数学建模统计模型
- 格式:docx
- 大小:68.71 KB
- 文档页数:12
数学建模之统计模型主讲:张伟内容概要•统计模型概要•参数检验•非参数检验•方差分析一、统计模型(Statistical Model)1. 概念有些过程无法用理论分析方法导出其模型,但可通过试验或直接由工业过程测定数据,经过数理统计求得各变变量之间的函数关系,称为统计模型数学建模就是利用数学方法来解决实际问题。
常用模型:最大似然估计、回归分析、聚类分析、非参数估计等软件:SPSS统计软件2.建模背景案例1:眼科病床的合理安排(2009年B题)该医院眼科门诊每天开放,住院部共有病床79张。
该医院眼科手术主要分四大类:白内障、视网膜疾病、青光眼和外伤。
附录中给出了2008年7月13日至2008年9月11日这段时间里各类病人的情况。
案例2:葡萄酒的评价问题(2012年A题)二、参数检验(Parametric Tests)当总体分布已知(如总体为正态分布),根据样本数据对总体分布的统计参数进行推断。
主要目的(1)估计参数的取值,(2)对参数进行某种统计检验。
这类问题往往用参数检验来进行统计推断。
(单个或多个参数).某车间用一台包装机包装葡萄糖.包得的袋装糖当机器正常时,某日开工后为检验包装机是否正常,包装的糖9袋,称得净重为(公斤):0.497 0.506 0.518 0.524 0.4980.511 0.520 0.515 0.512问机器是否正常?案例3:重是一个随机变量X ,且),(~2σμN X 其均值为μ=0.5公斤,标准差σ=0.015公斤.随机地抽取它所(α=0.05)提出假设寻求统计量写出拒绝域进行检验解题思路:求解:SPSS软件或是Excel三、非参数检验(Nonparametric Tests)当总体分布未知,根据样本数据对总体分布的统计参数进行推断。
主要目的(1)估计参数的取值;(2)对参数进行某种统计检验。
这类问题往往用参数检验来进行统计推断。
(单个或多个参数).1.单样本检验(拟合性检验)样本观测值总体分布(1)卡方检验寻求方法拟合(2)二项分布检验(3)K-S检验注:主要服从分布:离散型分布,正态分布,指数分布等案例1中:病床的合理安排需要做数据分析,拟合以下两个重要的指标:(1)病人到达人数服从Poisson分布,分布检验,分布参数提取;(2)术后住院时间分布:正态分布or Г分布or 经验分布;案例2中问题1:首先,通过单样本K-S检验确定葡萄酒评分数据的概率分布;然后再做显著性检验。
数学建模统计模型教学教案一、教学内容本节课的教学内容选自人教版高中数学选修23第二章第四节“回归分析”和第三章第三节“独立性检验”。
具体内容包括:1. 回归直线方程的求法及应用;2. 相关系数的概念及其应用;3. 独立性检验的方法及其应用。
二、教学目标1. 理解回归直线方程、相关系数的概念,学会求回归直线方程和计算相关系数;2. 掌握独立性检验的方法,并能运用独立性检验解决实际问题;3. 培养学生的数据分析能力、数学建模能力和解决实际问题的能力。
三、教学难点与重点1. 教学难点:回归直线方程的求法、相关系数的计算、独立性检验的方法及应用;2. 教学重点:回归直线方程的求法、相关系数的计算、独立性检验的方法。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔;2. 学具:教材、笔记本、计算器。
五、教学过程1. 实践情景引入:以“调查某班级学生的身高和体重关系”为例,引导学生思考如何利用数学模型描述身高和体重之间的关系;2. 讲解回归直线方程的求法:通过示例,讲解最小二乘法求回归直线方程的步骤,让学生掌握求回归直线方程的方法;3. 讲解相关系数的概念及计算方法:解释相关系数的概念,演示如何利用计算器计算相关系数,让学生理解相关系数的作用;4. 应用练习:让学生运用回归直线方程和相关系数解决实际问题,如预测某学生的体重;5. 讲解独立性检验的方法:通过示例,讲解独立性检验的步骤,让学生掌握独立性检验的方法;6. 应用练习:让学生运用独立性检验解决实际问题,如判断“性别与购买意愿是否独立”;六、板书设计1. 回归直线方程的求法;2. 相关系数的概念及其计算方法;3. 独立性检验的方法。
