统计过程控制(spc)案例分析(-03-24).电子教案
- 格式:doc
- 大小:721.50 KB
- 文档页数:21
SPC案例分析在当今竞争激烈的制造业环境中,质量控制成为了企业生存和发展的关键。
统计过程控制(Statistical Process Control,简称 SPC)作为一种有效的质量控制工具,已经在众多企业中得到了广泛的应用。
本文将通过一个具体的案例,深入探讨 SPC 在实际生产中的应用和效果。
一、案例背景我们选取的案例是一家汽车零部件制造企业,该企业主要生产发动机缸体。
在过去的一段时间里,客户对产品的质量投诉不断增加,主要问题集中在缸体的尺寸精度不符合要求,导致发动机装配过程中出现故障。
为了解决这一问题,企业决定引入 SPC 方法进行质量控制。
二、SPC 方法的实施过程1、确定关键质量特性首先,企业的质量控制团队与生产部门合作,通过对产品设计要求和客户反馈的分析,确定了发动机缸体的关键质量特性,即缸体的内径尺寸和圆柱度。
2、数据采集在生产过程中,质量控制人员每隔一定时间从生产线上抽取一定数量的缸体样本,使用高精度测量仪器对关键质量特性进行测量,并记录测量数据。
3、控制图的绘制将采集到的数据输入到统计软件中,绘制均值极差控制图(XR 控制图)和均值标准差控制图(XS 控制图)。
控制图的横坐标表示样本序号,纵坐标表示测量值。
4、控制限的确定根据样本数据的分布特征和统计规律,计算出控制图的控制限。
控制限分为上控制限(UCL)、下控制限(LCL)和中心线(CL)。
中心线通常为样本数据的均值,上控制限和下控制限则根据一定的计算公式得出。
5、过程监控与分析定期对控制图进行观察和分析,判断生产过程是否处于受控状态。
如果数据点落在控制限内,且没有明显的趋势或异常模式,则认为过程处于受控状态;反之,如果数据点超出控制限,或者出现连续上升或下降的趋势,或者存在周期性的波动等异常模式,则认为过程失控,需要采取相应的措施进行改进。
三、案例结果与分析在实施 SPC 方法后的一段时间里,企业对生产过程进行了持续的监控和分析。
)案例分析统计过程控制(SPC用途一.态。
统计控制状产过程处于分析判断生产过程的稳定性,生1.防不合格品异,预缓慢变.及时发现生产过程中的异常现象和2产生。
术精度,以便作出正确的技备的实际艺.查明生产设备和工装3决定。
质量提供依据。
品为评定产.4二、控制图的设计原理分态值服从或近似服从正:设绝大多数质量特性正态性假三1布。
则:准73%9932三?发生的。
小概率事件原理:小概率事件一般是不会三3证法思想。
反三4控制图的种类四.~)量值(按产品质量的特性分()计11三SXRXRXRX ,,,????S。
图)(数值,,,()计up2cpn图。
)分析用控制图;()控制用控制按控制图的用途分:(212三控制图的判断规则五.:分析用控制图三1种情况);绝大多数点子在控制界限线内(准判规则稳则1-----3。
现象(规则种情况)排列无下述则判异准-----28-1--1-:图控制用控制三2每一个点子均落在控制界限内。
规则1现象。
控制界限内点子的排列无异常规则2量程产过质图元件的不合格率而为案例控制某无线电设计,生2][p 。
平均不合格率要求为≤2%-2--2-收集收据解:一.见程中收集数据准化的情况下从生产过在充分固定并标,,5M1E下表所表示:元件不合格品率数据表线电某无值平均711 1.4k本中不合格品率样计算二:.i列在上表?p.,k,i?1,2,.....,n i i 程平均不合格品率过三求:.?k i140%248/17775???p?n i-3--3-140%??p CL图线四计算控制:.p n/3p(1UCL?p??)p i n/p?3)p(1UCL??pi化而变时随的从上式可以看出当诸样本大小不相等,UCL,LCL, nn ii变化其图形为阶梯式的折线而非直线为了方便若有关系式:,,.n?2n max n?n/2min同时满足也即相差不大时可以令使得上下限仍为常数其图,,,,,nnn?ii形仍为直线.