物理化学实验报告模板
- 格式:doc
- 大小:28.50 KB
- 文档页数:1
《大学化学基础实验2》实验报告课程:物理化学实验专业:环境科学班级:学号:学生姓名:**指导教师:**实验日期:5月24日实验一、溶解焓的测定一、实验名称:溶解焓的测定。
二、目的要求:(1)学会用量热法测定盐类的积分溶解焓。
(2)掌握作图外推法求真实温差的方法。
三、基本原理:盐类的溶解通常包含两个同时进行的过程:一是晶格的破坏,为吸热过程;二是离子的溶剂化,即离子的水合作用,为放热过程。
溶解焓则是这两个过程热效应的总和,因此,盐类的溶解过程最终是吸热还是放热,是由这两个热效应的相应大小所决定的。
影响溶解焓的主要因素有温度、压力、溶质的性质以及用量等。
热平衡式:△sol H m=-[(m1C1+m2C2)+C]△TM/m2式中, sol H m 为盐在溶液温度及浓度下的积分溶解焓, J·mol , m1 , m2 分别为水和溶质的质量, M 为溶质的摩尔质量,kg·mol -1 ;C1 ,C 2 分别为溶剂水, kg; 溶质的比热容,J·kg -1;T 为溶解过程中的真实温差,K;C 为量热计的热容, J·K- 1 ,也称热量计常数.本实验通过测定已知积分溶解焓的标准物质 KCl 的 T ,标定出量热计热容 C 的值.四、实验主要仪器名称:NDRH-2S型溶解焓测定实验装置1套(包括数字式温度温差测量仪1台、300mL简单量热计1只、电磁搅拌器1台);250mL容量瓶1个;秒表1快;电子;蒸馏水天平1台;KCl;KNO3五、实验步骤:(1)量热计热容 C 的测定 ( 1 ) 将仪器打开 , 预热 . 准确称量 5.147g 研磨好的 KCl , 待用 .n KCl : n水 = 1: 200(2)在干净并干燥的量热计中准确放入 250mL 温室下的蒸馏水,然后将温度传感器的探头插入量热计的液体中.打开搅拌器开关,保持一定的搅拌速度,待温差变化基本稳定后,读取水的温度 T1 ,作为基温.(3)同时, 每隔30s就记录一次温差值,连续记录8 次后, 将称量好的 5.174g KCl 经漏斗全部迅速倒入量热计中,盖好.10s记录一次温度值,至温度基本稳定不变,再每隔 30s记录一次温度的数值,记录 8 次即可停止.(4)测出量热计中溶液的温度,记作 T2 .计算 T1 , T2 平均值,作为体系的温度.倒出溶液,取出搅拌子,用蒸馏水洗净量热计.KNO3 熔解热的测定:标准称量 3.513g KNO3 ,代替 KCl 重复上述操作.六、实验数据记录与处理KCl溶解过程中数据记录:KCl质量:5.1774g 平均温度18.295℃未加KCl之前:t=19.24℃由图可知: T=1.89℃:△sol Hm(KCl)=18933J/mol;C1=4200J/kg·℃C2=699000J/kg·℃;M(KCl)=0.0745kg/mol;m1=0.25kg;m2=0.0051774kg由△sol Hm=-[(m1C1+m2C2)+C]△TM/m2得:C=-4673.7898J/KKNO 3溶解过程中数据记录:KNO 3质量:3.510g 平均温度:18.735℃ 未加KNO 3之前:t=19.11℃加KNO 3后:由图可知: T=0.75℃;C=-1049.9943J/K;C1=4202J/kg ·℃C2=894900J/kg ·℃;M (KNO 3)=0.103kg/mol ;m1=0.25kg ;m2=0.0035112kg由△sol Hm=-[(m1C1+m2C2)+C]△TM/m2得:△sol Hm(KNO3)=23.45123kJ/mol七、实验问题讨论1.