次方程的应用,解答本题关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组.并弄清小正方形的长与宽的关系.7.A解析:A【分析】先利用三角形面积公式求出OB=2得到B (0,2),然后利用待定系数法求直线解析式.【详解】∵A (-4,0),∴OA=4,∵△OAB 的面积为4∵12×4×OB=4,解得OB=2,∴B (0,2),把A (-4,0),B (0,2)代入y=kx+b ,402k b b -⎨⎩+⎧==, 解得122k b ⎧⎨⎩==, ∴直线解析式为y=12x+2.故选:A .【点睛】本题考查了待定系数法求一次函数关系式:设一次函数解析式为y=kx+b (k≠0),要有两组对应量确定解析式,即得到k ,b 的二元一次方程组.8.B解析:B【分析】由4520430x y z x y z -+⎧⎨+-⎩=①=②,①×3+②×2,得出x 与y 的关系式,①×4+②×5,得出x 与z 的关系式,从而算出xyz 的比值即可.【详解】∵4520430x y z x y z -+⎧⎨+-⎩=①=②, ∴①×3+②×2,得2x=y ,①×4+②×5,得3x=z ,∴x :y :z=x :2x :3x=1:2:3,故选B .【点睛】本题考查了三元一次方程组的解法,用含有x 的代数式表示y 与z 是解此题的关键. 9.B解析:B【分析】根据待定系数法,求得直线AB 解析式,即可判断A ,把()1,4C 代入直线AB 解析式,即可判断B ,利用两点间的距离公式,即可求解BC 的长,进而判断C ,求出AC :BC=1:2,进而判断D .【详解】设直线AB 解析式:y=kx+b ,把()0,6A 、()3,0B 代入得603b k b =⎧⎨=+⎩,解得:62b k =⎧⎨=-⎩,∴直线AB 解析式:26y x =-+,故A 错误;∵当x=1,y=-2×1+6=4,∴()1,4C 在直线AB 上,故B 正确;∵BC==,故C 错误;∵,∴AC= AB-BC∴AC :BC=1:2,∴:1:2AOC BOC S S ∆∆=,故D 错误.故选B .【点睛】本题主要考查一次函数的待定系数法,两点间的距离公式,直线上点的坐标特征,熟练掌握一次函数的图像和性质,是解题的关键.10.B解析:B【分析】根据题意得出除了点C 外,其它三个横纵坐标为整数的点落在所围区域的边界上,即线段AB 上,从而求出a 的取值范围.【详解】解:∵点A (0,a ),点B (0,4﹣a ),且A 在B 的下方,∴a <4﹣a ,解得:a <2,若在AB ,BC ,AC 所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,∵点A ,B ,C 的坐标分别是(0,a ),(0,4﹣a ),(1,2),∴区域内部(不含边界)没有横纵坐标都为整数的点,∴已知的4个横纵坐标都为整数的点都在区域的边界上,∵点C (1,2)的横纵坐标都为整数且在区域的边界上,∴其他的3个都在线段AB 上,∴3≤4﹣a <4.解得:0<a≤1,故选:B .【点睛】本题考查了坐标与图形的性质,分析题目找出横纵坐标为整数的三个点存在于线段AB 上为解决本题的关键.11.C解析:C【分析】根据无理数的意义和频率意义求解.【详解】=-,,都开不尽方,π是无限不循环小数,解:∵4235∴352π-,,是无理数,40,是有理数,∴由30.6=可得无理数出现的频率为0.6,5故选C .【点睛】本题考查无理数和频率的综合应用,熟练掌握无理数和频率的意义是解题关键.12.C解析:C【分析】先根据勾股定理求出直角三角形的斜边,即可得出选项.【详解】解:BC=BA=22125+=,∵数轴上点A所表示的数为a,∴a=51-故选:C.【点睛】本题考查了数轴和实数,勾股定理的应用,能读懂图象是解此题的关键.二、填空题13.(1)∠PFD+∠AEM=90°;(2)∠PFD-∠AEM=90°理由见解析;(3)55【分析】(1)如下图作PH∥AB利用AB∥HPHP∥CD转化角度可得;(2)∠PFD和∠PFO互补将∠PFO转解析:(1)∠PFD+∠AEM=90°;(2)∠PFD-∠AEM=90°,理由见解析;(3)55【分析】(1)如下图,作PH∥AB,利用AB∥HP,HP∥CD转化角度可得;(2)∠PFD和∠PFO互补,将∠PFO转化为∠FON和∠FNO,结合第一问的结论可得;(3)利用第二问的结论,直接代入计算即可解.【详解】(1)关系:∠PFD+∠AEM=90°.