七、作业设计1. 求下列数据的回归直线方程:身高(x):165, 170, 172, 175, 180体重(y):60, 62, 64, 66, 682. 计算下列数据的相关系数:身高(x):165, 170, 172, 175, 180体重(y):60, 62, 64, 66, 683. 某班级有男生20人,女生15人,男生中有12人购买了某商品,女生中有8人购买了该商品。
数学建模论文题目:一个医药公司的新药研究部门为了掌握一种新止痛剂的疗效,设计了一个药物试验,给患有同种疾病的病人使用这种新止痛剂的以下4个剂量中的某一个:2 g,5 g,7 g和10 g,并记录每个病人病痛明显减轻的时间(以分钟计). 为了解新药的疗效与病人性别和血压有什么关系,试验过程中研究人员把病人按性别及血压的低、中、高三档平均分配来进行测试. 通过比较每个病人血压的历史数据,从低到高分成3组,分别记作0.25,0.50和0.75. 实验结束后,公司的记录结果见下表(性别以0表示女,1表示男).请你为该公司建立一个数学模型,根据病人用药的剂量、性别和血压组别,预测出服药后病痛明显减轻的时间.病人序号病痛减轻时间/min用药剂量/g性别血压组别1 352 0 0.252 43 2 0 0.503 55 2 0 0.754 47 2 1 0.255 43 2 1 0.506 57 2 1 0.757 26 5 0 0.258 27 5 0 0.509 28 5 0 0.7510 29 5 1 0.2511 22 5 1 0.5012 29 5 1 0.7513 19 7 0 0.2514 11 7 0 0.5015 14 7 0 0.7516 23 7 1 0.2517 20 7 1 0.5018 22 7 1 0.7519 13 10 0 0.2520 8 10 0 0.5021 3 10 0 0.7522 27 10 1 0.2523 26 10 1 0.5024 5 10 1 0.75一、摘要在农某医药公司为了掌握一种新止痛药的疗效,设计了一个药物实验,通过观测病人性别、血压和用药剂量与病痛时间的关系,预测服药后病痛明显减轻的时间。
我们运用数学统计工具m i n i t a b软件,对用药剂量,性别和血压组别与病痛减轻时间之间的数据进行深层次地处理并加以讨论概率值P (是否<0.05)和拟合度R -S q 的值是否更大(越大,说明模型越好)。
数学建模大作业摘要某公司想用全行业的销售额作为自变量来预测公司的销售额,题目给出了1977—1981此公司的销售额和行业销售额的分季度数据表格。
通过对所给数据的简单分析,我们可以看出:此公司的销售额有随着行业销售额的增加而增加的趋势,为了更加精确的分析题目所给的数据,得出科学的结论,从而达到合理预测的目的。
我们使用时间序列分析法,参照课本统计回归模型例4,做出了如下的统计回归模型。
在问题一中,我们使用MATLB数学软件,画出了数据的散点图,通过观察散点图,发现公司的销售额和行业销售额之间有很强的线性关系,于是我们用线性回归模型去拟合,发现有很好的拟合性。
但是这种情况下,并没有考虑到数据的自相关性,所以我们做了下面几个问题的分析来对这个数学模型进行优化。
在问题二中,通过建立了公司销售额对全行业销售额的回归模型,并使用DW检测诊断随机误差项的自相关性。
通过计算和查DW表比较后发现随即误差存在正自相关,也就是说前面的模型有一定的局限性,预测结果存在一定的偏差,还有需要改进的地方。
在问题三中,因为在问题二中得出随即误差存在正自相关,为了消除随机误差的自相关性,我们建立了一个加入自相关后的回归模型。
并对其作出了分析和验证,我们发现加入自相关后的回归模型更加合理。
通过使用我们建立的模型对公司的销售额进行预测,发现和实际的销售额很接近,也就是说模型效果还不错。
关键词:销售额、回归模型、自相关性一、问题提出某公司想用全行业的销售额作为自变量来预测公司的销售额,下表给出了1977-1981年公司销售额和行业销售额的分季度数据(单位:百万元).(1)画出数据的散点图,观察用线性回归模型拟合是否合适。
(2)监理公司销售额对全行业销售额的回归模型,并用DW检验诊断随机误差项的自相关性。
二、基本假设假设一:模型中ε(对时间t )相互独立。
