通径分析
- 格式:doc
- 大小:23.00 KB
- 文档页数:3
通径分析是什么
通径分析的基本原理是美国学者赖特(S·Wright)于1921年创立的。
通径分析是指利用通径系数分析变量间相关关系的方法。
通径分析是进行相关系数分解的一种统计方法。
它的意义不仅在于揭示了在多个自变量x1,x2,…,xm,y的相关分析中,xi对y的直接影响力和间接影响力,而且还可以在x1,x2,…,xm,y间的复杂相关关系中,从某个自变量与其他自变量的“协调”关系中得到对y的最佳影响的路径信息,即从复杂的自变量相关网中,得到某个自变量决定y的最佳路径,具有决策的意义。
现通过实例说明通径分析的方法与步骤,并进一步了解通径系数的意义和应用。
通径分析的方法
1.世代的通径分析
亲本与子代的关系是通过配子建立起来的。
遗传学已证明,双亲对子代的影响是相等的,所以一个配子代的通径系数就是1/2。
在随机交配的条件下,上下代个体间的通径系数也等于l/2。
知道了这个关系,我们就可以求出任何亲属间的相关系数了。
2.多个变量间的通径分析
在一般情况下,我们参考多个变量之间的相互关系时,如果它们不是世代关系,那么每个通径的系数并不等于1/2。
这时,就需要先通过表型测量,求出各个变量之间的相关系数,然后再求通径系数。
通径分析的意义
可以用通径系数绝对值的大小,直接比较各自变量在回归方程中的重要作用,自变量在回归方程中的重要作用,这对于一个多变量的系统中抓住关键因子,变量
的系统中抓住关键因子,改变依变量的反映量是很有实用价值的。
在多变量的研究中,通径量是很有实用价值的。
在多变量的研究中,分析比相关分析更加全面,更加细腻。
分析比相关分析更加全面,更加细腻。
第3章 通径分析1、基本概念通径分析(Path Analysis )是研究变量间相互关系、自变量对因变量作用方式、程度的多元统计分析技术。
在科学研究中,自变量间的关系往往比较复杂,有些自变量间的关系为相关关系,而有些自变量间的关系却是因果关系。
一般地,我们称受其他变量影响的变量为内生变量,而影响其他变量的变量为外生变量,显然,因变量y 为内生变量,各自变量都以自己不同的方式影响因变量y 。
一般而言,通径分析以多元线性回归分析为基础,通过对标准化变量的偏回归系数进一步分析、分解,对各自变量的作用方式、途径给出了一个科学、合理、定量的解释。
2、基本思想、原理通径图:通径分析借助几何图形来表达变量间的关系。
如设x 1,x 2,x 3都是y 的原因因素,由逐步回归求得的方程中仅含x 1,x 2,不含x 3。
但通过分析又知x 3与x 1间具有较强的因果关系,x 3影响x 1,即x 3→x1,从而它们影响y 的方式可用下图表示:图中,P y.1表示固定其他自变量时,x 1直接作用于y 的大小,称为x 1对y的通径系数,P y.1的定义就是x 1关于y 的标准偏回归系数(b’1);类似可定义P y.2。
P 1.3表示x3直接作用于x 1的大小,定义为x 3关于x1的标准偏回归系数(b’’1)。
r 23表示x 2、x 3间的相关系数,x 3可通过影响x 2间接影响因变量y ,其大小可由yx 2x 1x 3P y.1 P y.2r 23 P 13r 23P y.2衡量,称r 23P y.2为x 3通过x 2对y 的间接作用大小;x 3亦可通过x 1而作用于y ,其作用大小可用P 1.3P y.1衡量,称P 1.3P y.1为x 3,通过x 1对y 的间接作用大小。
一般地,设x i ,x j 为任意两个自变量,它们对y 的作用定义如下:x i 对于y 的直接作用大小(x i 对y 的通径系数)=P y.i =标准偏回归系数(b’i);x i 通过x j 而间接作用于y 的大小(x i 通过x j 对y 间接通径系数)=r ij P y.j 。
通径分析1. 简介通径分析(Path Analysis),又称偏路径分析,是结构方程模型(Structural Equation Modeling,简称SEM)的一种常用方法。
它可以用于探索与预测变量关系的复杂性,揭示变量之间的直接和间接影响,帮助研究者建立更为综合的模型。
通径分析可以用于解决许多问题,例如确定变量之间的因果关系、检验理论模型、验证是否存在中介或调节效应等。
它能够帮助研究者更好地理解变量之间的相互作用、潜在机制以及模型的适应性。
2. 通径分析的基本原理通径分析是基于路径系数的统计方法,它使用指数函数来表示变量之间的因果关系。
通径系数表示一个变量对另一个变量的直接影响。
这些路径系数可以通过最大似然估计方法进行计算,并进行统计检验。
在通径分析中,研究者需要确定调整变量,即控制变量,以消除潜在的共变性。