本例中诸样本大小满足上面条件故有控制线为:,,,n711n?i CL?p?140%图:p UCL?p?3p(1?p)/n?p?3p(1?p)/n?2.72%图五制作i UCL?p?3p(1?p)/n?p?3p(1?p)/n?0.08%i控制:.以样本序号为横坐标样本不合格品率为纵坐标做图.p,,六描点依据每个样本中的不合格品率在图上描点.:.七分析生产过程是否处于统计控制状态.从图上可以看到第个点超过控制界限上界出现异常现象这说,,14,明生产过程处于失控状态尽管但由于生产过程失控即,.=1.40%<2%,p -4--4-图化为控制用控制不合格品率波动大所以不能将此分析用控制图转,,正措施点失控的原因并制定纠应查明第.,14案例分析造成手表不用排列图量某手表厂为了提高手表的质应3][,用再次应摆占第一位为了解决停摆问题合格的各种原因发现停,---.,而发现主要是由于螺栓脱落造成的分析造成停摆的原因结果排列图,,中的螺装配作业厂方决定应用控制图对后者是有螺栓松动造成为此,.程控制行过栓扭矩进.又由于本例图选用正态分布控制分析螺栓扭矩是计量特征值故可,],[图用灵敏度高的难取得数据故决定选是大量生产不.,,R?x图按照下列步骤建立解][R x?下表见组预备根据合理分组原则取数据步骤一.25,,.X值为例如第一值组样本的平均计步骤二算各样本组的平均.,i X=(154+174+164+166+162)/5=164.01本的极差算各样步骤三计.20X}?174?154???R,Rmax{X}min{i1ii值计算样本总均骤步四.和平均样本极差RX?X?4081.8i?357?Ri所以,X?163.272R?14.280步骤五计算图与的参数.R X先计算图的参数(1)R样本容量时,D4=2.114,D3=0n=5-5--5-UCL?DR?2.114*14.280?30.1884R代入图公式CL?R?14.280R R LCL?DR?03R均值控制图极差控制图X R图计的原始数据与算表例.2备观察值样本X i注序号R∑XijXi5Xi4Xi3Xi2Xi110820164162166164174154.20-6--6-值图。
统计过程控制(SPC)在制造业中的应用案例分析统计过程控制(SPC)是一种常用于制造业中的质量管理方法,通过对过程中的关键参数进行监测与控制,确保产品质量稳定可靠。
本文将以一家汽车零部件制造企业的案例为例,分析SPC在制造业中的应用。
该企业是一家专业生产汽车引擎活塞的制造商,其产品质量直接关系到汽车发动机的性能和寿命。
为了保证引擎活塞的质量,在生产过程中,该企业采用了SPC方法来监控关键参数,及时调整生产过程,提高产品质量。
首先,在SPC的实施过程中,该企业明确定义了关键参数,并建立了相应的控制图。
在引擎活塞的生产过程中,关键参数包括活塞直径、活塞高度、活塞内孔直径等。
通过在生产线上设置检测装置和传感器,实时监测这些参数,并将数据输入到SPC软件中进行分析和控制。
接下来,该企业使用SPC软件对收集到的数据进行统计分析。
通过统计分析,可以了解到每个关键参数的平均值、标准差、极差等信息,以及其变化趋势。
通过对这些数据进行分析,可以判断生产过程的稳定性和一致性。
当关键参数超出了控制界限,即超出了产品质量的上下限时,SPC软件会自动发出警报,提醒相关人员进行相应的调整和控制。
此外,SPC软件还可以生成各种控制图,如X-bar控制图、R控制图和P控制图等。
这些控制图可以直观地显示出生产过程的稳定性和变异性。
通过观察和分析控制图的规律,可以判断生产过程是否受到特殊因素的影响,如材料变化、设备故障或人为误操作等。
当发现特殊因素时,及时采取纠正措施,以确保产品质量稳定。
此外,SPC软件还可以进行过程能力分析,通过分析过程能力指标(Cp、Cpk)等参数,评估生产过程的稳定性和能力。
通过这些分析,可以确定生产过程是否满足质量要求,并及时调整和优化生产过程,以提高产品质量和生产效率。
在该企业的实践中,SPC方法的应用取得了显著的效果。
通过SPC的实时监控和调整,引擎活塞的关键参数稳定在设计要求的范围内,产品质量得到了有效控制。
统计过程控制案例分析统计过程控制案例分析在生产和管理领域,统计过程控制(SPC)是一种重要的技术,用于监控和改善过程质量。
