第12章-多重线性回归分析
- 格式:ppt
- 大小:827.00 KB
- 文档页数:68
统计学第十二章 多元线性回归一. 选择题1. 在多元线性回归分析中,t 检验是用来检验( ) A 总体线性关系的显著性 B.各回归系数的显著性 C.样本线性关系的显著性 D .H 0:β1=β2=…βk =02.在多元线性回归模型中,若自变量x i 对因变量y 的影响不显著,那么它的回归系数 βi 的取值( )A.可能为0B.可能为1C.可能小于0 D 可能大于13.在多元线性回归方程 y i ˆ=βˆ0+x 11ˆβ+x 22ˆβ+…+xkkβˆ中,回归系数βˆi表示( ) A.自变量x i 变动1个单位时,因变量y 的平均变动额为βˆiB.其他变量不变的条件下,自变量x i 变动1个单位时,因变量y的平均变动额为βˆiC.其他变量不变的条件下,自变量x i 变动1个单位时,因变量y的变动总额为βˆiD.因变量y 变动1个单位时,因变量x i 的变动总额为βˆi4.设自变量的个数为5个,样本容量为20。
在多元回归分析中,估计标准误差的自由度为( )A.20B.15C.14D.18 5.在多元回归分析中,通常需要计算调整的多重判定系数R a2,这样可以避免的值()A. 由于模型中自变量个数的增加而越来越接近1B. 由于模型中自变量个数的增加而越来越接近0C. 由于模型中样本容量的增加而越来越接近0D. 由于模型中样本容量的增加而越来越接近16.在多元线性回归分析中,如果F检验表明线性关系显著,则意味着()A.在多个变量中至少有一个自变量与因变量之间的线性关系显著B.所有的自变量与因变量之间的线性关系都显著C.在多个变量中至少有一个自变量与因变量之间的线性关系不显著D.所有的自变量与因变量之间的线性关系都不显著7.在多元线性回归分析中,如果t检验表明回归系数βi不显著,则意味着()A.整个回归方程的线性关系不显著B.整个回归方程的线性关系显著C.自变量x i与因变量之间的线性关系不显著D.自变量x i与因变量之间的线性关系显著8.设多元线性回归方程为Yˆ=βˆ0+x11ˆβ+x22ˆβ+…+xkkβˆ,若自变量x i的回归系数βˆi的取值接近0,这表明()A.因变量y对自变量ix的影响不显著B.因变量y对自变量ix的影响显著C.自变量ix对因变量y的影响不显著D.自变量x对因变量y的影响显著i9.一家出租汽车公司为确定合理的管理费用,需要研究出租车司机每天的收入(元)与他的行驶时间(小时)、行驶的里程(公里)之间的关系,为此随机调查了20位出租车司机,根据每天的收入(y)、行驶时间(x1)和行驶的里程(x2)的有关数据进行回归,得到下面的有关结果(a=0.05)根据上表计算的判定系数为()A. 0.9229B. 1.1483C. 0.3852D. 0.851610. 一家出租汽车公司为确定合理的管理费用,需要研究出租车四级每天的收入(元)与他的行驶时间(小时)、行驶的里程(公里)之间的关系,为此随机调查了20位出租车司机,根据每天的收入(y)、行驶时间(x1)和行驶的里程(x2)的有关数据进行回归,得到下面的有关结果(α=0.05)根据上表计算的估计标准误差为()A. 306.18B. 17.50C. 16.13D. 41.9311. 一家出租汽车公司为确定合理的管理费用,需要研究出租车司机每天的收入(元)与他的行驶时间(小时)、行驶的里程(公里)之间的关系,为此随机调查了20位出租车司机,根据每天的收入(y)、行驶时间(x1)和行驶的里程(x2)的有关数据进行回归,得到下面的有关结果(α=0.05)根据上表计算的用于检验线性关系的统计量F=()A. 306.18B. 48.80C. 5.74D. 41.9312.一家产品销售公司在30个地区设有销售分公司。
多因素线性回归分析
在多因素线性回归中,有一个因变量(也称为响应变量)和两个或更多的自变量(也称为解释变量),它们是独立的变量。
回归模型基于以下公式:
Y=β0+β1X1+β2X2+.......+βnXn+ε
其中,Y是因变量,X1,X2......Xn是自变量,β0,β1,
β2......βn是回归系数,ε是误差项。
回归系数表示自变量在因变量上的影响。
误差项是不可解释的随机变量,表示未被模型解释的部分。
进行多因素线性回归分析需要注意以下几个步骤:
1.数据收集:收集包括因变量和自变量的数据。
2.数据准备:对数据进行清洗和处理,处理缺失值、异常值等。
3.模型构建:选择合适的自变量,并进行变量转换(如对数变换、归一化等)。