理由:如下图,作 PH∥AB∵ AB∥CD ,∴ PH∥CD ,∴∠PFD=∠NPH,∠AEM=∠HPM ,∵∠MPN=90°,∴∠PFD+∠AEM=90°;(2)关系:∠PFD−∠AEM=90°如下图,作MG∥AB交PN于点G,∠PMN=∠AEM+∠MOC理由同上,∵∠PFC=∠FON+∠FNO,∴∠PFC=∠MOC+∠FNO,∴∠AEM+∠PFD=∠AEM+∠MOC+∠PNO=∠PMN+∠PNO,∵∠P=90°,∴∠AEM+∠PFC=∠PMN+∠PNO=90°,∠PFC=180°-∠PFD代入得:∠AEM+180°-∠PFD=90°,化简得:∠PFD-∠AEM=90°.(3)∠N 的度数为:55°,∵∠AEM=∠PEB=15°,由(2)得,∠PFD=90°+∠AEM=90°+∠PEB=90°+15°=105°,∴∠N=180°−∠DON−∠PFD =180°−20°−105°=55°.【点睛】本题考查平行的性质,解题关键是过中间点M作平行线,此题是“M型”模型,常见辅助线即为在中间点处作平行线.14.130°【分析】利用轴对称的性质可知:∠EAB=∠BAD∠FAC=∠CAD再求出∠BAC的度数即可求解【详解】连接AD∵D点分别以ABAC为对称轴的对称点为EF ∴∠EAB =∠BAD ∠FAC =∠CAD解析:130°【分析】利用轴对称的性质可知:∠EAB =∠BAD ,∠FAC =∠CAD ,再求出∠BAC 的度数,即可求解.【详解】连接AD ,∵D 点分别以AB 、AC 为对称轴的对称点为E 、F ,∴∠EAB =∠BAD ,∠FAC =∠CAD ,∵60B ∠=︒,55C ∠=︒,∴∠BAC =∠BAD +∠DAC =180°−60°−55°=65°,∴∠EAF =2∠BAC =130°,故答案是:130°.【点睛】此题考查轴对称的性质,关键是利用轴对称的性质解答.15.【分析】先把x+2与y -1看作一个整体则x+2与y -1是已知方程组的解于是可得进一步即可求出答案【详解】解:由方程组的解为由题意得:方程组的解为解得:故答案为:【点睛】本题考查了二元一次方程组同解方解析:7.73.8x y =⎧⎨=⎩. 【分析】先把x +2与y -1看作一个整体,则x +2与y -1是已知方程组23113543.1a b a b -=⎧⎨+=⎩的解,于是可得29.71 2.8x y +=⎧⎨-=⎩,进一步即可求出答案. 【详解】解:由方程组23113543.1a b a b -=⎧⎨+=⎩的解为9.72.8a b =⎧⎨=⎩, 由题意得:方程组()()()()(223111325143.1x y x y ⎧+--=⎪⎨++-=⎪⎩的解为29.71 2.8x y +=⎧⎨-=⎩,解得:7.73.8 xy=⎧⎨=⎩.故答案为:7.73.8 xy=⎧⎨=⎩.【点睛】本题考查了二元一次方程组同解方程组的解法,正确理解题意、得出29.71 2.8xy+=⎧⎨-=⎩是解此题的关键.16.7【分析】由x与y互为相反数得到y=﹣x代入方程组求出a的值即可【详解】解:由xy互为相反数得到x+y=0即y=﹣x代入方程组得:解得:故答案为:7【点睛】本题考查相反数的性质二元一次方程组的解法熟解析:7【分析】由x与y互为相反数得到y=﹣x,代入方程组求出a的值即可.【详解】解:由x、y互为相反数,得到x+y=0,即y=﹣x,代入方程组6293x yx y a=-⎧⎨-=-⎩得:6293x xx x a=+⎧⎨+=-⎩,解得:x=-6 a=7⎧⎨⎩,故答案为:7.【点睛】本题考查相反数的性质,二元一次方程组的解法,熟练掌握基础知识是关键.17.【分析】根据每次弹起的高度总是它下落高度的一半分析数量关系即可【详解】表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式(n为正整数)【点睛】本题主要考查了函数关系式解题的关键是仔细观察得解析:162n h=【分析】根据“每次弹起的高度总是它下落高度的一半”分析数量关系即可.【详解】表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式162nh=(n为正整数).【点睛】本题主要考查了函数关系式,解题的关键是仔细观察得出数据间的关系.18.或或【分析】设点C的坐标为先根据两点之间的距离公式可得的值再根据全等三角形的性质建立方程组解方程组即可得【详解】设点C 的坐标为由题意分以下两种情况:(1)当时则即解得或则此时点C 的坐标为或(与点B 重 解析:(2,1)-或(3,1)-或(3,1)【分析】设点C 的坐标为(,)C a b ,先根据两点之间的距离公式可得2222,,,AC OC AB OB 的值,再根据全等三角形的性质建立方程组,解方程组即可得.