本文通过一个实际案例分析,探讨了SPC的应用和效果。
案例背景某电子产品制造商在生产过程中遇到了质量问题,产品不合格率居高不下。
为了解决这个问题,公司决定采用SPC技术对生产过程进行监控和改进。
控制图分析首先,我们通过控制图来分析生产过程。
控制图是一个直观的图形,横轴表示时间,纵轴表示产品质量。
在SPC中,通常使用X-R图(均值-极差图)来监控过程的稳定性。
X-R图由两条曲线组成,一条表示均值(X),另一条表示极差(R)。
均值反映过程的中心趋势,极差反映过程的波动大小。
通过对X-R图的分析,我们可以发现生产过程中的波动和不稳定性。
在本案例中,我们发现产品质量存在较大的波动,且不合格率较高。
这表明生产过程存在较大的问题,需要进行改进。
原因分析和措施制定针对上述问题,我们进行了深入的原因分析。
通过对生产环节的调查和分析,我们发现问题的主要原因是原材料的质量不稳定。
为此,我们提出了以下改进措施:1、对原材料进行质量检查和控制,确保原材料的质量符合要求。
2、加强生产过程的监控和管理,确保生产过程的稳定性和一致性。
3、提高员工的技能和素质,加强质量意识培训。
实施改进措施在制定改进措施后,我们开始实施。
在实施过程中,我们采用了PDCA 循环(计划-执行-检查-处理)来确保改进措施的有效性和持续性。
在改进措施实施后,我们再次对生产过程进行了SPC监控和评估。
效果评估和总结通过SPC技术的监控和评估,我们发现生产过程的质量得到了显著改善。
不合格率得到了有效降低,产品质量更加稳定。
员工的技能和素质也得到了提高,质量意识得到了加强。
这些改进不仅提高了企业的生产效率和质量水平,也提高了客户对产品的满意度。
通过本案例的分析,我们可以看到SPC技术在生产和管理领域的重要作用。
SPC技术可以帮助我们监控和改善过程质量,提高生产效率和质量水平。
统计过程控制SPC案例分析制造公司生产汽车零件,该公司决定采用统计过程控制来监测生产过程中的变异程度,并及时采取相应的措施来保证产品质量。
首先,该公司确定了需要监控的关键过程参数,如尺寸、重量、硬度等。
然后,选取了一个代表性样本,进行了初始的统计分析。
通过对样本数据的收集和分析,可以得到该过程的中心值(mean)和过程能力指数(process capability index)。
接下来,公司制定了针对每个关键过程参数的控制限规则。
这些规则包括上控制限(Upper Control Limit,UCL)和下控制限(LowerControl Limit,LCL),一旦产品参数超出这些限制范围就会引发警报。
第三步,该公司开始在生产线上收集样本数据,并进行实时统计分析。
每隔一段时间,例如每小时或每一天,取样并测量样本的关键参数,记录数据并计算统计指标,例如平均值和标准差。
最后,根据统计分析的结果,如果数据超出了控制限范围,该公司可以立即采取纠正措施。
例如,如果平均值偏离了中心值,可以调整生产设备或工艺参数;如果数据的变异过大,可以对生产设备进行维护或调整操作程序。
通过持续的SPC监测和改进,该公司可以实现以下几方面的益处:1.提高质量:通过监测关键参数并及时纠正异常,可以减少产品的次品率和退货率,提高产品质量,满足客户需求。
2.降低成本:通过减少次品率和退货率,公司可以降低废品处理成本和退货成本;此外,通过减少变异,还可以降低废品和工时成本。
3.提高效率:通过监控关键参数,公司可以及时调整生产设备或工艺参数,减少无效生产时间和停机时间,提高生产效率和产能。
需要注意的是,SPC并非一劳永逸的解决方案,而是需要持续不断的监测和改进。
公司应该定期复评统计指标,根据实际情况调整控制限并更新纠正措施。
此外,为了提高SPC的效果,公司还可以使用一些辅助工具,如散点图、控制图和直方图等,帮助分析和解决问题。
综上所述,统计过程控制是一种有效的管理技术,可以帮助制造公司提高质量、降低成本和提高效率。
【案例1】 R X -控制图示例某手表厂为了提高手表的质量,应用排列图分析造成手表不合格品的各种原因,发现“停摆”占第一位。
