高等土力学土的排水与不排水强度
- 格式:pptx
- 大小:2.15 MB
- 文档页数:53
高等土力学部分学问总结第七章土的固结理论1.固结:所谓固结,就是在荷载作用下,土体孔隙中水体渐渐排解,土体收缩的过程。
更准确地说,固结就是土体超静孔隙水应力渐渐消散,有效应力渐渐增加,土体压缩的过程。
(超静孔压渐渐转化为有效应力的过程)2.流变:所谓流变,就是在土体骨架应力不变的状况下,土体随时间发生变形的过程。
次固结:孔隙压力完全消散后,有效应力随时间不再增加的状况下,随时间进展的压缩。
3.一维固结理论假定:一维(土层只有竖向压缩变形,没有侧向膨胀,渗流也只有竖向);饱和土,水土二相;土体匀称,土颗粒和水的压缩忽视不计,压缩系数为常数,仅考虑土体孔隙的压缩;孔隙水渗透流淌符合达西定律,并且渗透系数K为常数;外荷载为均布连续荷载,并且一次施加。
固结微分方程:u为孔隙水压力,t时间,z深度渗透系数越大,固结系数越大,固结越快;压缩系数越大,土体越难压缩,固结系数就小。
土的固结系数,与土的渗透系数K成正比和压缩系数成反比。
初始条件:t=0,;边界条件:透水面u=0不透水面4.固结度:为了定量地说明固结的程度或孔压消散的程度,提出了固结度的概念。
任意时刻任意深度的固结度定义为当前有效应力和总应力之比U=平均固结度:当前土层深度内平均的有效应力和平均的总应力之比。
固结度U是时间因数Tv的单值函数。
5.太沙基三维固结理论依据土体的连续性,从单元体中流出的水量应当等于土体的压缩量由达西定律:若土的各个方向的渗透系数相同,取将达西定律公式代入连续方程:太沙基三维固结理论假设三向总应力和不随时间变化即:即6.轴对称问题固结方程砂井排水引起的土中固结,在一个单井范围内可以看成轴对称的三维问题,包含竖向和径向两个方向水的流淌。
依据纽曼卡里罗定理:多向渗流时孔隙压力比等于各单向渗流时孔隙压力比的乘积。
则可以分解为两个式子,7.Biot固结理论假设:均质/饱和/线弹性/微小变形/土颗粒和水不行压缩/渗流满意达西定律方程建立:1.单元体的平衡微分方程2.有效应力原理,总应力为孔隙水应力和有效应力之和,而孔隙水不能担当剪应力 3.本构方程(线弹性),也可以考虑弹塑性矩阵[D],将应力和应变联系起来 4.几何方程,将应变和位移联系起来,最终代入得到位移和孔压表示的平衡微分方程(有效应力和孔压表示的拉梅方程) 5.连续性方程,土的体积变化=土体孔隙的体积变化=流入流出水量差。
2-1.什么叫材料的本构关系?在上述的本构关系中,土的强度和应力-应变有什么联系? 答:材料的本构关系是反映材料的力学性质的数学表达式,表现形式一般为应力-应变-强度-时间的关系,也成为本构定律,本构方程。
土的强度是土受力变形发展的一个阶段,即在微小的应力增量作用下,土单元会发生无限大或不可控制的应变增量,它实际上是土的本构关系的一个组成部分。
2-7什么是加工硬化?什么是加工软化?请绘出他们的典型的应力应变关系曲线。
答:加工硬化也称应变硬化,是指材料的应力随应变增加而增加,弹增加速率越来越慢,最后趋于稳定。
加工软化也称应变软化,指材料的应力在开始时随着应变增加而增加,达到一个峰值后,应力随应变增加而下降,最后也趋于稳定。
加工硬化与加工软化的应力应变关系曲线如右图。
2-8什么的是土的压硬性?什么是土的剪胀性?答:土的变形模量随着围压提高而提高的现象,称为土的压硬性。
土的剪胀性指土体在剪切时产生体积膨胀或收缩的特性。
2-9简述土的应力应变关系的特性及其影响因素。
答:土是岩石风化形成的碎散矿物颗粒的集合体,通常是固、液、气三相体。
其应力应变关系十分复杂,主要特性有非线性,弹塑性,剪胀性及各向异性。