【详解】设点C 的坐标为(,)C a b ,(5,0),(0,0),(2,1)A O B ,222(5)AC a b ∴=-+,222OC a b =+,222(25)(10)10AB =-+-=,222(20)(10)5OB =-+-=,由题意,分以下两种情况:(1)当AOC AOB ≅时,则,AC AB OC OB ==,2222,AC AB OC OB ∴==,即2222(5)105a b a b ⎧-+=⎨+=⎩, 解得21a b =⎧⎨=-⎩或21a b =⎧⎨=⎩, 则此时点C 的坐标为(2,1)C -或(2,1)C (与点B 重合,不符题意,舍去);(2)当OAC AOB ≅时,则,AC OB OC AB ==,2222,AC OB OC AB ∴==,即2222(5)510a b a b ⎧-+=⎨+=⎩, 解得31a b =⎧⎨=-⎩或31a b =⎧⎨=⎩, 则此时点C 的坐标为(3,1)C -或(3,1)C ;综上,点C 的坐标为(2,1)-或(3,1)-或(3,1),故答案为:(2,1)-或(3,1)-或(3,1).【点睛】本题考查了两点之间的距离公式、全等三角形的性质、利用平方根解方程等知识点,熟练掌握全等三角形的性质,并正确分两种情况讨论是解题关键.19.【分析】设将等式的两边平方然后根据完全平方公式和二次根式的性质化简即可得出结论【详解】解:设由算术平方根的非负性可得t≥0则故答案为:【点睛】此题考查的是二次根式的化简掌握完全平方公式和二次根式的性【分析】t =,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】t =,由算术平方根的非负性可得t≥0,则244t =8=+8=+81)=+6=+21)=1t ∴=..【点睛】此题考查的是二次根式的化简,掌握完全平方公式和二次根式的性质是解题关键. 20.5【分析】设两直角边长分别为ab 斜边长为c 则根据题意列得即可求出答案【详解】设两直角边长分别为ab 斜边长为c 则∵三边长的平方和是∴∴解得c=5(负值舍去)故答案为:5【点睛】此题考查勾股定理正确掌握解析:5【分析】设两直角边长分别为a 、b ,斜边长为c ,则222+=a b c ,根据题意列得2250c =即可求出答案.【详解】设两直角边长分别为a 、b ,斜边长为c ,则222+=a b c ,∵三边长的平方和是50,∴22250a b c ++=,∴2250c =,解得c=5(负值舍去),故答案为:5.【点睛】此题考查勾股定理,正确掌握勾股定理的计算公式是解题的关键.三、解答题21.∠2;两直线平行,同位角相等;∠3;∠2=∠3;内错角相等,两直线平行;平行【分析】根据平行线的判定和性质解答即可.【详解】解:∵a∥b(已知)∴∠1=∠2,(两直线平行,同位角相等)又∵a∥c(已知)∴∠1=∠3,(两直线平行,内错角相等)∴∠2=∠3,∴b∥c,(内错角相等,两直线平行);得出:平行于同一条直线的两条直线互相平行;故答案为:∠2,两直线平行,同位角相等,∠3,∠2=∠3,内错角相等,两直线平行,平行.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.22.(1)-2)11132313xy⎧=-⎪⎪⎨⎪=-⎪⎩【分析】(1)二次根式的混合运算,注意先算乘除,后算加减;(2)利用加减消元法解二元一次方程组求解.【详解】解:(1==﹣(2)321? 237?x yx y-=⎧⎨+=-⎩①②①×3得:9x﹣6y=3③,②×2得:4x+6y=﹣14④,③+④得:x=﹣11 13,把x=﹣1113代入①得:y=﹣2313,∴方程组的解为:11132313x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查解二元一次方程组和二次根式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.23.(1)()1,3--;(2)见解析;(3)332k -<≤-. 【分析】(1)由“旋垂点”的定义可直接进行求解;(2)过点P 分别作PD ⊥OA ,PE ⊥OB ,根据题意易得PD=PE ,∠PMD=∠PNE ,进而可证△PDM ≌△PEN ,然后可得PM=PN ,则问题可求解;(3)过点T 作TA ⊥x 轴,根据题意易证△APT ≌△OQP ,则有AP=OQ ,进而可得AP=OQ=3,3OP k =-,然后可得33m k=--,最后问题可求解. 