样品颗粒的大小和浓度,对溶解焓测定有什么影响?答:粒度太大不好溶解要受影响,溶解过程过长温差变化过小,就会产生误差;浓度太大也是影响到溶解速度的,时间太长温差数值变化过大,溶解焓的测定就不准了。
二组分完全互溶系统的气—液平衡相图一.实验目的1.学习测定气—液平衡数据及绘制二元系统相图的方法,加深理解相律和相图等概念。
2.掌握正确测量纯液体和液体混合物沸点的方法。
3.熟悉阿贝折光仪的原理及操作,熟练掌握超级恒温槽的使用和液体折射率的测量。
4.了解运用物理化学性质确定混合物组成的方法。
二.实验原理两种液态物质若能以任意比例混合,则称为二组分完全互溶液态混合物系统。
当纯液体或液态混合物的蒸气压与外压相等时就会沸腾,此时的温度就是沸点。
在一定的外压下,纯液体的沸点有确定的值,通常说的液体沸点是指101.325Kpa下的沸点。
对于完全互溶的混合物系统,沸点不仅与外界压力有关,还与系统的组成有关。
在一定压力下,二组分完全互溶液态混合物系统的沸点与组成关系可分为三类:(1)液态混合物的沸点介于两纯组分沸点之间(2)液态混合物有沸点极大值(3)液态混合物有沸点极小值。
对于(1)类,在系统处于沸点时,气、液两相的组成不相同,可以通过精馏使系统的两个组分完全分离。
(2)、(3)类是由于实际系统与Raoult定律产生严重偏差导致。
相图中出现极值的那一点,称为恒沸点。
具有恒沸点组成的二组分混合物,在蒸馏时的气相组成和液相组成完全一样,整个蒸馏过程中沸点恒定不变,因此称为恒沸混合物。
对有恒沸点的混合物进行简单蒸馏,只能获得某一纯组分和恒沸混合物。
液态混合物组成的分析是相平衡实验的关键。
本实验采用折射率法。
采用制作工作曲线的内插法得到未知液态混合物的组成。
折射率是温度的函数,测定时必须严格控制温度。
三.实验仪器和试剂仪器:沸点仪,阿贝折光仪,超级恒温槽,调压变压器。
试剂:环己烷(AR),无水乙醇(AR)。
四.实验步骤1.工作曲线的制定(实验室已完成)。
2.相图数据的测定。
(1)安装沸点仪检查带有温度计的软木塞是否塞紧及温度计的位置。
加热用的电热丝要靠近容器底部中心。
(2)测定沸点取样口中加入20~25ml乙醇,开冷却水,缓缓加热,沸腾液体喷在水银球上,蒸汽在冷凝管中凝聚,温度计读数稳定,记录温度计度数。
物理化学实验报告篇一:物理化学------各个实验实验报告参考1燃烧热的的测定一、实验目的1.通过萘和蔗糖的燃烧热的测定,掌握有关热化学实验的一般知识和测量技术。
了解氧弹式热计的原理、构造和使用方法。
2.了解恒压燃烧热与恒容燃烧热的差别和相互关系。
3.学会应用图解法校正温度改变值。
二、实验原理燃烧热是指1mol物质完全燃烧时所放出的热量,在恒容条件下测得的燃烧热为恒容燃烧热(QV),恒压条件下测得燃烧热为恒压燃烧热(Qp)。
若把参加反应的气体和生成气体视为理想气体,则Qp?QV??nRT。
若测得Qp或QV中的任一个,就可根据此式乘出另一个。
化学反应热效应(包括燃烧热)常用恒压热效应(Qp)表示。
