1.2.1导数的计算
- 格式:ppt
- 大小:1.31 MB
- 文档页数:15
1.2导数的计算(教学设计)(1)1.2.1几个常用函数的导数;1.2.2基本初等函数的导数公式教学目标:知识与技能目标:(1)能够用定义求五个常用函数的导数,并熟悉求导数的三个步骤。
(2)使学生应用由定义求导数的三个步骤推导五种常见函数y c =、y x =、2y x =、1y x=、y =的导数公式;并能运用这四个公式正确求函数的导数. 过程与方法目标:通过本节的学习,掌握利用导数的定义求导数的方法。
情感、态度与价值观目标:(1)通过本节的学习,进一步体会导数与物理知识之间的联系,提高数学的应用意识。
(2)通过本节的学习,培养学生对问题的分析能力与认识能力,进一步明白数学在研究整个自然科学中的重要位置。
教学重点: 五种常见函数y c =、y x =、2y x =、1y x =、y =的导数公式及应用教学难点: 五种常见函数y c =、y x =、2y x =、1y x=、y =的导数公式教学过程: 一、复习回顾:1.求f(x)在x 0年的导数的步骤为: 1)求增量:∆y=f(x+∆x)-f(x)2)算比值:()()y f x x f x x x∆+∆-=∆∆ 3)求极限:y ’=0lim x yx∆→∆∆2.导数的几何意义。
二.创设情景,新课引入我们知道,导数的几何意义是曲线在某一点处的切线斜率,物理意义是运动物体在某一时刻的瞬时速度.那么,对于函数()y f x =,如何求它的导数呢?由导数定义本身,给出了求导数的最基本的方法,但由于导数是用极限来定义的,所以求导数总是归结到求极限这在运算上很麻烦,有时甚至很困难,为了能够较快地求出某些函数的导数,这一单元我们将研究比较简捷的求导数的方法,下面我们求几个常用的函数的导数. 三.师生互动,新课讲解: 1.函数()y f x c ==的导数 根据导数定义,因为()()0y f x x f x c c x x x∆+∆--===∆∆∆ 所以00limlim 00x x yy ∆→∆→∆'===0y '=表示函数y 0.若y c =表示路程关于时间的函数,则0y '=可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态.2.函数()y f x x ==的导数 因为()()1y f x x f x x x x x x x∆+∆-+∆-===∆∆∆ 所以00limlim 11x x yy x ∆→∆→∆'===∆以解释为某物体做瞬时速度为1的匀速运动. 3.函数2()y f x x ==的导数因为22()()()y f x x f x x x x x x x∆+∆-+∆-==∆∆∆ 2222()2x x x x x x x x +∆+∆-==+∆∆所以00limlim (2)2x x yy x x x x ∆→∆→∆'==+∆=∆ 2y x '=表示函数y x =图像(图3.2-3)上点(,)x y 处的切线的斜率都为2x ,说明随着x 的变化,切线的斜率也在变化.另一方面,从导数作为函数在一点的瞬时变化率来看,表明:当0x <时,随着x 的增加,函数2y x =减少得越来越慢;当0x >时,随着x 的增加,函数2y x =增加得越来越快.若2y x =表示路程关于时间的函数,则2y x '=可以解释为某物体做变速运动,它在时刻x 的瞬时速度为2x .4.函数1()y f x x==的导数因为11()()y f x x f x x x x x x x-∆+∆-+∆==∆∆∆ 2()1()x x x x x x x x x x -+∆==-+∆∆+⋅∆ 所以220011limlim ()x x y y x∆→∆→∆'==-=-∆5.函数()y f x =因为()()y f x x f xx x ∆+∆-==∆∆==所以0lim lim x x y y x ∆→∆→∆'===∆(2)推广:若*()()n y f x x n Q ==∈,则1()n f x nx -'= 小结:基本初等函数的导数公式:例1(课本P14例1)假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)? 解:根据基本初等函数导数公式表,有'() 1.05ln1.05t p t =所以'10(10) 1.05ln1.050.08p =≈(元/年)因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨.变式训练1:(课本P15思考)如果上式(例1)中某种商品的P 0=5,那么在第10个年头,这种商品的价格上涨的速度大约是多少?