为了解决停摆问题,再次应用排列图分析造成停摆事实的原因,结果发现主要是由于螺栓松动引发的螺栓脱落成的。
为此厂方决定应用控制图对装配作业中的螺栓扭矩进行过程控制。
分解:螺栓扭矩是一计量特性值,故可选用基于正态分布的计量控制图。
又由于本例是大量生产,不难取得数据,故决定选用灵敏度高的R X -图。
解:我们按照下列步骤建立R X -图步骤1:取预备数据,然后将数据合理分成25个子组,参见表1。
步骤2:计算各组样本的平均数i X 。
例如,第一组样本的平均值为:0.16451621661641741541=++++=X其余参见表1中第(7)栏。
步骤3:计算各组样本的极差i R 。
例如,第一组样本的极差为:{}{}20154174min max 111=-=-=j j X X R其余参见表1中第(8)栏。
表1: 【案例1】的数据与R X -图计算表i 故:272.163=X ,280.14=R 。
步骤5:计算R 图的参数。
先计算R 图的参数。
从D 3、D 4系数表可知,当子组大小n =5,D 4=2.114,D 3=0,代入R 图的公式,得到: 188.30280.14114.24=⨯==R D UCLR280.14==R CLR==R D LCLR3—极差控制图:均值控制图:图1 【案例1】 的第一次R X -图13579111315171921232530.18814.280 0.000 135791113151719212325171.512163.272 155.032参见图1。
可见现在R 图判稳。
故接着再建立X 图。
由于n =5,从系数A 2表知A 2=0.577,再将272.163=X ,280.14=R 代入X 图的公式,得到X 图:512.171280.14577.0272.1632≈⨯+=+=R A X UCL X272.163==X CLX032.155280.14577.0272.1632≈⨯-=-=R A X LCLX因为第13组X 值为155.00小于XLCL ,故过程的均值失控。
统计过程控制(SPC)案例分析一.用途1.分析判断生产过程的稳定性,生产过程处于统计控制状态。
2.及时发现生产过程中的异常现象和缓慢变异,预防不合格品产生。
3.查明生产设备和工艺装备的实际精度,以便作出正确的技术决定。
4.为评定产品质量提供依据。
二.控制图的基本格式1.标题部分X-R控制图数据表产品名称质量特性观察方法工作指令编号车间规定日产量收集数据期间设备编号规格界限Tu (或要Tl 抽样间隔数量操作人员求)作业指导书编号仪器编号检验人员生产过程质量要求日时样本测定值均极差备注期间号X1X2X3X4 X5值XR计算:图:CL=X R图:CL=RUCL=X +A R2UCL=D R4LCL=X -A R2LCL=D R32.控制图部分质量特性U C LCLLCL样本号在方格纸上作出控制图:X R控制图X 图XR 图说明操作人班组长 质量工程师横坐标为样本序号,纵坐标为产品质量特性。
图上有三条平 行线:实线 CL :中心线虚线 UCL :上控制界限线LCL :下控制界限线。
三. 控制图的设计原理1. 正态性假设:绝大多数质量特性值服从或近似服从正态分布。
2. 3 准则:99。
73%。
3. 小概率事件原理:小概率事件一般是不会发生的。
4. 反证法思想。
四. 控制图的种类1. 按 产 品 质 量 的 特 性 分 ( 1 ) 计 量 值(XR , XR , XR S, XS) ~(2)计数值(p,pn,u,c图)。
2.按控制图的用途分:(1)分析用控制图;(2)控制用控制图。
五.控制图的判断规则1.分析用控制图:规则 1判稳准则-----绝大多数点子在控制界限线内(3种情况);规则2判异准则-----排列无下述现象(8种情况)。
2.控制用控制图:规则1规则2每一个点子均落在控制界限内。
控制界限内点子的排列无异常现象。