在盛有定量水的容器中,放入装有一定量样品和样体的密闭氧弹,然后使样品完全燃烧,放出热量使水和仪器升温,若仪器中水量为W(g),仪器热容W?,燃烧前后温度为t0和tn,则m(g)物质燃烧热QV?(Cw?w’)t(n?t0。
若水的比热容)C=1。
摩尔质量为M的物质。
其摩尔燃烧热为QMV??m(W?W?)(tn?t0),热容W?可用已知燃烧热的标准物质(苯甲酸,QV=26.434J?g?1)来标定。
将其放入量热计中,燃烧测其始末速度,求W?。
一般因每次水量相同,可作为一个定量来处理。
QMV?m(tn?t0) 三.实验步骤1热容W?的测定1)检查压片用的钢模,用电子天平称约0.8g苯甲酸,倒入模具,讲样品压片,除去样品表面碎屑,取一段棉线,在精密天平上分别称量样品和棉线的质量,并记录。
2)拧开氧弹盖,擦净内壁及电极接线柱,用万用表检查两电极是了解燃烧热的定义,水当量的含义。
压片要压实,注意不要混用压片机。
否通路,将称好的棉线绕加热丝两圈后放入坩埚底部,并将样品片压,在棉线上旋紧弹盖,并再次检查电极是否通路,将氧弹放在充氧架上,拉动扳手充氧。
充毕,再次检查电极。
3)将氧弹放入热量计内桶,称取适量水,倒入量热计内桶,水量以没氧弹盖为宜,接好电极,盖上盖子,打开搅拌开关,开始微机操作。
燃烧热的测定【四﹑实验原始数据和实验现象记录】苯甲酸燃烧丝重g;棉线重g;苯甲酸+棉线+燃烧丝总重g;剩余燃烧丝重g;环境温度(外筒水温)℃。
燃烧丝重g;棉线重g;十六醇+棉线+燃烧丝总重g;【五﹑实际实验过程】1. 水当量的测定:(1)仪器预热将量热计及其全部附件清理干净,将仪器通电预热。
(2)样品压片粗称1g左右的苯甲酸,压成片状;取约15cm长的燃烧丝和棉线各一根,分别准确称重;用棉线把燃烧丝绑在苯甲酸片上,准确称重。
(3)氧弹充氧将燃烧丝两端分别绕在弹头的两根电极上;氧弹中加入10mL 蒸馏水(本实验不加水),拧紧。
充氧时,开始先充约0.5 MPa氧气,然后放掉以赶出空气,再充入1MPa氧气。
(4) 调节水温用容量瓶准确量取已被调好的低于外桶水温0.5-1.0℃的蒸馏水3000ml,装入量热计内筒;装好搅拌器,将点火装置的电极与氧弹的电极相连;将已调好的贝克曼温度计插入桶内,盖好盖子,开始搅拌。
(5)测定水当量打开搅拌器,待温度稳定后开始记录数据,开始30s记录一次,记录10次。
开启“点火”按钮,当温度明显升高时,说明点火成功,同时在点火后记10-20个数据,待温度再次稳定后(缓慢下降时)记录10个数据。
(6) 停止搅拌,取氧弹,放出余气,打开氧弹盖,若氧弹中无灰烬,表示燃烧完全,将剩余燃烧丝称重;倒掉氧弹和量热计桶中的水,并擦干。
2. 测量十六醇的燃烧热称取0.8g~0.9g萘,重复上述步骤测定之。
【六﹑实验结果】(本部分页面不够请加附页。
)1. 雷诺曲线求得ΔT:图4-1苯甲酸的雷诺校正曲线 图4-2十六醇的雷诺校正曲线{雷诺曲线的求法具体步骤如下:将样品燃烧前后历次观察的水温对时间作图,联成FHIDG 折线(图4-3),图中H 相当于点火点,D 为观察到的最高温度读数点,作HD 的1/2(或相当于室温)之平行线JI 交折线于I ,过I 点作ab 垂线,然后将FH 线和GD 线外延交ab 线A 、C 两点,A 点与C 点所表示的温度差即为欲求温度的升高ΔT 。