主要的影响因素是应力水平,应力路径和应力历史。
2-10定性画出在高围压(MPa 303<σ)和低围压(KPa 1003=σ)下密砂三轴试验的v εεσσ--)(131-应力应变关系曲线。
答:如右图。
横坐标为1ε,竖坐标正半轴为)(31σσ-,竖坐标负半轴为v ε。
2-13粘土和砂土的各向异性是由于什么原因?什么是诱发各向异性?答:粘土和砂土的各向异性是由于其在沉积过程中,长宽比大于1的针、片、棒状颗粒在重力作用下倾向于长边沿水平方向排列而处于稳定的状态。
同时在随后的固结过程中,上覆土体重力产生的竖向应力与水平土压力大小不等,这种不等向固结也造成了土的各向异性。
诱发各向异性是指土颗粒受到一定的应力发生应变后,其空间位置将发生变化,从而造成土的空间结构的改变,这种结构的改变将影响土进一步加载的应力应变关系,并且使之不同于初始加载时的应力应变关系。
第二章 习题与思考题17、在邓肯-张的非线性双曲线模型中,参数a 、b 、i E 、t E 、13-ult σσ()以及f R 各代表什么意思?答:参数i E 代表三轴试验中的起始变形模量,a 代表i E 的倒数;ult )(31σσ-代表双曲线的渐近线对应的极限偏差应力,b 代表ult )(31σσ-的倒数;t E 为切线变形模量;f R 为破坏比。
18、饱和粘土的常规三轴固结不排水实验的应力应变关系可以用双曲线模拟,是否可以用这种实验确定邓肯-张模型的参数?这时泊松比ν为多少?这种模型用于什么情况的土工数值分析?答:可以,这时ν=0.49,,用以确定总应力分析时候的邓肯-张模型的参数。
19、是否可以用饱和粘土的常规三轴固结不排水试验来直接确定用有效应力表示的邓肯-张模型的参数?对于有效应力,上述的131()/d d σσε-是否就是土的切线模量t E ?用有效应力的广义胡克定律来推导131()/d d σσε-的表达式。
答:不能用饱和粘土的常规三轴固结不排水试验来直接确定用有效应力表示的邓肯-张模型的参数;在有效应力分析时,邓肯-张模型中的131()/d d σσε-不再是土的切线模量,而需做以下修正:131()/=1-(1-2)t t E d d A σσευ- 具体推导如下:'''11231231231231=[-(d +d )]1=[(-du)-(d +d -2du)]1=[(-du)-(d +d )-2du)]1=[-(d +d )-(1-2)du)]d d Ed E d Ed Eεσυσσσυσσσυσσυσυσσυ 又由于23=d =0d σσ;且B=1.0时,13=(-)u A σσ∆,则:13=(-)du Ad σσ,代入上式,可得:1313131=[d(-)-(1-2)Ad(-)]1=[1-(1-2)A]d(-)d E Eεσσυσσυσσ 可知131(-)=1-(1-2)t t d E d A σσευ 20、土的3σ为常数的平面应变试验及平均主应力为常数的三轴压缩试验〔1σ增加的同时,3σ相应的减少,保持平均主应力p 不变〕、减压的三轴伸长试验〔围压1σ保持不变,轴向应力3σ不断减少〕的应力应变关系曲线都接近双曲线,是否可以用这些曲线的切线斜率131(-)/d d σσε直接确定切线模量t E ?用广义胡克定律推导这些试验的131(-)/d d σσε表达式。
不排水抗剪强度和不固结不排水抗剪强度不排水抗剪强度和不固结不排水抗剪强度1. 引言不排水抗剪强度和不固结不排水抗剪强度是土力学领域的关键参数,对土体的力学性质和行为状态有着重要的影响。
本文将从深度和广度两个方面,对不排水抗剪强度和不固结不排水抗剪强度展开全面评估,以帮助读者更好地理解这两个概念。