三、符号说明公司销售额:y (百万)行业销售额:x (百万) 概念介绍:1.自相关:自相关(auto correlation ),又称序列相关(serial correlation )是指总体回归模型的随机误差项之间存在的相关关系。
数学建模统计模型教学教案一、教学内容本节课选自高中数学教材《数学建模与统计》第十章,具体内容为第一节的统计模型。
详细内容包括描述统计和推断统计的基础知识,重点探讨如何构建线性回归模型,以及如何运用该模型进行数据的预测和分析。
二、教学目标1. 理解并掌握描述统计和推断统计的基本概念和方法;2. 学会构建线性回归模型,并运用模型对实际问题进行预测和分析;3. 培养学生的数据分析能力和解决实际问题的能力。
三、教学难点与重点教学难点:线性回归模型的构建和应用。
教学重点:描述统计和推断统计的基本概念,以及线性回归模型的构建和应用。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔;2. 学具:教材、练习本、计算器。
五、教学过程1. 引入:通过展示一组实际数据,引出描述统计和推断统计的概念,激发学生的兴趣。
2. 知识讲解:a. 简要介绍描述统计和推断统计的基本概念;b. 详细讲解线性回归模型的构建方法和应用。
3. 例题讲解:a. 演示如何构建线性回归模型;b. 结合实际案例,展示如何运用线性回归模型进行预测和分析。
4. 随堂练习:a. 让学生独立完成一组实际数据的描述统计分析;b. 引导学生构建线性回归模型,并对数据进行预测和分析。
六、板书设计1. 描述统计和推断统计的概念;2. 线性回归模型的构建方法;3. 线性回归模型的应用案例;4. 随堂练习的解答。
七、作业设计1. 作业题目:a. 对一组实际数据进行描述统计分析;b. 根据给定的数据,构建线性回归模型,并进行预测和分析。
2. 答案:见附件。
八、课后反思及拓展延伸1. 反思:本节课学生对描述统计和推断统计的概念掌握情况,以及对线性回归模型构建和应用的理解程度。
2. 拓展延伸:a. 探讨其他统计模型(如非线性回归、时间序列分析等)在实际问题中的应用;b. 引导学生参加数学建模竞赛,提高解决实际问题的能力。
重点和难点解析1. 线性回归模型的构建方法;2. 线性回归模型在实际问题中的应用;3. 课后作业的设计与答案。
数学建模模型常用的四大模型及对应算法原理总结四大模型对应算法原理及案例使用教程:一、优化模型线性规划线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在线性回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
案例实操非线性规划如果目标函数或者约束条件中至少有一个是非线性函数时的最优化问题叫非线性规划问题,是求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。
建立非线性规划模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,即目标函数。
然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,即约束条件。
整数规划整数规划分为两类:一类为纯整数规划,记为PIP,它要求问题中的全部变量都取整数;另一类是混合整数规划,记之为MIP,它的某些变量只能取整数,而其他变量则为连续变量。
整数规划的特殊情况是0-1规划,其变量只取0或者1。
多目标规划求解多目标规划的方法大体上有以下几种:一种是化多为少的方法,即把多目标化为比较容易求解的单目标,如主要目标法、线性加权法、理想点法等;另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。
目标规划目标规划是一种用来进行含有单目标和多目标的决策分析的数学规划方法,是线性规划的特殊类型。
目标规划的一般模型如下:设xj是目标规划的决策变量,共有m个约束条件是刚性约束,可能是等式约束,也可能是不等式约束。
设有l个柔性目标约束条件,其目标规划约束的偏差为d+, d-。
设有q个优先级别,分别为P1, P2, …, Pq。
在同一个优先级Pk中,有不同的权重,分别记为[插图], [插图](j=1,2, …, l)。