物理化学实验报告篇一:物理化学------各个实验实验报告参考1燃烧热的的测定一、实验目的1.通过萘和蔗糖的燃烧热的测定,掌握有关热化学实验的一般知识和测量技术。
了解氧弹式热计的原理、构造和使用方法。
2.了解恒压燃烧热与恒容燃烧热的差别和相互关系。
3.学会应用图解法校正温度改变值。
二、实验原理燃烧热是指1mol物质完全燃烧时所放出的热量,在恒容条件下测得的燃烧热为恒容燃烧热(QV),恒压条件下测得燃烧热为恒压燃烧热(Qp)。
若把参加反应的气体和生成气体视为理想气体,则Qp?QV??nRT。
若测得Qp或QV中的任一个,就可根据此式乘出另一个。
化学反应热效应(包括燃烧热)常用恒压热效应(Qp)表示。
在盛有定量水的容器中,放入装有一定量样品和样体的密闭氧弹,然后使样品完全燃烧,放出热量使水和仪器升温,若仪器中水量为W(g),仪器热容W?,燃烧前后温度为t0和tn,则m(g)物质燃烧热QV?(Cw?w’)t(n?t0。
若水的比热容)C =1。
摩尔质量为M的物质。
其摩尔燃烧热为QMV??m(W?W?)(tn?t0),热容W?可用已知燃烧热的标准物质(苯甲酸,QV=26.434J?g?1)来标定。
将其放入量热计中,燃烧测其始末速度,求W?。
一般因每次水量相同,可作为一个定量来处理。
QMV?m(tn?t0) 三.实验步骤1热容W?的测定1)检查压片用的钢模,用电子天平称约0.8g苯甲酸,倒入模具,讲样品压片,除去样品表面碎屑,取一段棉线,在精密天平上分别称量样品和棉线的质量,并记录。
2)拧开氧弹盖,擦净内壁及电极接线柱,用万用表检查两电极是了解燃烧热的定义,水当量的含义。
压片要压实,注意不要混用压片机。
否通路,将称好的棉线绕加热丝两圈后放入坩埚底部,并将样品片压,在棉线上旋紧弹盖,并再次检查电极是否通路,将氧弹放在充氧架上,拉动扳手充氧。
充毕,再次检查电极。
3)将氧弹放入热量计内桶,称取适量水,倒入量热计内桶,水量以没氧弹盖为宜,接好电极,盖上盖子,打开搅拌开关,开始微机操作。
物化实验一 实验报告1. 摘要弹式量热计,由M.Berthelot [1][2]于1881年率先报导,时称伯塞洛特(Berthlot bomb )氧弹。
目的是测∆U 、∆H 等热力学性质。
绝热量热法,1905年由Richards 提出。
后由Daniels [3]等人的发展最终被采用。
初时通过电加热外筒维持绝热,并使用光电池自动完成控制外套温度跟踪反应温升进程,达到绝热的目的。
现代实验除了在此基础上发展绝热法外,进而用先进科技设计半自动、自动的夹套恒温式量热计,测定物质的燃烧热,配以微机处理打印结果。
利用雷诺图解法或奔特公式计算热量计热交换校正值∆T 。
使经典而古老的量热法焕发青春。
1mol 物质完全氧化时的反应热称为燃烧热,燃烧产物必须是稳定的终点产物CO 2(g )和H公式:(2.1.1)求水当量C J 及萘的燃烧热Q VQ J V -样 (2.1.2)第一次燃烧,以苯甲酸作为基准物,求水当量C J (热量计热容),单位为J ⋅K -1。
第二次燃烧,测被测物质萘的恒容燃烧热Q V ,利用(2.1.1)式再求算Q p 。
两次升温值都利用雷诺校正图求∆T 值。
或用奔特公式校正∆T :1关键词:燃烧热 氧弹式热量计 水当量 误差传递 2. 仪器与试剂氧弹热量计 1套 氧气钢瓶 1只 压片机 1台 容量瓶 2000mL 1个 万用表 1个 烧杯(1000mL 2000mL ) 各1只专用燃烧丝(中间绕几圈成电炉丝状) 10~15cmHR —15B 多功能控制箱 1台 可与微机连接并打印输出 苯甲酸(A ⋅R )1.0~1.2克 萘(A ⋅R )0.6~0.8克 均压成片状。