4.模型拟合:使用统计软件进行模型拟合,得到回归系数的估计值。
5.模型诊断:检查模型的拟合程度,判断残差是否符合正态分布,是否存在异方差等。
6.假设检验:对回归系数进行显著性检验,判断自变量对因变量的影响是否统计显著。
7.解释模型:对回归系数进行解释,判断自变量对因变量的影响方向和程度。
然而,多因素线性回归分析也存在一些局限性。
比如,它基于线性关系的假设,无法捕捉非线性的影响关系;另外,如果所选择的自变量存在多重共线性,模型的解释效果可能会受到影响。
因此,在进行多因素线性回归分析时,需要谨慎选择自变量、处理数据,并进行适当的模型诊断和假设检验。
只有在满足前提条件和假设的情况下,才能对回归系数和因变量之间的关系进行合理解释和预测。
多重线性回归分析方法多重线性回归分析是一种常用的统计方法,用于揭示自变量对因变量的影响。
它可以帮助我们理解多个自变量如何共同影响因变量,并通过建立一个数学模型来预测因变量的值。
本文将介绍多重线性回归分析的基本原理、步骤以及常见的模型评估方法。
一、基本原理多重线性回归分析是建立在线性回归模型的基础上的。
在简单线性回归模型中,只有一个自变量可以解释因变量的变化;而在多重线性回归模型中,有多个自变量同时对因变量产生影响。
其模型可表示为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y代表因变量,X1, X2, ..., Xn代表自变量,β0, β1, β2, ..., βn代表回归系数,ε代表误差项。
二、分析步骤进行多重线性回归分析时,通常可以遵循以下步骤:1. 收集数据:首先,需要收集相关的自变量和因变量的数据,并确保数据的准确性和完整性。
2. 建立模型:根据收集到的数据,可以利用统计软件或编程工具建立多重线性回归模型。
确保选择合适的自变量,并对数据进行预处理,如去除异常值、处理缺失值等。
3. 模型拟合:利用最小二乘法或其他拟合方法,对模型进行拟合,找到最优的回归系数。
4. 模型评估:通过各种统计指标来评估模型的拟合效果,比如决定系数(R^2)、调整决定系数、F统计量等。
这些指标可以帮助我们判断模型的可靠性和解释力。
5. 解释结果:根据回归系数的正负和大小,以及显著性水平,解释不同自变量对因变量的影响。
同时,可以进行预测分析,根据模型的结果预测未来的因变量值。
三、模型评估方法在多重线性回归分析中,有多种方法可评估模型的拟合效果。
以下是几种常见的模型评估方法:1. 决定系数(R^2):决定系数是用来衡量模型拟合数据的程度,取值范围为0到1。
其值越接近1,表示模型能够较好地解释数据的变异。
2. 调整决定系数:调整决定系数是在决定系数的基础上,考虑自变量的数量和样本量后进行修正。
第十二章相关与回归分析一、填空1. 如果两变量的相关系数为0,说明这两变量之间__ 。
2.相关关系按方向不同,可分为_____ 和________ 。
3. 相关关系按相关变量的多少,分为和复相关。
4.在数量上表现为现象依存关系的两个变量,通常称为自变量和因变量。
自变量是作为(变化根据)的变量,因变量是随(自变量)的变化而发生相应变化的变量。
5.对于表现为因果关系的相关关系来说,自变量一般都是确定性变量,因变量则一般是(随机性)变量。
6.变量间的相关程度,可以用不知Y与 X有关系时预测 Y的全部误差 E1,减去知道 Y与 X有关系时预测Y的联系误差E2,再将其化为比例来度量,这就是(削减误差比例)。
7.依据数理统计原理,在样本容量较大的情况下,可以作出以下两个1)实际观察值 Y 围绕每个估计值 Y c是服假定:从();(2)分布中围绕每个可能的 Y c 值的()是相同的。
7. 已知:工资(元)倚劳动生产率(千元)的回归方程为yc 10 80x,因此,当劳动生产率每增长 1 千元,工资就平均增加 80 元。
8.根据资料,分析现象之间是否存在相关关系,其表现形式或类型如何,并对具有相关关系的现象之间数量变化的议案关系进行测定,即建立一个相关的数学表达式,称为(回归方程),并据以进行估计和预测。
这种分析方法,通常又称为(回归分析)。
9.积差系数 r 是(协方差)与 X 和 Y 的标准差的乘积之比。
二、单项选择1.欲以图形显示两变量 X 和 Y 的关系,最好创建( D )。
A 直方图 B 圆形图 C 柱形图 D 散点图2.在相关分析中,对两个变量的要求是(A )。
A 都是随机变量B 都不是随机变量C 其中一个是随机变量,一个是常数D 都是常数3.相关关系的种类按其涉及变量多少可分为()。