[案例1]p控制图某半导体器件厂 2 月份某种产品的数据如下表(2)(3)栏所表示,根据以往记录知,稳态下的平均不合格品率p0.0389,作控制图对其进行控制.数据与p图计算表组号(1)样本量(2)不合格品数不合格品P图的1 28583D(3)25率p(4)0.0240.060UCL(5)0.1020.1034 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 346090809791948555929495818275579167869976933213121137316238180.0500.0220.0130.0310.0110.0210.0120.0110.0320.0850.0400.0180.0660.0300.0350.0800.0130.0860.1140.1000.1040.0980.1000.0990.1020.1170.0990.0990.0980.1030.1030.1060.1160.1000.1100.1010.0970.1050.09926 27 28小计97997623159102900.0930.1000.0260.0980.0970.105[解]步骤一 :预备数据的取得,如上边表所示.步骤二:计算样本不合格品率步骤三:计算p图的控制线p D /n,p D /n 2/85 0.024 i i i 111p D/n 90/23150.0389i iUCL p 3p(1p)/n 0.038930.0389(10.0389)/niCL 0.0389LCL p 3p(1p)/n 0.038930.0389(10.0389)/ni由于本例中各个样本大小ni不相等,所以必须对各个样本分别求出其控制界线.例如对第一个样本n1=85,有UCL=0.102LCL=-0.024此处LCL为负值,取为零.作出它的SPC图形.CL=0.0389 UCLCLLCL[案例2]为控制某无线电元件的不合格率而设计 p 图,生产过程质量要求为平均不合格率≤2%。
SPC统计过程控制应用实例分析1.SPC控制特性的定义T1S6949质量管理体系在实际应用中强调以系统的方法对过程进行分析研究,以确定系统的输入因子,输出因子以及输入对输出的影响作用。
产品实现的过程也可以用框图简单地描述为下图:上图表示,产品实现的过程为由材料、生产参数、设备、人员、环境构成的输入因素通过生产转换成输出产品的过程,同时利用输出的信息来反作用于输入因素,以得到输入因素如材料、生产参数等的持续改进。
输入因素通过生产过程转化成输出的产品,其中的实现过程也就是SPC需要进行监控的工艺过程,当然针对SPC控制特性的选择并不是越多越好,由于检验本身是不带来增值效益的过程,因此在行业的应用过程中,考虑到成本的计算,SPC只会应用在部分关键特性的监控过程中,而关键特性的选择也根据企业自身的生产能力及控制能力的需要来决定的。
因此在进行统计过程控制时,首先需要定义控制的对象,然后通过监控生产实现过程中的各大因素对控制对象的作用,检测到过程的特殊原因波动,从而实现提前预防不合格品产品的作用。
针对关键特性之外的其他参数,可以通过记录检查表的形式将其记录并保存,以便工艺改进时提供历史依据的参考。
PSC的控制项目对产品特性及工序监控的必要性,通常通过以下几个方面进行考量;(1) 从产品特性要求判断,是否为产品关键特性;如Tirm Form工序,SPC记录共面性的抽样检验结果,以判断产品当前的生产流程是否处于稳定受控的状态下。
产品的关键特性在产品设计阶段己确定。
(2) 另一方面,在产品生产制造的过程中,关键工序参数的监控对产品质量良率起着重大的决定作用,利用实时的SPC方法进行工艺参数的监控,能够及时发现生产过程中存在的特殊原因,及时围堵并消除,以得到立即的改正及预防的作用。
例如,在硅片切割工序(Wafer saw),工艺上利用对切割槽宽度的定期数据采集,绘制SPC控制图,从而起到过程监控的作用,以防止参数对切割工序带来的过程能力偏移。
统计过程控制(SPC)案例分析一.用途1. 分析判断生产过程的稳定性,生产过程处于统计控制状态。
2.及时发现生产过程中的异常现象和缓慢变异,预防不合格品产生。
3.查明生产设备和工艺装备的实际精度,以便作出正确的技术决定。
4.为评定产品质量提供依据。
二.控制图的基本格式1.标题部分X-R控制图数据表2 质量 特 性在方格纸上作出控制图:样本横坐标为样本序号,纵坐标为产品质量特性。