经典式: 贝克曼温度计现代式: 铂电阻+电桥代替贝克曼温度计 新式氧弹与压片机半自动: 热敏电阻探头,数显型或微机型外夹套恒温式。
全自动式:铂电阻传感,WZR -1微电脑精密快速自动热量计,自动数据处理。
半自动式:WHR —15A (B )数显型氧弹式(B 型可配微机)热量计主机部分:3. 预习与提问(1) 什么是燃烧热?其终极产物是什么?(2) 实验测仪器常数采用什么样的办法?水当量是什么含义?(3) 氧弹式热量计测燃烧热的简单原理?主要测量误差是什么?如何求Q p ? (4) 为什么说高精度的燃烧热数据较之生成热数据更显得必要? 4. 操作注意 准备工作:①检验多功能控制器数显读数是否稳定。
物理化学实验报告凝固点降低法测定摩尔质量1.实验目的(1)用凝固点降低法测定萘的摩尔质量。
(2)掌握精密电子温差仪的使用方法。
2.实验原理非挥发性的二组分溶液,其稀溶液具有依数性,凝固点降低就是依数性的一种表现。
根据凝固点降低的数值,可以求溶质的摩尔质量。
对于稀溶液,如果溶质和溶液不生成固溶体,固体是纯的溶剂,在一定压力下,固体溶剂与溶液成平衡的温度叫做溶液的凝固点。
溶剂中加入溶质后,溶液的凝固点比纯溶剂的凝固点要低,其凝固点降低值∆T f与溶质质量摩尔浓度b成正比。
∆T f=T f0−T f=K f b式中T f0为纯溶剂的凝固点;T f为浓度为b的溶液的凝固点;K f为溶剂凝固点降低常数。
若已知某种溶剂的凝固点降低常数K f,并测得溶剂和溶质的质量分别为m a,m b的稀溶液的凝固点降低值∆T f,则可通过下式计算溶质的摩尔质量M BM B=K f m b ∆T f m A式中,K f的单位是K*kg*mol−1。
凝固点降低值得大小,直接反映了溶液中溶质有效质点的数目。
如果溶质在溶液中有离解,缔合,溶剂化和配合物生成等情况,这些均影响溶质在溶剂中的表观相对分子量。
因此凝固点降低法也可用来研究溶液的一些性质,例如电解质的电离度,溶质的缔合度,活度和活度系数等。
纯溶剂的凝固点为其液相和固相共存的平衡温度。
若将液态的纯溶剂逐步冷却,在未凝固前温度将随时间均匀下降,开始凝固后因放出凝固热而补偿了热损失,体系将保持液固两相共存的平衡温度不变,直至全部凝固,温度再继续下降。
但在实际过程中,当液体达到或稍低于凝固点时,晶体并不析出,这就是所谓的过冷现象。
此时加入搅拌或加入晶种,促使晶格形成,则大量晶体会迅速形成,并释放出凝固热,使体系温度回升到稳定的平衡温度;待液体全部凝固后温度再逐步下降。
溶液的凝固点是该溶液与溶剂共存的平衡温度,其冷却曲线与纯溶剂不同。
当有溶剂凝固析出时,剩余溶液的浓度逐渐增大,因而溶液的凝固点也逐渐下降。
第1篇一、前言物理化学作为一门交叉学科,涉及物理学、化学、生物学等多个领域,旨在研究物质的结构、性质、变化规律以及它们在化学反应中的作用。
为了更好地理解和掌握物理化学的基本原理和方法,我们进行了一系列的实践教学。
以下是我对本次实践教学的总结和报告。
二、实践内容1. 实验室参观在实践开始之前,我们首先参观了物理化学实验室。
实验室配备了各种实验设备和仪器,如光谱仪、质谱仪、核磁共振仪等。