数学建模统计模型
数学建模是指利用数学方法和技巧对实际问题进行抽象和建立数学模型,从而求解或预测问题的过程。
数学建模可以应用于各个领域,如物理学、经济学、工程学等,在解决实际问题中具有重要的作用。
统计模型是指利用统计学的理论和方法对数据进行分析和建模的过程。
统计模型可以描述和预测数据的变化和规律,从而提供对实际问题的认识和解决方案。
统计模型包括描述性统计模型和推断性统计模型,前者用于对数据进行总结和描述,后者用于对数据进行推断和预测。
数学建模和统计模型在解决实际问题时常常相互结合。
数学建模可以通过建立数学模型抽象和简化实际问题,而统计模型可以通过对数据的分析和建模验证和改进数学模型。
通过数学建模和统计模型的应用,可以提高问题的分析和解决的准确性和可靠性。
数学建模统计模型教学优质教案一、教学内容本节课选自高中数学教材《数学建模与数学探究》第四章“统计模型”部分,具体内容包括:4.1节“数据的收集与整理”,4.2节“频率分布直方图”,4.3节“统计量及其计算”,4.4节“概率分布的估计”。
二、教学目标1. 理解并掌握数据的收集、整理和描述方法,能运用频率分布直方图对数据进行可视化展示。
2. 掌握常用的统计量(如平均数、中位数、众数、方差等)的计算方法,并能够根据实际问题选择合适的统计量进行分析。
3. 了解概率分布的估计方法,能够利用样本数据对总体分布进行推断。
三、教学难点与重点难点:频率分布直方图的绘制,概率分布的估计。
重点:数据的收集与整理,统计量的计算,概率分布的理解与应用。
四、教具与学具准备1. 教具:多媒体教学设备,PPT课件,黑板,粉笔。
2. 学具:直尺,圆规,计算器。
五、教学过程1. 实践情景引入(5分钟)通过展示一组关于学生身高、体重等数据的调查报告,引导学生思考如何对这些数据进行合理的整理和分析。
2. 数据的收集与整理(15分钟)(1)介绍数据的收集方法,如问卷调查、实验测量等。
(2)讲解数据的整理方法,如排序、分类、编码等。
3. 频率分布直方图(20分钟)(1)讲解频率分布直方图的绘制方法。
(2)通过例题讲解,引导学生动手绘制频率分布直方图。
4. 统计量及其计算(15分钟)(1)介绍常用的统计量:平均数、中位数、众数、方差等。
(2)讲解统计量的计算方法,并通过例题进行巩固。
5. 概率分布的估计(20分钟)(1)讲解概率分布的估计方法,如极大似然估计、矩估计等。
(2)通过例题讲解,引导学生利用样本数据对总体分布进行推断。
6. 随堂练习(15分钟)布置几道与教学内容相关的练习题,让学生独立完成,并及时给予反馈。
六、板书设计1. 数据的收集与整理2. 频率分布直方图3. 常用统计量及其计算方法4. 概率分布的估计方法七、作业设计1. 作业题目:(1)收集并整理一组数据,绘制频率分布直方图。
数学建模常用模型与算法一、常用模型☐(一)、评价模型:☐AHP(层次分析法)(确定权重)、模糊评价、聚类分析、因子分析、主成份分析、回归分析、神经网络、多指标综合评价、熵值法(确定权重)等☐(二)、预测模型:☐指数平滑法、灰色预测法、回归模型、神经网络预测、时间序列模型、马尔科夫预测、差分微分方程☐(三)、统计模型:☐方差分析、均值比较的假设检验☐(四)、方程模型:☐常微分方程、差分方程、偏微分方程、以及各种方程的求解(数值解和解析解)☐(五)运筹优化类:☐线性规划、非线性规划、目标规划、整数规划、图论模型(最短路、最大流、遍历问题等)、排队论、对策论、以及各种模型的算法☐(六)其他模型:☐随机模拟模型、等二、十大算法1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)。
数学建模论文题目:一个医药公司的新药研究部门为了掌握一种新止痛剂的疗效,设计了一个药物试验,给患有同种疾病的病人使用这种新止痛剂的以下4个剂量中的某一个:2 g,5 g,7 g和10 g,并记录每个病人病痛明显减轻的时间(以分钟计). 为了解新药的疗效与病人性别和血压有什么关系,试验过程中研究人员把病人按性别及血压的低、中、高三档平均分配来进行测试. 通过比较每个病人血压的历史数据,从低到高分成3组,分别记作,和. 实验结束后,公司的记录结果见下表(性别以0表示女,1表示男).请你为该公司建立一个数学模型,根据病人用药的剂量、性别和血压组别,预测出服药后病痛明显减轻的时间.一、摘要在农某医药公司为了掌握一种新止痛药的疗效,设计了一个药物实验,通过观测病人性别、血压和用药剂量与病痛时间的关系,预测服药后病痛明显减轻的时间。