图上有三条平行线:实线CL :中心线 虚线UCL :上控制界限线 LCL :下控制界限线。
三. 控制图的设计原理1. 正态性假设:绝大多数质量特性值服从或近似服从正态分布。
2. 3σ准则:99。
73%。
3. 小概率事件原理:小概率事件一般是不会发生的。
4. 反证法思想。
四. 控制图的种类1. 按产品质量的特性分(1)计量值(S X R X R X R X S ----,,~,)(2)计数值(p,pn,u,c图)。
2.按控制图的用途分:(1)分析用控制图;(2)控制用控制图。
五.控制图的判断规则1.分析用控制图:规则1 判稳准则-----绝大多数点子在控制界限线内(3种情况);规则2 判异准则-----排列无下述现象(8种情况)。
2.控制用控制图:规则1 每一个点子均落在控制界限内。
规则2 控制界限内点子的排列无异常现象。
[案例1] p控制图某半导体器件厂2月份某种产品的数据如下表(2)(3)栏所表示,根据以往记录知,稳态下的平均不合格品率0389p,作控制.0图对其进行控制.数据与p图计算表[解]步骤一 :预备数据的取得,如上边表所示.步骤二: 计算样本不合格品率024.085/2/,/111====n D p n D p i i i 步骤三: 计算p 图的控制线ii i i n n p p p LCL CL n n p p p UCL n D p /)0389.01(0389.030389.0/)1(30389.0/)0389.01(0389.030389.0/)1(30389.02315/90/--=--==-+=-+=====∑∑由于本例中各个样本大小i n 不相等,所以必须对各个样本分别求出其控制界线.例如对第一个样本n1=85,有UCL=0.102 CL=0.0389 LCL=-0.024此处LCL 为负值,取为零.作出它的SPC 图形.CLLCL[案例2]为控制某无线电元件的不合格率而设计p图,生产过程质量要求为平均不合格率≤2%。
【案例1】 R X -控制图示例某手表厂为了提高手表的质量,应用排列图分析造成手表不合格品的各种原因,发现“停摆”占第一位。
为了解决停摆问题,再次应用排列图分析造成停摆事实的原因,结果发现主要是由于螺栓松动引发的螺栓脱落成的。
为此厂方决定应用控制图对装配作业中的螺栓扭矩进行过程控制。
分解:螺栓扭矩是一计量特性值,故可选用基于正态分布的计量控制图。
又由于本例是大量生产,不难取得数据,故决定选用灵敏度高的R X -图。
解:我们按照下列步骤建立R X -图步骤1:取预备数据,然后将数据合理分成25个子组,参见表1。
步骤2:计算各组样本的平均数i X 。
例如,第一组样本的平均值为:0.16451621661641741541=++++=X其余参见表1中第(7)栏。
步骤3:计算各组样本的极差i R 。
例如,第一组样本的极差为:{}{}20154174min max 111=-=-=j j X X R其余参见表1中第(8)栏。
表1: 【案例1】的数据与R X -图计算表i故:272.163=X ,280.14=R 。
步骤5:计算R 图的参数。
先计算R 图的参数。
从D 3、D 4系数表可知,当子组大小n =5,D 4=2.114,D 3=0,代入R 图的公式,得到: 188.30280.14114.24=⨯==R D UCL R280.14==R CL R ==R D LCL R 3—极差控制图:均值控制图:图1 【案例1】 的第一次R X -图参见图1。
可见现在R 图判稳。
故接着再建立X 图。
由于n =5,从系数A 2表知A 2=0.577,再将272.163=X ,280.14=R 代入X 图的公式,得到X 图:512.171280.14577.0272.1632≈⨯+=+=R A X UCL X 272.163==X CL X032.155280.14577.0272.1632≈⨯-=-=R A X LCL X因为第13组X 值为155.00小于X LCL ,故过程的均值失控。
经调查其原因后,改进夹具,然后去掉第13组数据,再重新计算R 图与X 图的参数。