【详解】解:(1)如图,过点S 作SA ⊥x 轴,过点P 作PB ⊥x 轴,由“旋垂点”可得:△SAO ≌△PBO ,∴OB=OA ,PB=SA ,∵点()3,1S -,∴PB=1,OB=3,∴点()1,3P --,故答案为()1,3--;(2)过点P 分别作PD ⊥OA ,PE ⊥OB ,如图所示:∵OC 平分∠AOB ,∴PD=PE ,∵∠AOB=∠MPN=90°,∴由四边形内角和定理得:∠PMO+∠PNO=180°, ∵∠PMO+∠PMD=180°,∴∠PMD=∠PNE ,∵∠PDM=∠PEN=90°,∴△PDM ≌△PEN (AAS ),∴PM=PN ,∴点N 是点M 关于点P 的“旋垂点”;(3)过点T 作TA ⊥x 轴,如图所示:∴PQ=PT ,∵∠APT+∠APQ=90°,∠APQ+∠PQO=90°,∴∠APT=∠OQP ,∴△APT ≌△OQP (AAS ),∴AP=OQ ,令y=0时,则03kx =+,解得:3x k =-, 当x=0时,则3y =,∴AP=OQ=3,3OP k =-, ∴OA=AP-OP=33k +, ∴33m k=--, ∵21m -<≤-,0k <, ∴3231k -<--≤-, 解得:332k -<≤-. 【点睛】本题主要考查一次函数与几何综合及一元一次不等式组的解法,熟练掌握一次函数与几何综合及一元一次不等式组的解法是解题的关键.24.(1)()211212AOB S x y x y =-△;(2)存在,()3,3B . 【分析】(1)把点的坐标转化成对应线段的长,按照图形面积的分割方式,代入化简即可;(2)把坐标代入(1)中的结论中,计算,是否存在b 值,存在,说明有这样的点B ,反之,没有.【详解】(1)如图,过点A 作AM x ⊥轴于点M ,过点B 作BN x ⊥轴于点N ,则OAB OAM OBN AMNB S S S S =+-△△△梯形()()11122122111222x y y y x x x y =+⨯+-- 111211221222111111222222x y y x x y x y x y x y =+-+-- 12121122y x x y =-.(2)根据(1)的结论,得 ()1232b a ab +-=, 即3b =,点B 在第一象限, 3b ∴=,故存在这样的点B ,且为()3,3B .【点睛】本题考查了坐标系中图形面积的计算,通过分解坐标,把点的坐标转化为对应线段的长,适当分割图形是计算面积的关键.25.(1)99,1001;(2)111,666,161,616.【分析】(1)根据对称数的概念进行求解即可;(2)先根据K (B )=8,求出a ,b 的值,进而求出三位的“对称数”,即可得出结论.【详解】解:(1)最大的两位对称数是99;最小的三位对称数是1001.故答案为:99,1001;(2)∵一个三位的“对称数”B ,将其各个数位的数字分别2倍后取个位数字分别为:a ,b ,a ,∴a 可以取0,2,4,6,8;b 可以取0,2,4,6,8,又∵K (B )=8,∴a×b×a =8,即:a 2b=8,∴a =2,b =2,∴对称数B 为:111,666,161,616.【点睛】此题主要考查了新定义数字问题,用分类讨论的思想解决问题是解本题的关键. 26.(1)2.5;(2)2或2.5或1.5【分析】(1)根据格点C 在线段AB 右侧,且满足AC=BC ,画出周长最小的格点△ABC ,即可求出△ABC 的面积;(2)根据格点D 在线段AB 左侧,且满足AD ⊥BD ,分别画出格点△ABD ,即可得三角形的面积.【详解】解:(1)如图,△ABC即为所求;△ABC的面积为:1552⨯⨯=2.5,故答案为:2.5;(2)如图点D1,D2,D3即为所求;△ABD的面积分别为:12222⨯⨯=2,1552⨯⨯=2.5,1132⨯⨯=1.5,故答案为:2或2.5或1.5.【点睛】此题主要考查了格点图形的性质,把握格点图形的定义,正确画出格点三角形是解决问题的关键.。
期末检测题(时间:120分钟,满分:120分)一、选择题(每小题3分,共36分)1.不论取何值,下列分式的分母一定不为0的是( ) A .B.C.D .2.在实施“中小学生蛋奶工程”中,某配送公司按上级要求,每周向学校配送鸡蛋10000 个,鸡蛋用甲、乙两种不同规格的包装箱进行包装,若单独使用甲型包装箱比单独使用 乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,设每个甲型包装箱可装个鸡蛋,根据题意下列方程正确的是( ) A .B . C .D .3. 如果=k 成立,那么k 的值为( )A .1B .-2C .-2或1D .