例2 求下列函数的导数:(1)y =sin π3;(2)y =5x ;(3)y =1x 3;(4)y =4x 3;(5)y =log 3x ;(6)y =1-2sin 2x 2.解 (1)y ′=0; (2)y ′=(5x )′=5x ln 5;(3)y ′=⎝⎛⎭⎫1x 3′=(x -3)′=-3x -4; (4)y ′=(4x 3)′=(x 34)′=1434x -=344x;(5)y ′=(log 3x )′=1x ln 3;(6)y =1-2sin 2x2=cos x ,y ′=(cos x )′=-sin x .反思与感悟 若给出函数解析式不符合导数公式,需通过恒等变换对解析式进行化简或变形后求导,如根式化指数幂的形式求导. 变式训练2:(1)下列函数求导运算正确的个数为( )①(3x )′=3x log 3e ;②(log 2x )′=1x ln 2;③1(ln x )′=x ;④若y =1x 2,则y ′|x =3=-227.A .1B .2C .3D .4(2) ①已知f (x )=5x ,则f ′(2)=________. ②已知f (x )=ln x ,且f ′(x 0)=1x 20,则x 0=________.答案 (1)C (2)①25ln 5 ②1解析 (1)①中(3x )′=3x ln 3,②③④均正确. (2)①f ′(x )=5x ln 5,f ′(2)=25ln 5. ②f ′(x )=1x ,∴f ′(x 0)=1x 0=1x 20,解得x 0=1.例3:求过曲线y=cosx 上点P 132π(,)且与在这点的切线垂直的直线方程。
导数的定义和求导规则一、导数的定义1.1 极限的概念:当自变量x趋近于某一数值a时,函数f(x)趋近于某一数值L,即称f(x)当x趋近于a时的极限为L,记作:lim (x→a) f(x) = L1.2 导数的定义:函数f(x)在点x=a处的导数,记作f’(a)或df/dx|_{x=a},表示函数在某一点的瞬时变化率。
定义如下:二、求导规则2.1 常数倍法则:如果u(x)是可导函数,c是一个常数,则cu(x)也是可导函数,且(cu(x))’ = c*u’(x)。
2.2 幂函数求导法则:如果u(x) = x^n,其中n为常数,则u’(x) = n*x^(n-1)。
2.3 乘积法则:如果u(x)和v(x)都是可导函数,则(u(x)v(x))’ = u’(x)v(x) +u(x)v’(x)。
2.4 商法则:如果u(x)和v(x)都是可导函数,且v(x)≠0,则(u(x)/v(x))’ =(u’(x)v(x) - u(x)v’(x))/(v(x))^2。
2.5 和差法则:如果u(x)和v(x)都是可导函数,则(u(x) + v(x))’ = u’(x) + v’(x),(u(x) - v(x))’ = u’(x) - v’(x)。
2.6 链式法则:如果y = f(u),u = g(x),则y关于x的导数可以表示为dy/dx = (dy/du) * (du/dx)。
2.7 复合函数求导法则:如果y = f(g(x)),则y关于x的导数可以表示为dy/dx = (df/dg) * (dg/dx)。
2.8 高阶导数:如果f’(x)是f(x)的一阶导数,则f’‘(x)是f’(x)的一阶导数,以此类推。
2.9 隐函数求导法则:如果方程F(x,y) = 0表示隐函数,则y关于x的导数可以表示为(dy/dx) = -F_x / F_y,其中F_x和F_y分别是F(x,y)对x和y的偏导数。
三、导数的应用3.1 函数的单调性:如果f’(x) > 0,则f(x)在区间内单调递增;如果f’(x) < 0,则f(x)在区间内单调递减。
高中数学公式大全三角函数的导数公式与极限计算高中数学公式大全:三角函数的导数公式与极限计算在高中数学中,三角函数是非常重要的概念之一。
掌握三角函数的导数公式和极限计算方法,对于解决各种相关问题具有重要意义。
本文将为您介绍三角函数的导数公式以及极限计算方法。
一、三角函数的导数公式1.1 正弦函数的导数公式正弦函数的导数公式为:f'(x) = cos(x)1.2 余弦函数的导数公式余弦函数的导数公式为:f'(x) = -sin(x)1.3 正切函数的导数公式正切函数的导数公式为:f'(x) = sec^2(x)1.4 余切函数的导数公式余切函数的导数公式为:f'(x) = -csc^2(x)1.5 正割函数的导数公式正割函数的导数公式为:f'(x) = sec(x) * tan(x)1.6 余割函数的导数公式余割函数的导数公式为:f'(x) = -csc(x) * cot(x)二、三角函数的极限计算方法2.1 正弦函数的极限计算当x趋向于0时,正弦函数的极限计算公式为:lim(sin(x)/x) = 