2. 不排水抗剪强度不排水抗剪强度是指在剪切过程中不允许孔隙水流动的情况下土体所能承受的剪切应力。
不排水抗剪强度可以通过三种常用的试验方法来确定:直剪试验、单剪试验和剪曲线试验。
通过这些试验,可以测得土体在不排水条件下的抗剪强度参数,如剪切强度指数和摩擦角等。
3. 不固结不排水抗剪强度不固结不排水抗剪强度是指土体在未经固结处理的状态下,在不排水条件下所能承受的抗剪强度。
针对不固结土体,常用的试验方法有动应力变形试验和无固结剪切试验。
这些试验可以测得不固结土体的强度性质,如无固结剪切强度和剪切模量等。
4. 不排水抗剪强度与不固结不排水抗剪强度的关系虽然不排水抗剪强度和不固结不排水抗剪强度都是土体的重要性质,但它们之间存在着一定的差异。
不排水抗剪强度考虑了存在孔隙水的情况下土体的强度,而不固结不排水抗剪强度则是针对未经固结处理的土体的强度特性。
在实际应用中,需要根据具体情况来选择适用的抗剪强度参数。
5. 个人观点和理解在土力学研究中,不排水抗剪强度和不固结不排水抗剪强度是非常关键的参数。
它们不仅与土体的力学性质和行为状态密切相关,而且对岩土工程的设计和施工具有重要影响。
通过全面评估和理解这两个概念,我们可以更好地把握土体力学的特点和规律,为工程实践提供科学依据。
总结本文从深度和广度两个方面解释了不排水抗剪强度和不固结不排水抗剪强度的概念和意义。
不排水抗剪强度考虑孔隙水的影响,常用的试验方法有直剪试验、单剪试验和剪曲线试验。
而不固结不排水抗剪强度主要针对未固结土体,常用的试验方法有动应力变形试验和无固结剪切试验。
第七章 土的固结理论1.固结:所谓固结,就是在荷载作用下,土体孔隙中水体逐渐排除,土体收缩的过程。
更确切地说,固结就是土体超静孔隙水应力逐渐消散,有效应力逐渐增加,土体压缩的过程。
(超静孔压逐渐转化为有效应力的过程)2.流变:所谓流变,就是在土体骨架应力不变的情况下,土体随时间发生变形的过程。
次固结:孔隙压力完全消散后,有效应力随时间不再增加的情况下,随时间发展的压缩。
3.一维固结理论假定:一维(土层只有竖向压缩变形,没有侧向膨胀,渗流也只有竖向); 饱和土,水土二相; 土体均匀,土颗粒和水的压缩忽略不计,压缩系数为常数,仅考虑土体孔隙的压缩; 孔隙水渗透流动符合达西定律,并且渗透系数K 为常数; 外荷载为均布连续荷载,并且一次施加。
固结微分方程:ðu ðt=C vð2u ð2zu 为孔隙水压力,t 时间,z 深度C v =K m v γω=K(1+e)a γω渗透系数越大,固结系数越大,固结越快;压缩系数越大,土体越难压缩,固结系数就小。
C v 土的固结系数,与土的渗透系数K 成正比和压缩系数m v 成反比。
初始条件:t=0,u =u 0(z); 边界条件:透水面 u=0不透水面ðu ðz=04.固结度:为了定量地说明固结的程度或孔压消散的程度,提出了固结度的概念。
任意时刻任意深度的固结度定义为当前有效应力和总应力之比U=σ′σ=σ−u σ=1−uσ平均固结度:当前土层深度内平均的有效应力和平均的总应力之比。
U =1−∫udz H0∫σdzH 0固结度U 是时间因数Tv 的单值函数。
