数学建模:统计模型
- 格式:ppt
- 大小:3.57 MB
- 文档页数:65
数学建模之统计模型主讲:张伟内容概要•统计模型概要•参数检验•非参数检验•方差分析一、统计模型(Statistical Model)1. 概念有些过程无法用理论分析方法导出其模型,但可通过试验或直接由工业过程测定数据,经过数理统计求得各变变量之间的函数关系,称为统计模型数学建模就是利用数学方法来解决实际问题。
常用模型:最大似然估计、回归分析、聚类分析、非参数估计等软件:SPSS统计软件2.建模背景案例1:眼科病床的合理安排(2009年B题)该医院眼科门诊每天开放,住院部共有病床79张。
该医院眼科手术主要分四大类:白内障、视网膜疾病、青光眼和外伤。
附录中给出了2008年7月13日至2008年9月11日这段时间里各类病人的情况。
案例2:葡萄酒的评价问题(2012年A题)二、参数检验(Parametric Tests)当总体分布已知(如总体为正态分布),根据样本数据对总体分布的统计参数进行推断。
主要目的(1)估计参数的取值,(2)对参数进行某种统计检验。
这类问题往往用参数检验来进行统计推断。
(单个或多个参数).某车间用一台包装机包装葡萄糖.包得的袋装糖当机器正常时,某日开工后为检验包装机是否正常,包装的糖9袋,称得净重为(公斤):0.497 0.506 0.518 0.524 0.4980.511 0.520 0.515 0.512问机器是否正常?案例3:重是一个随机变量X ,且),(~2σμN X 其均值为μ=0.5公斤,标准差σ=0.015公斤.随机地抽取它所(α=0.05)提出假设寻求统计量写出拒绝域进行检验解题思路:求解:SPSS软件或是Excel三、非参数检验(Nonparametric Tests)当总体分布未知,根据样本数据对总体分布的统计参数进行推断。
主要目的(1)估计参数的取值;(2)对参数进行某种统计检验。
这类问题往往用参数检验来进行统计推断。
(单个或多个参数).1.单样本检验(拟合性检验)样本观测值总体分布(1)卡方检验寻求方法拟合(2)二项分布检验(3)K-S检验注:主要服从分布:离散型分布,正态分布,指数分布等案例1中:病床的合理安排需要做数据分析,拟合以下两个重要的指标:(1)病人到达人数服从Poisson分布,分布检验,分布参数提取;(2)术后住院时间分布:正态分布or Г分布or 经验分布;案例2中问题1:首先,通过单样本K-S检验确定葡萄酒评分数据的概率分布;然后再做显著性检验。
数学建模统计模型教学教案一、教学内容本节课的教学内容选自人教版高中数学选修23第二章第四节“回归分析”和第三章第三节“独立性检验”。
具体内容包括:1. 回归直线方程的求法及应用;2. 相关系数的概念及其应用;3. 独立性检验的方法及其应用。
二、教学目标1. 理解回归直线方程、相关系数的概念,学会求回归直线方程和计算相关系数;2. 掌握独立性检验的方法,并能运用独立性检验解决实际问题;3. 培养学生的数据分析能力、数学建模能力和解决实际问题的能力。
三、教学难点与重点1. 教学难点:回归直线方程的求法、相关系数的计算、独立性检验的方法及应用;2. 教学重点:回归直线方程的求法、相关系数的计算、独立性检验的方法。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔;2. 学具:教材、笔记本、计算器。
五、教学过程1. 实践情景引入:以“调查某班级学生的身高和体重关系”为例,引导学生思考如何利用数学模型描述身高和体重之间的关系;2. 讲解回归直线方程的求法:通过示例,讲解最小二乘法求回归直线方程的步骤,让学生掌握求回归直线方程的方法;3. 讲解相关系数的概念及计算方法:解释相关系数的概念,演示如何利用计算器计算相关系数,让学生理解相关系数的作用;4. 应用练习:让学生运用回归直线方程和相关系数解决实际问题,如预测某学生的体重;5. 讲解独立性检验的方法:通过示例,讲解独立性检验的步骤,让学生掌握独立性检验的方法;6. 应用练习:让学生运用独立性检验解决实际问题,如判断“性别与购买意愿是否独立”;六、板书设计1. 回归直线方程的求法;2. 相关系数的概念及其计算方法;3. 独立性检验的方法。
七、作业设计1. 求下列数据的回归直线方程:身高(x):165, 170, 172, 175, 180体重(y):60, 62, 64, 66, 682. 计算下列数据的相关系数:身高(x):165, 170, 172, 175, 180体重(y):60, 62, 64, 66, 683. 某班级有男生20人,女生15人,男生中有12人购买了某商品,女生中有8人购买了该商品。