我们运用数学统计工具m i n i t a b软件,对用药剂量,性别和血压组别与病痛减轻时间之间的数据进行深层次地处理并加以讨论概率值P (是否<)和拟合度R-S q的值是否更大(越大,说明模型越好)。
首先,假设用药剂量、性别和血压组别与病痛减轻时间之间具有线性关系,我们建立了模型Ⅰ。
对模型Ⅰ用m i n i t a b软件进行回归分析,结果偏差较大,说明不是单纯的线性关系,然后对不同性别分开讨论,增加血压和用药剂量的交叉项,我们在模型Ⅰ的基础上建立了模型Ⅱ,用m i n i t a b软件进行回归分析后,用药剂量对病痛减轻时间不显着,于是我们有引进了用药剂量的平方项,改进模型Ⅱ建立了模型Ⅲ,用m i n i t a b软件进行回归分析后,结果合理。
最终确定了女性病人服药后病痛减轻时间与用药剂量、性别和血压组别的关系模型:Y=1x 3x1x3x21x对模型Ⅱ和模型Ⅲ关于男性病人用m i n i t a b软件进行回归分析,结果偏差依然较大,于是改进模型Ⅲ建立了模型Ⅳ,用m i n i t a b软件进行回归分析后,结果合理。
最终确定了男性病人服药后病痛减轻时间与用药剂量、性别和血压组别的关系模型:Y=1x1x 3x21x关键词止痛剂药剂量性别病痛减轻时间二、问题的提出一个医药公司的新药研究部门为了掌握一种新止痛剂的疗效,设计了一个药物实验,给患有同种病痛的病人使用这种新止痛剂的一下4个剂量中的某一个:2g,5g,7g和10g,并记录每个病人病痛明显减轻的时间(以分钟计)。
为了了解新药的疗效与病人性别和血压有什么关系,实验过程中研究人员把病人按性别及血压的低、中、高三档平均分配来进行测试。
通过比较给个病人血压的历史数据,从低到高分成三组,分别记作,和.实验结束后,公司的记录结果附录1-1表(性别以0表示,1表示男)。
现在为公司建立一个模型,根据病人用药的剂量、性别和血组别,预测出服药后病痛明显减轻的时间。
三、问题的分析假定每个患该种病的程度相差不大,即病情基本相同,根据现实,用药量与病痛减轻时间会有一定的关系,一般,药用量越高,病痛减轻时间变得越快;而更一般,男性身体素质相对于女性来说比较强壮,病痛减轻的时间也会跟性别有关系,正常而言,身体素质越好,病痛减轻时间越快;另一个,一个人的血压组别的高地也会影响到他的病痛减轻时间的快慢。
对1-1表格中的数据进行相关分析如下:相关分析:用药剂量(g),血压组别,知用药剂量(g)和血压组别的P e a r s o n相关系数=P值=;由此,可以看出用药剂量与血压组别没有关系,如图1-1所示1-1图相关分析:用药剂量(g),性别,知用药剂量(g)和性别的P e a r s o n相关系数=P值=;由此可以看出用药剂量与性别相互独立。
如1-2图所示1-2图根据所给数据可分别作出病痛减轻时间与用药剂血压组别的散点图量,性别及如下: 图 图图四、模型假设与符号假设假设病痛减轻时间只与用药剂量、性别和血压组别有关,不受其他因素的影响,由以上散点图(图图)可以作出如下模型假设 模型Ⅰ:εββββ++++=3322110x x x Y符号说明1、Y 为病痛减轻时间量,单位(m i n );2、1x 表示用药剂量 单位(g );3、2x 表示性别 ;4、3x 表示血压组别;5、 S 表示标准差;6、 R -S q 表示线性拟合度。
五、模型的建立下面用m i n i t a b 软件对分别对残差对用药剂量、残差对性别和残差对血压组别进行绘图,到出对应的图、图和图,并对这些图进行分析,分别可以看出残差对用药剂量是正常的、残差对性别是正常的、残差对血压组别正常的。