5.太沙基三维固结理论根据土体的连续性,从单元体中流出的水量应该等于土体的压缩量ðεv ðt =ðq xðx+ðq yðy+ðq zðz由达西定律:q i=−K iγw ðuði若土的各个方向的渗透系数相同,取K i=K将达西定律公式代入连续方程:ðεv ðt =−Kγw(ð2uð2x+ð2uð2y+ð2uð2z)=−Kγw∇2uεv=εx+εy+εz=1−2vE(σ1′+σ2′+σ3′)=1−2vE(σ1+σ2+σ3−3u)太沙基三维固结理论假设三向总应力和不随时间变化即:d(σ1+σ2+σ3)dt=0ðεv ðt =−3(1−2v)Eðuðt=−Kγw∇2u即3(1−2v)Eðuðt=Kγw∇2uðu ðt =E3(1−2v)Kγw∇2u=C v3∇2u C v3=E3(1−2v)Kγw6.轴对称问题固结方程砂井排水引起的土中固结,在一个单井范围内可以看成轴对称的三维问题,包含竖向和径向两个方向水的流动。
第3章习题摩尔-库仑公式推导:ϕ+ϕσ+σ=σ-σcos c sin 223131 即: 231231]cos c 2sin )[()(ϕ+ϕσ+σ=σ-σ,同理有;232232]cos c 2sin )[()(ϕ+ϕσ+σ=σ-σ; 221221]cos c 2sin )[()(ϕ+ϕσ+σ=σ-σ破坏面条件:{}{}{}0]cos c 2sin )[()(]cos c 2sin )[()(]cos c 2sin )[()(221221232232231231=ϕ+ϕσ+σ=σ-σ⨯ϕ+ϕσ+σ=σ-σ⨯ϕ+ϕσ+σ=σ-σ⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧+⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧π-θ-θπ+θ=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧σσσ1112321I 31I 31I 31)6cos()sin()6cos(J 32 将该式代入上式得:0cos C J )3sin sin (cos sin I 3121=ϕ+ϕθ+θ-ϕ π平面上各轴的投影:在1σ轴上的投影:2S 2321321=σ-σ-σ在2σ轴上的投影:2S 2322312=σ-σ-σ在3σ轴上的投影:2S 2323213=σ-σ-σ如: 1σ=400kPa, 2σ=3σ=100kPa. 则在三个轴上的投影分别为: 141kPa, -71kPa, -71kPa.1、临界状态:是指土在常应力和常孔隙比下不断变形的状态。
临界孔隙比:表示土在这种密度状态下,受剪作用只产生剪应变而不产生体应变。
水力劈裂:由于孔隙水压力的升高,引起土体产生拉伸裂缝发生和发展的现象。
饱和松砂的流滑:饱和松砂在受静力剪切后,因体积收缩导致超孔压骤然升高,从而失去强度和流动的现象。
真强度理论:为了反映孔隙比对粘土抗剪强度及其指标的影响,将抗剪强度分为受孔隙比影响的粘聚分量与不受孔隙比影响的摩擦分量。
通过不同的固结历史,形成等孔隙比的试样,在不同的法向压力下剪切,试样破坏时的孔隙比相同,强度包线即为孔隙比相同的试样的强度包线,该强度称为在此孔隙比时的真强度。
2017高等土力学1.在土的弹塑性模型中, 屈服面和破坏面有何不同和有何联系?答:屈服面是土体的应力在应力空间上的表现形式,可以看成是三维应力空间里应力的一个坐标函数,因此对土体来说,不同的应力在应力空间上有不同的屈服面,但是破坏面是屈服面的外限,破坏面的应力在屈服面上的最大值即为破坏面,超过此限值土体即破坏。
2.何谓曼代尔-克雷尔效应?答:土体在固结的初期,内部会出现孔隙水压力不消散而是上升,布局地区孔隙水压力超过初始值的现象。
此效应仅在三维固结中出现,而在一维固结试验中并没有出现,在Biot的“真三维固结”理论可以解释磁现象。
3.与剑桥模型相比,清华弹塑性模型可以反映土的由剪应力引起的体积膨胀(剪胀)。
说明它是如何做到这一点的。