A. 正相关和负相关B. 单相关和复相关C. 线性相关和非线性相关D. 不相关、不完全相关、完全相关4.关于相关系数,下面不正确的描述是(B )。
第11章 一元线性回归分析欧阳光明(2021.03.07)11.1(1)散点图(略),产量与生产费用之间正的线性相关关系。
(2)920232.0=r(3) 检验统计量2281.24222.142=>=αt t ,拒绝原假设,相关系数显著。
11.2(1)散点图(略)。
11.3 (1)0ˆβ表示当0=x 时y 的期望值。
(2)1ˆβ表示x 每变动一个单位y 平均下降0.5个单位。
11.4 (1)%902=R(2)1=e s11.5 一家物流公司的管理人员想研究货物的运输距离和运输时间的关系,为此,他抽出了公司最近10个卡车运货记录的随机样本,得到运送距离要求:(1)绘制运送距离和运送时间的散点图,判断二者之间的关系形态: (2)计算线性相关系数,说明两个变量之间的关系强度。
(3)利用最小二乘法求出估计的回归方程,并解释回归系数的实际意义。
解:(1)可能存在线性关系。
(2)x 运送距离(km )y 运送时间(天) x 运送距离(km )Pearson 相关性 1.949(**) 显著性(双侧)0.000 N10 10 y 运送时间(天)Pearson 相关性 .949(**) 1显著性(双侧) 0.000 N**. 在 .01 水平(双侧)上显著相关。
有很强的线性关系。
(3)模型非标准化系数标准化系数t 显著性B标准误Beta1(常量) 0.118 0.355 0.333 0.748 x 运送距离(km )a. 因变量: y 运送时间(天)回归系数的含义:每公里增加0.004天。
11.6 下面是7个地区2000年的人均国内生产总值(GDP )和人均消费水要求:(1)人均GDP 作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系形态。
(2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。
(3)利用最小二乘法求出估计的回归方程,并解释回归系数的实际意义。
(4)计算判定系数,并解释其意义。
练习题12.1 为研究我国民航客运量的变化趋势及其成因,试以民航客运量(万人)作因变量(y),以国民收入(x1,亿元)、消费额(x2,亿元)、铁路客运量(x3,万人)、民航航线里程(x4,万公里)、来华旅游入境人数(x5,万人)为自变量,根据1978-1993年统计数据采用不同方法进行多重线性回归分析,并比较其不同点。
数据文件civil.sav。
12.2 某医院研究31例正常人的肺活量与一些锻炼测试的数据,目的是为了在锻炼测试数据基础上求出拟合回归方程,从而对人体肺活量作适应性预测。
试建立多重线性回归方程并进行逐步回归分析,数据文件vc.sav:x1-年龄(岁)、x2-体重(kg)、x3-跑2km路程所用的时间(min)、x4-静止时脉搏跳动次数、x5-跑步时脉搏跳动次数、x6-跑步时最大脉搏跳动次数、y-每公斤体重每分钟氧气吸入率(%)。
12.3 某研究所为研究儿童的智力状况,调查16所小学六年级学生的平均言语测验得分(Y),与家庭社会经济状况综合指标(x1)、教师言语测验得分(x2)及母亲教育水平(x3),试进行多元回归分析。
数据文件speech.sav。
12.4 测定某氟作业工人三名,观察工前(0时)、上工后4小时、上工后8小时、下班后4小时(12小时)、次日上班前(24小时)尿中氟的浓度(mg/L),以观察氟作业工人尿氟的排泄规律。
试分别拟合直线回归方程、二次抛物线、三次抛物线、四次抛物线,并选择一种最适合的回归模型。
尿氟浓度时间第一名工人第二名工人第三名工人0 1.62 1.92 1.424 2.23 2.62 2.238 2.42 2.76 2.6212 2.29 2.52 2.3224 1.69 2.00 1.6312.5 若干城市9~17岁女子的平均体重资料如下,试分别拟合直线回归方程、二次抛物线、三次抛物线、四次抛物线,并选择一种最适合的回归模型。
年龄(岁)9 10 11 12 13 14 15 16 17 体重(kg)24.6 27.1 30.5 34.1 38.5 42.3 45.4 47.4 48.612.6 观察某地破伤风预防接种率与发病率数据如下表所示,试问:何种回归模型最能综合表达该地破伤风发病率(y)与预防接种率(x)的关系。