通过控制这些变量,研究者可以更准确地评估变量之间的因果关系。
3. 通径分析的步骤通径分析通常包括以下步骤:步骤1: 确定研究问题和变量首先,研究者需要明确研究问题,并确定相关的变量。
这些变量可以是观察变量或潜变量。
步骤2: 建立模型研究者需要根据研究问题建立适当的结构方程模型。
模型可以包含直接效应、间接效应、中介效应、调节效应等。
步骤3: 收集数据研究者需要收集与模型中的变量相关的数据。
数据收集可以通过问卷调查、实验或观察等方法进行。
步骤4: 估计路径系数使用最大似然估计方法,研究者可以计算路径系数,并对其进行统计检验。
该方法可以提供关于变量之间关系的定量信息。
步骤5: 分析结果研究者可以根据路径系数和统计检验结果来解释变量之间的关系,并对模型进行评估。
通过比较实际观察值和模型估计值之间的差异,研究者可以评估模型的适应性。
4. 通径分析的优势和局限性通径分析具有以下优势:•可以同时考虑多个变量之间的复杂关系,揭示变量之间的直接和间接影响。
•可以提供关于变量之间关系的定量信息,有助于进一步理解研究问题。
第二章通径分析 (Path Analysis)在科学研究中常常要研究相关变量间的线性关系研究二个相关变量间的线性关系时可采用直线回归分析与相关分析。
在研究多个相关变量间的线性关系时:如研究y(单株产量)与x1(每株穗数)、x2(每穗粒数)、x3(粒重)的关系,可采用多元线性回归分析与偏相关分析。
还可以采用本章新介绍的通径分析。
通径分析具有精确、直观的优点,在遗传育种学中,在分析相关变量关系中,有着十分重要的应用。
第一节通径系数与决定系数一、通径系数的定义(一) 通径、相关线与通径图设相关变量:y, x1, x2, 其中y—后果(依变量);x1、x2—原因(自变量)。
若x1、x2相互独立(r12=0),可图示为x1 父本y ,例如子代父、母无亲缘关系x2 母本若x1、x2彼此相关 (r12≠0),可图示为x1体长y x3例如黄牛体重饲料x2胸围用x1 x2代替x1 x2 x3,改画为x1yx2通径——箭形图中的单箭头“ ”,表示变量间呈因果关系,方向由原因到结果。
相关线——箭形图中的双箭头“ ”,表示变量间呈平行关系。
一条相关线相当于两条尾端相联的通径。
通径图——表示相关变量间呈因果关系或平行关系的箭形图。
(二) 通径系数与决定系数通过作通径图,形象直观地表达了相关变量间的关系,但这是定性地表达。
仅定性表还不?,还须进一步用数量表示因果关系中原因对结果影响的相对重要程度与性质,平行关系中变量间相关的相对重复程度与性质。
换句话说还须用数量表示“通径”与“相关线”的相对重要程度和性质,也就是将“通径”、“相关线”、“通径图”数量化。
表示“通径”相对重要程度和性质的数量叫通径系数。
表示“相关线”相对重要程度和性质的数量叫相关系数生物统计学已给出了计算相关系数的方法,即:若二相关变量x1、x2有几组观测值,则x1与x2的相关系数r12的计算公式为:下面给出通径系数的确切定义与数学表达式。
设y与x1、x2间存在线性关系 x1回归方程: =b0+b1x1+b2x2 y或 y=b0+b1x1+b2x2+e 2-1 x2e (图2-1)其中。
通径分析简介通径分析(Path Analysis)是一种统计方法,用于研究多个变量之间的因果关系。
它基于结构方程模型,通过估计观测变量和潜在变量之间的关系,来探究变量之间的直接和间接影响。
方法通径分析可以被视为回归分析的推广。
通过构建一个结构方程模型,在该模型中,变量之间的可能因果关系由路径表示。
每个路径都代表一个直接影响,而其他变量可以通过这些路径的多次间接影响来相互影响。
在进行通径分析时,必须首先确定变量之间的因果关系假设。
然后,可以使用最小二乘法或最大似然法来估计路径系数。
最后,可以进行统计检验以评估模型的拟合程度和路径系数的显著性。
应用领域通径分析在社会科学、教育、心理学等领域中得到广泛应用。
它可以用于研究教育政策对学生成绩的影响,分析心理因素对健康状况的作用,或者评估社会因素对人们意见和态度的影响。
通径分析还可以用于研究营销策略对消费者购买决策的影响,分析企业发展过程中各因素之间的关系,或者评估投资组合中各项指标对绩效的影响。
优势和局限通径分析具有以下优势:1.通过考虑多个因素之间的直接和间接影响,可以提供更全面的因果解释。
2.允许检验路径系数的统计显著性,从而增强分析的可信度。
3.可以对模型进行拟合度检验,评估模型是否与现实数据一致。
然而,通径分析也存在一些局限:1.通径分析基于一系列假设,包括线性关系和可观测的数据。
2.需要大量的数据以确保模型的稳定性和准确性。