统计建模技术统计建模技术是一种应用于数据分析和预测的方法。
它基于统计学原理,并利用数学模型来描述和解释数据。
统计建模技术在各个领域中都得到了广泛的应用,如商业、金融、医疗等。
统计建模技术的核心是建立一个适当的数学模型,以对数据进行分析和预测。
这个模型可以是线性模型、非线性模型、时间序列模型等等。
在建立模型之前,我们首先需要对数据进行收集和整理。
这个过程包括数据的清洗、转换和筛选。
清洗数据是为了去除错误和缺失的数据,使得数据集更加可靠和准确。
数据转换是为了使数据符合模型的假设,例如对数据进行标准化或变换。
数据筛选是为了选择与问题相关的数据,以减少模型的复杂性和提高模型的解释能力。
在建立模型之后,我们需要对模型进行验证和评估。
模型验证是为了确定模型是否能够很好地解释数据,并对新数据进行准确的预测。
常用的模型验证方法包括交叉验证、留一法和自助法等。
模型评估是为了比较不同模型的性能,并选择最优的模型。
常用的模型评估指标包括均方误差、对数似然比和准确率等。
统计建模技术有很多种类,其中包括线性回归、逻辑回归、决策树、支持向量机和神经网络等。
线性回归是一种用于建立线性关系的模型,逻辑回归是一种用于建立分类模型的方法,决策树是一种用于建立决策规则的方法,支持向量机是一种用于建立分类边界的方法,神经网络是一种用于建立非线性模型的方法。
这些方法都有各自的优缺点,适用于不同类型的问题。
统计建模技术的应用非常广泛。
在商业领域,统计建模技术可以用于市场分析、销售预测和客户关系管理等。
在金融领域,统计建模技术可以用于风险评估、投资组合优化和信用评分等。
在医疗领域,统计建模技术可以用于疾病预测、药物研发和医疗资源分配等。
在工业领域,统计建模技术可以用于质量控制、故障诊断和生产优化等。
统计建模技术是一种强大的工具,可以帮助我们对数据进行分析和预测。
它在各个领域中都得到了广泛的应用,并取得了显著的成果。
随着数据的不断增长和技术的不断进步,统计建模技术将发挥越来越重要的作用,为我们提供更准确、更可靠的决策支持。
数学建模论文题目:一个医药公司的新药研究部门为了掌握一种新止痛剂的疗效,设计了一个药物试验,给患有同种疾病的病人使用这种新止痛剂的以下4个剂量中的某一个:2 g,5 g,7 g和10 g,并记录每个病人病痛明显减轻的时间(以分钟计). 为了解新药的疗效与病人性别和血压有什么关系,试验过程中研究人员把病人按性别及血压的低、中、高三档平均分配来进行测试. 通过比较每个病人血压的历史数据,从低到高分成3组,分别记作0.25,0.50和0.75. 实验结束后,公司的记录结果见下表(性别以0表示女,1表示男).请你为该公司建立一个数学模型,根据病人用药的剂量、性别和血压组别,预测出服药后病痛明显减轻的时间.病人序号病痛减轻时间/min用药剂量/g性别血压组别1 352 0 0.252 43 2 0 0.503 55 2 0 0.754 47 2 1 0.255 43 2 1 0.506 57 2 1 0.757 26 5 0 0.258 27 5 0 0.509 28 5 0 0.7510 29 5 1 0.2511 22 5 1 0.5012 29 5 1 0.7513 19 7 0 0.2514 11 7 0 0.5015 14 7 0 0.7516 23 7 1 0.2517 20 7 1 0.5018 22 7 1 0.7519 13 10 0 0.2520 8 10 0 0.5021 3 10 0 0.7522 27 10 1 0.2523 26 10 1 0.5024 5 10 1 0.75一、摘要在农某医药公司为了掌握一种新止痛药的疗效,设计了一个药物实验,通过观测病人性别、血压和用药剂量与病痛时间的关系,预测服药后病痛明显减轻的时间。
我们运用数学统计工具m i n i t a b软件,对用药剂量,性别和血压组别与病痛减轻时间之间的数据进行深层次地处理并加以讨论概率值P (是否<0.05)和拟合度R -S q 的值是否更大(越大,说明模型越好)。
数学建模统计模型教学教案一、教学内容本节课选自高中数学教材《数学建模与统计》第十章,具体内容为第一节的统计模型。
详细内容包括描述统计和推断统计的基础知识,重点探讨如何构建线性回归模型,以及如何运用该模型进行数据的预测和分析。