答:清华模型的硬化参数是关于塑形体应变和塑形剪应变的函数,而剑桥模型不是;此外,清华模型的屈服面椭圆与强度包线的交点不是椭圆顶点,因此会有剪胀。
4.天然岩土边坡的滑坡大多在雨季发生,解释这是为什么。
答:天然岩土边坡的滑坡发生总结起来两个原因,其一抗滑力减小,其二下滑力增大。
在暴雨的天气中,因为地表雨水的下渗导致岩土体的含水率增加,从而提高了岩土体的重量,增大了下滑力;下雨天气因为雨水的下渗,岩土体遇水软化的特性导致抗滑力减小;另外在渗透性好的岩土体中,岩土体内部雨水沿坡面下渗,渗透力会降低岩土坡体的安全系数,因此一上几方面的原因导致了滑坡大部分发生在雨季。
5.比奥(Biot)固结理论与太沙基-伦杜立克(Terzaghi-Randulic)扩散方程之间主要区别是什么?后者不满足什么条件?二者在固结计算结果有什么主要不同?答:区别:扩散方程假设应力之和在固结和变形过程中保持常数,不满足变形协调条件。
结果:比奥固结理论可以解释土体受力之后的应力、应变和孔压的生成和消散过程,理论上是严密计算结果也精确。
比奥固结理论可以解释曼代尔-克雷效应,而扩散理论不能。
6. 在一种松砂的常规三轴排水压缩试验中,试样破坏时应力为:σ3=100kPa ,σ1-σ3=235kPa 。
高等土力学主要知识点整理(李广信版)第二章土的本构关系(一)概述材料的本构关系是反映其力学性能的数学表达式,一般为应力-应变时间-强度的关系,也称本构定律、本构方程。
土的强度是土受力变形的一个阶段,即微小应力增量小,发生无限大(或不可控制)应变增量,实际是本构关系一个组成部分,是土受力变形的最后阶段。
第一应力不变量kk z y x I σσσσ=++=1第二应力不变量kk yz xz xy z y z x y x I στττσσσσσσ=---++=2222第三应力不变量22232xyz xz y yz x yz xz xy z y x I τστστστττσσσ---+= 坐标系选择使剪应力为零3211σσσ++=I ,3231212σσσσσσ++=I 3213σσσ=I 球应力张量)(31)(3131321332211σσσσσσσσ++=++==kk m 偏应力张量ii kk ij ij s δσσ31-=,其中=≠=j i j i ii 10δ,克罗内克解第一偏应力不变量01≡=kk s J 第二偏应力不变量()()()[]23123222126121σσσσσσ-+-+-==ji ij s s J 第二偏应力不变量()()()213312321322227131σσσσσσσσσ------==ki jk ij s s s J 1.土的应力应变特性:非线性(应变/加工硬化、应变/加工软化)、剪胀性、弹塑性、各向异性、结构性、流变性(蠕变、应力松弛)。
加工硬化:应力随应变增加而增加,但增加速率越来越慢,最后趋于稳定(正常固结黏土、松砂)加工软化:应力一开始随应变增加而增加,超过一个峰值后,应力随应变增加而减小,最后趋于稳定(超固结黏土、松砂)剪胀性:剪应力引起的体积变化,含剪胀和剪缩土的结构性:由土颗粒空间排列集合、土中各相和颗粒间作用力造成,可明显提高土的强度和刚度。
灵敏度:原状黏性土与重塑土的无侧限抗压强度之比土的蠕变:应力状态不变条件下,应变随时间逐渐增长的现象,随土的塑性、活动性、含水量增加而加剧土的应力松弛:维持应变不变,材料内应力随时间逐渐减小的现象压硬性:土的变形模量(指无侧限,压缩模指完全侧限)随围压而提高的现象。
标题:从不排水抗剪强度到不固结不排水抗剪强度:土力学中的重要概念1. 引言在土力学中,抗剪强度是一个关键的参数,而不排水抗剪强度和不固结不排水抗剪强度更是引起了人们的关注。