图 图 图由~图分析,可以用药剂量和血压组别的乘积表示对病痛减轻时间的交互式影响,性别对病疼减轻时间有显着影响,因此可以对男性和女性分开讨论,得到如下模型:模型Ⅱ εββββ++++=31433110x x x x Y(1)对女性的进行分析如下:回归分析:病痛减轻时间(m i n)与用药剂量(g),血压组别,用药剂量及血压组别回归方程为病痛减轻时间(m i n)=+用药剂量(g)+血压组别-用药剂量及血压组别交叉项即Y=+1x+3x1x3x自变量系数系数标准误 T P常量用药剂量(g)血压组别用药剂量及血压组别S = R-Sq = % R-Sq(调整) = %方差分析来源自由度 SS MS F P 回归 3残差误差 8合计 11来源自由度 Seq SS用药剂量(g) 1血压组别 1用药剂量及血压组别 1异常观测值用药剂病痛减轻时拟合值标准化观测值量(g)间(min)拟合值标准误残差残差8R表示此观测值含有大的标准化残差因为用药剂量p值为,所以对病痛减轻时间影响不显着,不妨引进用药剂量的平方项加以讨论,因此模型进一步改进为:模型Ⅲ回归分析:病痛减轻时间(m i n)与用药剂量(g),血压组别,用药剂量及血压组别,用药剂量的平方回归方程为:病痛减轻时间(min) = - 用药剂量(g) + 血压组别- 用药剂量及血压组别 + 用药剂量的平方即 Y=1x3x31x x21x自变量系数系数标准误 T P常量用药剂量(g)血压组别用药剂量及血压组别用药剂量的平方S = R-Sq = % R-Sq(调整) = %方差分析来源自由度 SS MS F P回归 4合计 11来源自由度 Seq SS用药剂量(g) 1血压组别 1用药剂量及血压组别 1用药剂量的平方 1由拟合值R-S q=%可以确定,该模型比较合理。
(2)、对男性用模型Ⅱ进行分析,分析结果如下:回归分析:病痛减轻时间(m i n)与用药剂量(g),血压组别,用药剂量及血压组别回归方程为:病痛减轻时间(min) = + 用药剂量(g) + 血压组别- 用药剂量及血压组别即 Y=+1x+3x31x x系数标自变量系数准误 T P常量用药剂量(g)血压组别用药剂量及血压组别S = R-Sq = % R-Sq(调整) = %方差分析来源自由度 SS MS F P回归 3合计 11来源 自由度 Seq SS 用药剂量(g ) 1 血压组别 1 用药剂量及血压组别 1因为用药剂量p 值为,所以对病痛减轻时间影响不显着, 不妨引进用药剂量的平方项加以讨论,因此可以利用模型Ⅲ进行分析: 回归分析: 病痛减轻时间(m i n ) 与 用药剂量(g ), 血压组别, 用药剂量及血压组别, 用药剂量的平方 回归方程为:病痛减轻时间(min ) = - 用药剂量(g ) + 血压组别- 用药剂量及血压组别 + 用药剂量的平方即 Y=1x 3x 31x x 21x 自变量 系数 系数标准误 T P常量 用药剂量(g ) 血压组别 用药剂量及血压组别 用药剂量的平方 S = R-Sq = % R-Sq (调整) = % 方差分析来源 自由度 SS MS F P 回归 4 残差误差 7来源自由度 Seq SS用药剂量(g) 1血压组别 1用药剂量及血压组别 1用药剂量的平方 1由此,可以看出,在男性方面血压组别的P=,对病痛减轻时间不显着,不妨取消血压组别这个单变量,将模型进一步改进。
模型Ⅳ回归分析:病痛减轻时间(m i n)与用药剂量(g),性别,用药剂量及血压组别,用药剂量的平方*性别(实质上)是常量*性别已从方程中删除。
回归方程为:病痛减轻时间(min) = - 用药剂量(g) + 用药剂量及血压组别 + 用药剂量的平方Y=1x31x x21x自变量系数系数标准误 T P常量用药剂量(g)用药剂量及血压组别用药剂量的平方S = R-Sq = % R-Sq(调整) = %方差分析来源自由度 SS MS F P回归 3残差误差 8来源自由度 Seq SS用药剂量(g) 1用药剂量及血压组别 1用药剂量的平方 1异常观测值用药剂病痛减轻时拟合值标准化观测值量(g)间(min)拟合值标准误残差残差12R表示此观测值含有大的标准化残差*注*列中的所有值相同。
用药剂量及血压组别的P=,但是R-S q=%R-S q(调整)=%,说明这个模型改进更加合理。
六、模型的优缺点与改进方向通过回归模型的建立及不断改进过程当中,得知该公司的新药的疗效对于男性和女性的作用程度不一样。
该模型是针对该公司的新药进行建模,不具有普遍性。
七、参考文献1、姜启源,谢金星,叶俊.数学模型(第三版).高等教育出版社,(2012重印)2、马林,何桢.六西格玛管理(第二版).中国人民大学出版社,(重印)3、吴翊,李永乐,胡庆军.应用数理统计.国防科技大学出版社,(重印)八、附录部分。