以上都不对4.下列生活现象中,属于相似变换的是( ) A .抽屉的拉开B .汽车刮雨器的运动C .荡秋千D .投影片的文字经投影变换到屏幕上5. 如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( ) A .16B .17C .18D .196. 如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )7. 下列各数中,可以用来证明“奇数是素数”是假命题的反例是( ) A.9 B.7 C.5 D.38.要调查城区九年级8000名学生了解禁毒知识的情况,下列调查方式最合适的是( ) A .在某校九年级选取50名女生 B .在某校九年级选取50名男生 C .在某校九年级选取50名学生D .在城区8000名九年级学生中随机选取50名学生9.某超市购进一批大米,大米的标准包装为每袋30kg ,售货员任选6袋进行了称重检验,超过标准重量的记作“+”,不足标准重量的记作“-”,他记录的结果是+0.5,-0.5,0,-0.5,-0.5,+1,那么这6袋大米重量的平均数和极差分别是( )第6题图第5题图A .0,1.5B .29.5,1C .30,1.5D .30.5,010. 已知一组数据含有20个数据:68,69,70,66,68,65,64,65,69,62,67,66,65,67,63,65,64,61,65,66,如果分成5组,那么64.566.5这一小组的频率为( ) A .0.04B .0.5C .0.45D .0.4 11. 等式=成立的条件是( )A.1x >B.1x <-C.≥D.≤12. 已知24n 是整数,则正整数n 的最小值是( )A.4B.5C.6D.2 二、填空题(每小题3分,共24分)13. 若干名游客要乘坐汽车,要求每辆汽车坐的人数相等,如果每辆汽车乘坐30人,那么有一人未能上车;如果少一辆汽车,那么,所有游客正好能平均分到各辆汽车上,已知每辆汽车最多容纳40人,则有游客人. 14. 化简的结果是.15.为了调查不同面额纸币上细菌数量与使用频率之间的关系,某中学研究性学习小组从银行、商店、农贸市场及医院收费处随机采集了8种面额纸币各30张,分别用无菌生理盐水 面额 2角 5角 1元 2元 5元 10元 20元 100元细菌总数(个/30张)126150 147400 381150 363100 98800 145500 27500 12250(1)计算出所有被采集的纸币平均每张的细菌个数约为(结果取整数); (2)由表中数据推断出面额为的纸币的使用频率较高,根据上面的推断和生活常识总结出:纸币上细菌越多,纸币的使用频率,看来,接触钱币以后要注意洗手噢! 16. 甲、乙两家汽车销售公司根据近几年的销售量,分别制作如下统计图:第16题图从2002~2006年,这两家公司中销售量增长较快的是公司.17.为备战2011年4月11日在绍兴举行的第三届全国皮划艇马拉松赛,甲、乙运动员进行了艰苦的训练,他们在相同条件下10次划艇成绩的平均数相同,方差分别为0.23,0.20,则成绩较为稳定的是(填“甲”或“乙”).18. 不通过计算,比较图中甲、乙两组数据的标准差.19. 已知a 、b 为两个连续的整数,且28a b <<,则a b +=.20. 已知a b 、为有理数,m n 、分别表示57-的整数部分和小数部分, 且21amn bn +=,则2a b +=.三、解答题(共60分)21. (6分)(1)计算|-2|+()0-()-1-(-1)2011;(2)化简.22.(6分)张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?23.(6分)如图,D 是△ABC 的边AB 上一点,连接CD ,若AD =2,BD =4,∠ACD =∠B ,求AC 的长.24.(6分)画出图(1)(2)中的位似中心.25.(6分) 判断下列命题是真命题还是假命题,如果是假命题,举一个反例. (1)两条直线被第三条直线所截,同位角相等; (2)如果>b ,那么c >bc ;第23题图 第24题图 第18题图(3)两个锐角的和是钝角.26.(6分)某校初一(7)班40名同学每10人一组,每人做10次抛掷两枚硬币的实验,想看看“出现两个正面”的频率是否会逐渐稳定下来,得到了下面40个实验结果.