此时,125.14241835724≈-=='∑R R617.16324.1558.408124≈-=='∑XX代入R 图与X 图的公式,得到R 图:13579111315171921232530.18814.2800.000 135791113151719212325171.512 163.272155.032860.29125.14114.24≈⨯='=R D UCL R 125.14≈'=R CL R 03='=R D LCL R从表1可见,R 图中第17组R=30出界。
于是舍去该组数据,重新计算如下:435.13233033923≈-==''∑R R670.163234.1628.392623≈-==''∑XXR 图:402.28435.13114.24≈⨯=''=R D UCL R 435.13=''=R CL R =''=R D LCL R 3—从表1可见,R 图可判稳。
于是计算X 图上,见图2此时过程的变异度与均值均处于稳态。
步骤6:与规范进行比较对于给定的质量规范140=L T ,180=U T ,利用R 和X 计算P C 。
极差控制图:均值控制图:图2 【案例1】 的第二次R X -图776.5326.2435.132≈==d R ρ)σ15.1776.561401806≈⨯-=-=σ)L U P T T C 由于670.163=X 与容差中心M=160不重合,所以需要计算PK C 。
18.02/)140180(670.1631602/=--=-=T M K μ)94.015.1)18.01()1(=⨯-=-=P PK C K C可见,统计过程状态下的P C 为1.16>1,但是由于μˆ与M 偏离,所以1<PK C 。
因此,应根据对手表螺栓扭矩的质量要求,确定当前的统计过程状态是否满足设计的、工艺的和顾客的要求,决定是否以及何时对过程进行调整。
若需调整,那么调整数应重新收集为据,绘制R X -图。
步骤7:延长统计过程状态下的R X -图的控制限,进入控制用控制图阶段,实现对过程的日常控制。
1 35791113151719212328.40213.435 0.000 1 357911131517192123171.422163.670155.918X-图【案例2】sX-图。
为充分利用子组信息,对【案例1】选用s解:步骤如下:步骤1:依据合理分组原则,取得25组预备数据,参见表2。
表2:手表的螺栓扭矩步骤2:计算各子组的平均值i X 和标准差i s 。
各子组的平均值见表2(与表1相同),而标准差需要利用有关公式计算,例如,第一子组的标准差为:211.715)164162()164166()164164()164174()164154(15)(2222251111=--+-+-+-+-=--=∑=j jX Xs 其余参见表2中的标准差栏。
步骤3:计算所有观测值的总平均值X 和平均标准差s 。
得到256.163=X ,644.5=s 。
步骤4:计算s 图的控制限,绘制控制图。
先计算s 图的控制限。
从计量控制图系数表可知,当子组大小n =5时,089.24=B ,03=B ,代入s 图公式,得到:790.11644.5089.24=⨯==s B UCL s 644.5==s CL s ==s B LCL s 3—相应的s 控制图见图3。
标准差控制图: 13579111315171921232511.7905.644 0.000图3 表1中25个子组的标准差控制图可见,s 图在第17点超出了上控制限,应查找异常的原因,采取措施加以纠正。
为了简单起见,我们将第17子组剔除掉。
利用剩下的24个子组来重新计算s X -控制图的控制限。
得到:292.163=X ,370.5=s089.24=B ,03=B ,代入s 图的控制限公式,得到: 218.11370.5089.24=⨯==s B UCL s 370.5==s CL s ==s B LCL s 3—参见图4的标准差控制图。
可见,标准差s 控制图不存在变差可查明原因的八种模式,那么,可以利用s 来建立X 图。