二、教学目标1. 理解并掌握描述统计和推断统计的基本概念和方法;2. 学会构建线性回归模型,并运用模型对实际问题进行预测和分析;3. 培养学生的数据分析能力和解决实际问题的能力。
三、教学难点与重点教学难点:线性回归模型的构建和应用。
教学重点:描述统计和推断统计的基本概念,以及线性回归模型的构建和应用。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔;2. 学具:教材、练习本、计算器。
五、教学过程1. 引入:通过展示一组实际数据,引出描述统计和推断统计的概念,激发学生的兴趣。
2. 知识讲解:a. 简要介绍描述统计和推断统计的基本概念;b. 详细讲解线性回归模型的构建方法和应用。
3. 例题讲解:a. 演示如何构建线性回归模型;b. 结合实际案例,展示如何运用线性回归模型进行预测和分析。
4. 随堂练习:a. 让学生独立完成一组实际数据的描述统计分析;b. 引导学生构建线性回归模型,并对数据进行预测和分析。
六、板书设计1. 描述统计和推断统计的概念;2. 线性回归模型的构建方法;3. 线性回归模型的应用案例;4. 随堂练习的解答。
七、作业设计1. 作业题目:a. 对一组实际数据进行描述统计分析;b. 根据给定的数据,构建线性回归模型,并进行预测和分析。
2. 答案:见附件。
八、课后反思及拓展延伸1. 反思:本节课学生对描述统计和推断统计的概念掌握情况,以及对线性回归模型构建和应用的理解程度。
2. 拓展延伸:a. 探讨其他统计模型(如非线性回归、时间序列分析等)在实际问题中的应用;b. 引导学生参加数学建模竞赛,提高解决实际问题的能力。
重点和难点解析1. 线性回归模型的构建方法;2. 线性回归模型在实际问题中的应用;3. 课后作业的设计与答案。
数学建模模型常用的四大模型及对应算法原理总结四大模型对应算法原理及案例使用教程:一、优化模型线性规划线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在线性回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
案例实操非线性规划如果目标函数或者约束条件中至少有一个是非线性函数时的最优化问题叫非线性规划问题,是求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。
建立非线性规划模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,即目标函数。
然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,即约束条件。
整数规划整数规划分为两类:一类为纯整数规划,记为PIP,它要求问题中的全部变量都取整数;另一类是混合整数规划,记之为MIP,它的某些变量只能取整数,而其他变量则为连续变量。
整数规划的特殊情况是0-1规划,其变量只取0或者1。
多目标规划求解多目标规划的方法大体上有以下几种:一种是化多为少的方法,即把多目标化为比较容易求解的单目标,如主要目标法、线性加权法、理想点法等;另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。
目标规划目标规划是一种用来进行含有单目标和多目标的决策分析的数学规划方法,是线性规划的特殊类型。
目标规划的一般模型如下:设xj是目标规划的决策变量,共有m个约束条件是刚性约束,可能是等式约束,也可能是不等式约束。
设有l个柔性目标约束条件,其目标规划约束的偏差为d+, d-。
设有q个优先级别,分别为P1, P2, …, Pq。
在同一个优先级Pk中,有不同的权重,分别记为[插图], [插图](j=1,2, …, l)。
数学建模统计模型
数学建模是指利用数学方法和技巧对实际问题进行抽象和建立数学模型,从而求解或预测问题的过程。
数学建模可以应用于各个领域,如物理学、经济学、工程学等,在解决实际问题中具有重要的作用。
统计模型是指利用统计学的理论和方法对数据进行分析和建模的过程。
统计模型可以描述和预测数据的变化和规律,从而提供对实际问题的认识和解决方案。
统计模型包括描述性统计模型和推断性统计模型,前者用于对数据进行总结和描述,后者用于对数据进行推断和预测。
数学建模和统计模型在解决实际问题时常常相互结合。
数学建模可以通过建立数学模型抽象和简化实际问题,而统计模型可以通过对数据的分析和建模验证和改进数学模型。
通过数学建模和统计模型的应用,可以提高问题的分析和解决的准确性和可靠性。