第一组学生学号101 102 103 104 105 106 107 108 109 110两个正面成功次数 1 2 3 3 3 3 3 6 3 3第二组学生学号111 112 113 114 115 116 117 118 119 120两个正面成功次数 1 1 3 2 3 4 2 3 3 3第三组学生学号121 122 123 124 125 126 127 128 129 130两个正面成功次数1]0 3 1 3 3 3 2 2 2第四组学生学号131 132 133 134 135 136 137 138 139 140两个正面成功次数 2 2 1 4 2 4 3 2 3 3(1)累计每个学生的实验结果,完成下面的“出现两个正面”的频数、频率随抛掷次数变化统计表.抛掷次数50 100 150 200 250 300 350 400出现两个正面的频数出现两个正面的频率(2)按(1)中的统计表绘制频率随着试验次数变化的折线图.27.(8分)某班参加体育测试,其中100m游泳项目的男、女生成绩的频数分布表如下:男生100m游泳成绩的频数分布表组别(min)1.552.55 2.553.55 3.554.55 4.555.55频数 2 12 5 1女生100m游泳成绩的频数分布表组别(min)1.552.55 2.553.55 3.554.55 4.555.55 5.556.55频数 1 6 8 4 1(1)在同一坐标系中画出男、女生100m 游泳成绩的频数分布折线图.(2)男生成绩小于3.55min 为合格,女生成绩小于4.55m in 为合格.问男、女生该项成绩合格的频数、频率分别为多少?(3)根据所画的频数分布折线图,分析比较男、女生该项目成绩的差异(至少说出2项). 28.(8分)为了比较市场上甲、乙两种电子钟每日走时误差的情况,从这两种电子钟中,各随机抽取10台进行测试,两种电子钟走时误差的数据如下表(单位:秒): 编号类型 一 二 三 四 五 六 七 八九 十 甲种电子钟 1 -3 -4 4 2 -2 2 -1 -1 2 乙种电子钟4-3-12-21-22-21(1)计算甲、乙两种电子钟走时误差的平均数. (2)计算甲、乙两种电子钟走时误差的方差.(3)根据经验,走时稳定性较好的电子钟质量更优.若两种类型的电子钟价格相同,请问:你会买哪种电子钟?为什么? 29.(8分) 阅读下面问题:12)12)(12()12(1211-=-+-⨯=+;();23)23)(23(231231-=-+-⨯=+()25)25)(25(251251-=-+-⨯=+.试求:(1)671+的值;(2)nn ++11(n 为正整数)的值.(3)计算:122334989999100+++⋅⋅⋅+++++++.第27题图期末检测题参考答案1. D 解析:A、2≥0,当=0时,存在分母为0的情况;B、|+1|≥0,=-1时,|+1|=0,分母为0;C、当=-1时,+1=0,分母为0;D、由于2≥0,所以2+1>0,因此不论取何值,分母都不为0.故选D.2. B 解析:设每个甲型包装箱可装个鸡蛋,则-=10.故选B.3. C 解析:当≠0时,根据比例的等比性质,得k ==1;当时,即,则k==-2,故选C.4. D 解析:A、抽屉的拉开,属于平移变换,不是相似变换,故错误;B、汽车刮雨器的运动,属于旋转变换,不是相似变换,故错误;C、荡秋千,不是相似变换,故错误;D、投影片的文字经投影变换到屏幕上,是图形形状相同,但大小不一定相同的变换,符合相似变换定义,故正确.故选D.5.B 解析:根据等腰直角三角形的性质知,AC =BC,BC=CE =CD,∴AC=2CD,CD ==2,∴EC2=22+22,即EC =2.第5题答图∴S1的面积为EC2=2×2=8.根据等腰直角三角形的性质知S2的边长为3,∴S2的面积为3×3=9,∴S1+S2=8+9=17.故选B.6. A 解析:∵小正方形的边长均为1,∴△ABC三边分别为2,,.同理: A 中各边长分别为:,1,;B中各边长分别为:1、2,;C 中各边长分别为:,3,;D中各边长分别为:2,,.∵只有A项中的三边与已知三角形的三边对应成比例,故选A.7. A 解析:A正确,因为虽然9是奇数,但9能被1,3,9整除;B不正确,因为7既是奇数又是素数;C不正确,因为5既是奇数又是素数;D不正确,因为虽然是奇数,但是1不是素数.故选A.8. D 解析:要调查城区九年级8000名学生了解禁毒知识的情况,就对所有学生进行一次全面的调查,费大量的人力物力是得不偿失的,采取抽样调查即可.考虑到抽样的全面性,应在城区8000名九年级学生中随机选取50名学生.故选D.9. C 解析:平均数:,故选C.10. D 解析:根据题意,发现数据中在64.566.5之间的有8个数据,故64.566.5这一小组的频率为=0.4.