3.分析结果只能提供相关性而非因果性的证据,因为观察数据无法确定因果关系的存在。
实例分析为了更好地理解通径分析的应用,我们举一个教育领域的实例。
假设我们想研究教师培训对学生学业成绩的影响。
我们收集了以下变量的数据:教师培训时间、学生参与度、学生学业成绩。
我们建立以下结构方程模型:教师培训时间 -> 学生参与度 -> 学生学业成绩通过进行通径分析,我们可以估计教师培训时间对学生成绩的直接影响,以及通过学生参与度间接影响。
通径分析
1 简介
通径分析(path analysis)可用于分析多个自变量与因变量之间的线性关系,是回归分析的拓展,可以处理较为复杂的变量关系。
如当自变量数目比较多,且自变量间相互关系比较复杂(如:有些自变量间的关系是相关关系,有些自变量间则可能是因果关系)或者某些自变量是通过其他的自变量间接地对应变量产生影响,这时可以采用通径分析。
2 基本概念
2.1 通径模型(path model):
通径模型是由一组线性方程组成的,反映自变量、中间变量、潜变量和应变量之间相互关系的模型,是以多元线性回归方程为基础的模型。
2.2 通径图(path graph):
通径图(如图1)可以直观的表现各个变量之间的相互关系。
通径图中的单箭头线称为直接通径(如A到D),简称通径(path),表示因果关系,方向由原因指向结果。
双箭头线称为相关线(correlation line),表示变量间互为因果,是平行关系(如A与B)。
<?xml:namespace prefix = v ns = "urn:schemas-microsoft-com:vml" />
A B C
D
е
图1 通径图
其中е为误差项。
2.3 外生变量和内生变量:
通径分析中只受到模型之外的其他因素影响的变量称为外生变量,如图1中的A、B、C、е,通径图中没有箭头指向它们。
外生变量之间如果有相关关系,则用双箭头线表示。
通径分析中受到模型中某些变量影响的变量称为内生变量,如图1中的D,通径图中有朝内的箭头指向它们。
2.4 通径系数(path coefficient):
通径系数是是用来表示相关变量因果关系的统计量,是标准化的偏回归系数,也称作通径权重。
通径系数一般用最小二乘法法(OLS)或极大似然估计法(MLE) 来估计。
<?xml:namespace prefix = st1 ns = "urn:schemas-microsoft-com:office:smarttags" />2.4.1 通径系数的数学表达式
如果我们估计的线性回归方程为:
= + + (1)
或
= + + +e(e为残差)(2)
由于和带有量纲,我们不能通过、来比较对的影响大小。
如果要比较和对的影响,需要消除量纲的影响,需要将、及e标准化。
由= + + +e可得:
= + + (3)
公式(2)与公式(3)相减得:
- = - )+ (- )+e (4)
公式(4)可变换为下式:
= · + · + ·e(5)
公式(5)中、、、分别表示、及e的标准差。
和分别为自变量、的标准化偏回归系数。
为除了自变量以外的其他因素对应变量的影响大小。
如果我们以、、和分别表示、和e到的通径系数,那么:
= , = , =
当我们估计的线性回归方程有多个自变量,且自变量间两两相关时,各自变量及残差到应变量的通径系数的数学表达式同上。
2.4.2 通径系数的性质:
(1)通径系数具有偏回归系数的性质。
它是变量标准化后的偏回归系数,能够表示变量间的因果关系,故仍具有偏回归系数的性质。
(2)通径系数具有相关系数的性质。
它是一个不带单位的相对数,因而又具有相关系
数的性质,是具有方向性的相关系数,能表示原因与结果(自变量与依变量)之间的关系,它是介于回归系数和相关系数之间的一种统计量,可用于各种性状间的相关分析。
(3)通径系数是一个不带单位的相对数。
可以用它来估计自变量对应变量直接影响效应的大小,比较其相对重要性。
(4)利用通径系数分析,可以帮助我们建立“最优”多元回归方程。
2.5 决定系数(Determination coefficient)
通径系数的平方称为决定系数,表示自变量或误差能够解释应变量总变异的程度。
3 通径分析的显著性检验
通径分析的显著性检验包括以下四项:
(1)回归方程显著性检验:采用F检验法;
(2)通径系数显著性检验:采用F检验法或t检验法;
(3)通径系数差异显著性检验:采用F检验法或t检验法;
(4)两次通径分析相应通径系数显著性检验:采用F检验法或t检验法。
一般情况下,第(3)种检验和第(4)种检验在一般的多元线性回归分析中无法实现,因为不同偏回归系数带有不同量纲,但是在通径分析中,这两种检验可以实现。