由于子组大小n =5,从计量控制图系数表知,427.13=A ,将292.163=X ,370.5=s 代入X 图的控制限公式,得到:955.170370.5427.1292.1633≈⨯+=+=s A X UCL X292.163==X CL X629.155370.5427.1292.1633≈⨯-=-=s A X LCL X相应的均值控制图见图4。
标准差控制图:均值控制图:1 35791113151719212311.2185.370 0.000 170.955163.292155.629图4 剔除第17子组后得到的s X -控制图由图4的均值控制图可知,第13组X 值为155.00小于X LCL ,故过程的均值失控。
调查其原因发现是夹具松动造成的,已经很快进行了纠正,在采集第14个子组的数据时,该问题已获解决。
故可以去掉第13子组的数据,重新计算R 图与X 图的参数。
此时,617.163=X ,265.5=s 。
代入R 图与s 图的控制限公式,得到: s 图:999.10265.5089.24=⨯==s B UCL s 265.5==s CL s ==s B LCL s 3—参见图5的标准差控制图。
可见,标准差s 控制图不存在变差可查明原因的八种模式,那么,可以利用s 来建立X 图。
由于子组大小n =5,从计量控制图系数表知,427.13=A ,将617.163=X ,265.5=s 代入X 图的控制限公式,得到:131.171265.5427.1617.1633≈⨯+=+=s A X UCL X617.163==X CL X104.156265.5427.1617.1633≈⨯-=-=s A X LCL X参见图5的均值控制图。
标准差控制图均值控制图:图5 再去掉第13个子组后得到的s X -控制图1 35791113151719212310.9995.265 0.000 1 357911131517192123171.131163.617 156.104由图5的均值控制图可知,没有出现变差可查明原因的八种模式。
即标准差控制图和均值控制图都没有出现可查明原因的八种模式,说明装配作业中螺栓扭矩的生产过程处于统计控制状态。
步骤5:与容差限比较,计算过程能力指数。
已知手表螺栓扭矩的容差限为:140=L T ,180=U T 。
利用得到的统计控制状态下的617.163=X ,265.5=s 来计算过程能力指数:601.5940.0265.54===c s σ)19.1601.561401806=⨯-=-=σL U P T T C由于617.163=X 与容差中心1602/)(=+=L U T T M 不重合,所以,有必要计算有偏称的过程能力指数。
18.020617.32/)(617.1631602/==--=-=L U T T T M K μ) 9758.019.1)18.01()1(=⨯-=-=P PK C K C可见,统计控制状态下的过程能力指数为1.19,大于1,但是,由于存在分布中心与容差中心的偏移,故有偏移的过程能力指数不足1。
因此,应该根据对手表螺栓扭矩的质量要求,确定当前的统计控制状态是否满足设计的、工艺的、顾客的要求,决定是否以及何时对过程进行调整。
若需进行调整,那么调整后,应重新收集数据,绘制s X -控制图。
由于R X -控制图以平均极差R 为σ的估计值,s X -控制图以平均子组标准差s 为σ的估计值,所以,运用R X -控制图与运用s X -控制图分析同一个问题,得到的过程能力指数一般略有不同。
因为子组极差R 只利用了子组中的最大值和最小值的信息,而子组标准s 充分利用了子组中所有的信息,所以,当R X -控制图与s X -控制图的分析结果不同时,尽管R 图计算上比s 图简单,但仍建议以s X -控制图的结果为准。
步骤6:延长统计控制状态下的s X -控制图的控制限,进入控制用控制图阶段,实现对过程的日常控制。
【案例3】s R X -图表3给出了连续10批脱脂奶粉的样本“水分含量百分比”的实验室分析结果。
半一个样本的奶粉作为一批的代表,在实验室对其成分特性进行分析测试,如脂肪、水分、酸度、溶解指数、沉积物、细菌以及乳清蛋白。