12.2 余弦函数的极限计算当x趋向于0时,余弦函数的极限计算公式为:lim((cos(x)-1)/x) = 02.3 正切函数的极限计算当x趋向于0时,正切函数的极限计算公式为:lim(tan(x)/x) = 12.4 余切函数的极限计算当x趋向于0时,余切函数的极限计算公式为:lim(cot(x)-1/x) = 02.5 正割函数的极限计算当x趋向于0时,正割函数的极限计算公式为:lim((sec(x)-1)/x) = 02.6 余割函数的极限计算当x趋向于0时,余割函数的极限计算公式为:lim((csc(x)-1)/x) = 0综上所述,通过掌握三角函数的导数公式和极限计算方法,我们可以快速求解各种与三角函数相关的数学问题。
希望本文对您的学习有所帮助。
1.2.1 几种常见函数的导数一、教学目标:熟记公式(C )'=0 (C 为常数), (x )'=1, ( x 2 )'=2x ,2'11x x -=⎪⎭⎫ ⎝⎛.x x 21)'(=二、教学重点:牢固、准确地记住五种常见函数的导数,为求导数打下坚实的基础.教学难点:灵活运用五种常见函数的导数.三、教学过程:(一)公式1:(C )'=0 (C 为常数).证明:y =f (x )=C , Δy =f (x +Δx )-f (x )=C -C =0,,0=∆∆x y .0lim ')('0=∆∆==∴→∆x y C x f x 也就是说,常数函数的导数等于0.公式2: 函数x x f y==)(的导数 证明:(略)公式3: 函数2)(x x f y==的导数 公式4: 函数x x f y1)(==的导数 公式5: 函数x x f y==)(的导数 (二)举例分析例1. 求下列函数的导数.⑴3x ⑵21x ⑶x 解:⑴=')(3x 133-x 23x = ⑵='⎪⎭⎫ ⎝⎛21x )(2'-x 32--=x 32x -= ⑶=')(x )(21'x 12121-=x 2121-=x .21x =练习求下列函数的导数:⑴ y =x 5; ⑵ y =x 6; (3);13xy = (4).3x y = (5)x x y 2= 例2.求曲线xy 1=和2x y =在它们交点处的两条切线与x 轴所围成的三角形的面积。
例3.已知曲线2x y=上有两点A (1,1),B (2,2)。
求:(1)割线AB 的斜率; (2)在[1,1+△x ]内的平均变化率;(3)点A 处的切线的斜率; (4)点A 处的切线方程例4.求抛物线y =x 2上的点到直线x -y -2=0 的最短距离.(三)课堂小结几种常见函数的导数公式(C )'=0 (C 为常数), (x )'=1, ( x 2 )'=2x ,2'11x x -=⎪⎭⎫ ⎝⎛.x x 21)'(=(四)课后作业《习案》作业四。
导数与函数的渐近线在微积分中,导数与函数的渐近线是两个重要的概念。
导数描述了函数在某一点处的变化率,而函数的渐近线则描述了函数在某一区间上的趋势。
本文将介绍导数的计算方法以及渐近线的概念和性质。
一、导数的计算方法导数是描述函数变化率的工具,它表示函数在某一点的瞬时变化率。
导数的计算方法有多种,下面我们将介绍其中几种常见的方法。
1.1 用极限的定义计算导数根据导数的定义,函数f(x)在某一点x处的导数可以通过极限的计算得到。
具体而言,导数可以定义为:f'(x) = lim (f(x + h) - f(x))/h (h→0)其中h为无穷小量,表示x的增量。
通过求取极限,我们可以计算出函数在某一点处的导数。
1.2 利用公式计算导数除了使用极限的定义计算导数之外,还可以利用一些常用的导数公式来直接计算导数。
如:- 常数函数的导数为0- 幂函数f(x) = x^n的导数为f'(x) = nx^(n-1)- 自然指数函数e^x的导数为e^x- 对数函数ln(x)的导数为1/x通过运用这些公式,我们可以更便捷地计算函数的导数。
二、函数的渐近线函数的渐近线是指函数图像在某一区间上的趋势线。
渐近线对函数的图像特征起到了重要的作用,它们可以帮助我们更好地理解函数的行为。
2.1 水平渐近线当函数的导数为0时,函数的图像可能会与某一水平线无限接近,这时该水平线就是函数的水平渐近线。
水平渐近线可以通过求解函数导数为0的点来确定。
2.2 垂直渐近线当函数的导数不存在时,函数的图像可能会出现垂直方向上的无穷大变化,这时该垂直线就是函数的垂直渐近线。
垂直渐近线可以通过求解函数导数不存在的点来确定。
2.3 斜渐近线如果函数的趋势逐渐接近某一斜线,该斜线就是函数的斜渐近线。
斜渐近线可以通过求解函数的极限来确定。
三、导数与函数的渐近线的关系导数与函数的渐近线之间存在着紧密的关系。
通过函数的导数,我们可以推断出函数的渐近线。