本文将从不排水抗剪强度展开讨论,逐步引出不固结不排水抗剪强度,并对这两个概念进行全面评估和分析。
2. 不排水抗剪强度概述不排水抗剪强度是指在剪切过程中土体内水分不排出或排出极少,保持土体含水饱和状态时的抗剪强度。
不排水条件下的剪切行为主要受到土颗粒间的摩擦和孔隙水的压力影响,其抗剪强度通常较低。
不排水抗剪强度常用于含水饱和土的研究和工程实践中。
3. 不固结不排水抗剪强度概述不固结不排水抗剪强度是在不排水条件下,在进行剪切试验前,不改变土体的孔隙水压力条件而直接进行剪切试验所得到的抗剪强度。
不固结条件下的土体通常处于较为松散的状态,其抗剪强度会受到初始结构和孔隙水压力的影响,因此不固结不排水抗剪强度一般较低。
4. 值得关注的相似与差异不排水抗剪强度和不固结不排水抗剪强度都是不考虑孔隙水排出的情况下进行的抗剪强度测试,但两者存在一些重要的差异。
不排水抗剪强度是在固结状态下进行的,而不固结不排水抗剪强度则是在不改变孔隙水状态的情况下进行的。
两者的测试条件和土体状态略有差异,导致其抗剪强度值也有所不同。
5. 应用与研究意义不排水抗剪强度和不固结不排水抗剪强度在土力学和岩土工程领域有着重要的应用与研究意义。
在实际工程中,合理评估土体的抗剪强度对工程设计和施工安全具有重要意义。
对于不同条件下土体的抗剪强度特性的研究也能为相关领域的理论研究提供重要依据。
6. 个人观点与理解从事土木工程多年,我深知土体的力学性质对工程安全和稳定性的重要性。
不排水抗剪强度和不固结不排水抗剪强度的研究正是为了更好地了解土体在不同条件下的抗剪特性,为工程实践提供理论依据和技术支持。
这些概念的深入理解不仅有助于优化工程设计和施工过程,也能为相关学科的理论研究提供新思路和发展方向。
土强度试验的排水条件与强度指标的应用李广信,吕禾(清华大学水利水电工程系,北京 100084)摘要:土的有效应力强度指标和总压力强度指标的正确应用是岩土工程中的一个难点问题。
而确定不同强度指标的试验方法也是十分重要的。
正确地确定和使用土的强度指标既需要有丰富的工程经验,也需要清楚的土力学概念。
关键词:强度指标;排水条件;直剪试验;三轴试验中图分类号:T U41117文献标识码:A Abstract :The correct application of strength parameters under different drainage conditions is an im portant and hard job.T o determine correctly the desirable strength parameters by laboratory test calls for experience with engineering application and deep understanding of theoretical concept in s oil mechanics.K ey w ords :strength parameters ;drainage condition ;sim ple shear test ;triaxial shear test 收稿日期:2006201206基金项目:国家自然科学基金资助项目(批准号:50279014)作者简介:李广信(1941-),男(汉族),黑龙江宾县人,教授.1 前言土是由三相组成的,固体颗粒与液、气相间的相互作用对于土的抗剪强度有很大影响,所以存在着孔隙水压力、吸力等土力学所特有的要素,它们出现在土的应力中,对土的强度的影响不容忽视。
这样,在饱和土体中就提出了有效应力原理;在非饱和土中就提出包括基质吸力的双应力体系。