故选D.11. C 解析:由题意知,≥≥,所以≥12. C 解析:∵,∴当=6时, =6,∴原式=2=12,∴的最小值为6.故选C.13. 961 解析:设有辆汽车,少一辆汽车后每辆坐人,根据题意列方程得,30+1=(-1),整理得==30+.∵为大于30而不大于40的整数,∴-1能整除31,∴=2或=32,当=2时,=61(不合题意,舍去);当=32时,=31.因此游客人数为30×32+1=961(人).14. 1 解析:===1.15. 54241元越高解析:(1)(126150+147400++12250)÷(30×8)≈5424个;(2)面额为1元的纸币的使用频率较高,纸币上细菌越多,纸币的使用频率越高.16. 甲解析:从折线统计图中可以看出:甲公司2006年的销售量约为510辆,2002年约为100辆,则从2002~2006年甲公司增长了510-100=410(辆);乙公司2006年的销售量为400辆,2002年的销售量为100辆,则从2002~2006年,乙公司中销售量增长了400-100=300(辆).则甲公司销售量增长的较快.17. 乙解析:由于s2甲>s2乙,则成绩较稳定的是乙.18.s甲>s乙解析:由图可知甲的方差大于乙的方差,所以甲的标准差也一定大于乙的标准差.19. 1120. 2.5 解析:因为所以,,即,所以,,所以,所以.21.分析:(1)分别根据零指数幂,负指数幂的运算法则计算,然后根据实数的运算法则求得计算结果.(2)首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简.解:(1)|-2|+(-1)0-()-1-(-1)2011=2+1-3+1=1;(2)=÷==.22.分析:设原计划每天铺设管道米,根据题意可列方程求解.解:设原计划每天铺设管道米,则,解得=10(米),经检验,=10是原方程的解.答:原计划每天铺设管道10米.23.分析:可证明△ACD∽△ABC,则,即得出AC2=AD•AB,从而得出AC的长.解:在△ABC和△ACD中,∵∠ACD=∠B,∠A=∠A,∴△ABC∽△ACD,∴.即AC2=AD AB=AD(AD+BD)=2×6=12,∴AC=2.24.分析:作过两对对应点的两条直线,两条直线的交点就是位似中心.解:点O就是所求的位似中心.25.分析:分析是否为真命题,需要分别分析各题设是否能推出结论,如果能推出结论就为真命题,如果不能推出结论就为假命题.解:(1)假命题,两直线不平行时不成立,可通过画图说明;(2)假命题,当c≤0时不成立,如3>2,但3×0=2×0;(3)假命题,如=20°,=50°,则=70°,不是钝角.26.分析:(1)首先根据频数的概念正确统计,再进一步根据频率=频数÷总数进行计算;(2)根据表格中的频率,正确描点绘制频率分布折线统计图.解:抛掷次数50 100 150 200 250 300 350 400出现两个正面的频数12 30 40 55 63 75 86 101出现两个正面的频率0.24 0.3 0.27 0.275 0.252 0.25 0.246 0.252 5(2)如图所示.第26题答图27. 分析:(1)根据频数分布表正确描点连线;(2)根据频数分布表计算符合条件的频数和,再进一步计算频率; (3)能够根据统计图直观地反映信息. 解:(1)男、女生100m 游泳成绩的频数分布折线图:(2)男生该项目成绩合格的频数为14,频率为0.7; 女生该项目成绩合格的频数为15,频率为0.75.(3)男生总体成绩好于女生,女生的频数变化较男生平缓等. 28.分析:根据平均数与方差的计算公式易得(1)(2)的答案,再根据(2)的计算结果进行判断.解:(1)甲种电子钟走时误差的平均数是:(1-3-4+4+2-2+2-1-1+2)=0;乙种电子钟走时误差的平均数是:(4-3-1+2-2+1-2+2-2+1)=0.∴两种电子钟走时误差的平均数都是0秒.(2)s 2甲= [(1-0)2+(-3-0)2+…+(2-0)2]=×60=6;s 2乙= [(4-0)2+(-3-0)2+…+(1-0)2]=×48=4.8.∴ 甲乙两种电子钟走时误差的方差分别是6和4.8.(3)我会买乙种电子钟,因为平均水平相同,且甲的方差比乙的大,说明乙的稳定性更好,故乙种电子钟的质量更优. 29. 解:(1)671+1(76)(76)(76)⨯-=+-=76-.第27题答图(2)1(1)1 1(1)(1)n nn nn n n n n n⨯+-==+-+++++-.(3)122334989999100+++⋅⋅⋅+++++++=11。
鲁教版八年级上册数学期末试卷
一.选择题
1.下列式子中是分式的是()
A. B.C.D.
2.下列各式由左到右的变形中,属于分解因式的是()
A.a(m+n)=am+an B.a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2
C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+6x=(x+4)(x﹣4)+6x
3.多项式m2﹣m与多项式2m2﹣4m+2的公因式是()
A.m﹣1 B.m+1 C.m2﹣1 D.(m﹣1)2
4.当a,b互为相反数时,代数式a2+ab﹣2的值为()
A.2 B.0 C.﹣2 D.﹣1
5.下列多项式中,能用完全平方公式分解因式的是()
A.﹣x2﹢1 B.﹣x2+2x﹣1 C.x2﹣2x﹣2 D.x2﹣2x
6.因式分解3y2﹣6y+3,结果正确的是()
A.3(y﹣1)2B.3(y2﹣2y+1)C.(3y﹣3)2D.
7.下列方程是分式方程的是()
A.(a,b为常数)B.x=c(c为常数)
C.x=5(b为常数)D.
8.计算﹣的结果是()
A.B.C.D.
9.为了满足顾客的需求,某商场将5kg奶糖,3kg酥心糖和2kg水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖为每千克20元,水果糖为每千克15元,混合后什锦糖的售价应为每千克()
A.25元B.28.5元 C.29元D.34.5元
10.截至2010年“费尔兹奖”得主中最年轻的8位数学家获奖时的年龄分别为29,28,29,31,31,31,29,31,则由年龄组成的这组数据的中位数是()
A.28 B.29 C.30 D.31
11.数据21,12,18,16,20,21的众数和中位数分别是()
A.21和19 B.21和17 C.20和19 D.20和18
12.若数据10,9,a,12,9的平均数是10,则这组数据的方差是()
A.1 B.1.2 C.0.9 D.1.4
二.填空题
13.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD 的周长为.
14.如图,点B,C,D在同一条直线上,△ABC和△ECD都是等边三角形,△EBC可以看作是由△DAC绕点C逆时针旋转°得到的.
15.给出以下4个图形:①平行四边形,②正方形,③等边三角形,④圆.其中,既是轴对称图形又是中心对称图形的是.(填写序号)
16.如图,点E,F分别在平行四边形ABCD的边BC,AD上,AC,EF交于点O,请你添加一个条件(只添一个即可),使四边形AECF是平行四边形,你所添加的条件是.
17.如图所示,DE是△ABC的中位线,若BC=8,则DE= .
三.解答题
18.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数和内角和.
19.因式分解:﹣3a 3b+6a 2b 2﹣3ab 3.
20.(1)计算:(a ﹣b )(a 2+ab+b 2)
(2)利用所学知识以及(1)所得等式,化简代数式÷.
21.先化简,再求值:÷﹣,其中x=.
22.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.求每件甲种、乙种玩具的进价分别是多少元.
23.张明、李成两位同学初二学年10次数学单元自我检测的成绩(成绩均为整数,且个位数为0)分别如下图所示:
利用图中提供的信息,解答下列问题.
(1)完成下表:
姓名 平均
成绩
中位数 众数 方差 张明 80 80
李成260
(2)如果将90分以上(含90分)的成绩视为优秀,则优秀率高的同学是;
(3)根据图表信息,请你对这两位同学各提一条不超过20个字的学习建议.
24.如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.求证:△AGE≌△BGF.。