通过参观,我们了解了实验室的基本布局和设备功能,为后续实验打下了基础。
2. 基本实验操作(1)滴定实验:学习了酸碱滴定实验的基本原理和操作方法,掌握了滴定终点判断、数据记录和处理等技能。
(2)光谱分析实验:学习了紫外-可见光谱和红外光谱的基本原理,掌握了光谱仪的使用方法和数据分析技巧。
(3)电化学实验:学习了电化学实验的基本原理和操作方法,掌握了电极制备、电位测量、电流-电压曲线绘制等技能。
3. 复杂实验操作(1)动力学实验:学习了反应速率方程的建立和验证方法,掌握了反应速率常数的测定和反应机理分析。
(2)化学平衡实验:学习了化学平衡原理和实验方法,掌握了平衡常数的测定和平衡移动分析。
(3)热力学实验:学习了热力学基本原理和实验方法,掌握了热力学数据的测量和热力学函数的计算。
三、实践过程1. 实验前的准备在实验前,我们认真阅读了实验指导书,了解了实验目的、原理、步骤和注意事项。
同时,我们还对实验所需仪器和试剂进行了准备,确保实验顺利进行。
2. 实验过程中的注意事项(1)安全操作:严格遵守实验室安全规定,正确使用实验仪器和试剂,避免发生意外。
(2)规范操作:按照实验步骤进行操作,确保实验数据的准确性。
(3)团队协作:在实验过程中,相互协作,共同解决问题。
3. 实验后的数据处理实验结束后,我们对实验数据进行整理和分析,包括数据记录、误差分析、结果讨论等。
通过数据处理,我们验证了实验原理,掌握了实验方法。
四、实践成果1. 理论知识与实践相结合通过本次实践教学,我们深刻理解了物理化学的基本原理和方法,将理论知识与实践相结合,提高了我们的实验技能。
物理化学实验报告(化工2)篇一:物化实验电泳深圳大学实验报告课程名称:实验项目名称:电泳学院:化学与化工学院专业:指导教师:报告人:学号:实验时间:实验报告提交时间:教务处制篇二:物理化学实验总结报告. 物理化学实验总结报告班级:11精化学号:3111202230实验1: 二组分金属相图的绘制1.1实验的操作关键、要点(1)用电炉加热样品时,温度要适当,温度过高样品易氧化变质;温度过低或加热时间不够则样品没有完全熔化,步冷曲线转折点测不出。
(2)在侧一组样品时,可将另一组样品放入加热炉内进行预热,以便节约时间。
混合物的体系有两个转折点,必须待第二个转折点测完后方可停止实验,否则须重新测定。
(3)热电偶热端应插到样品中心部位。
(4)实验过程中所有样品管的位置不可移动。
操作要小心,防止烫伤。
(5)样品管中若有烟冒出,可能是蒸汽泄露,要及时处理。
1.2有无其他实验方法,各方法的优缺点1.2.1其他实验方法:差热分析(DTA)、示差扫描量热(DSC)法和热重法(TG或TGA)1.2.2各方法的优缺点:(1)差热分析(DTA):也称差示热分析,是在温度程序控制下,测量物质与基准物(参比物)之间的温度差随温度变化的技术。
优点:测量物质的转变温度是比较准确方便的。
缺点:?试样在产生热效应时,升温速率是非线性的,从而使校正系数K值变化,难以进行定量;?试样产生热效应时,由于与参比物、环境的温度有较大差异,三者之间会发生热交换,降低了对热效应测量的灵敏度和精确度;?用于热量测量却比较麻烦,而且因受样品与参考物之间热传导的影响,定量的准确度也较差。
(2)示差扫描量热(DSC)法:是在DTA基础上发展起来的一种热分析法,是在程序控制温度下,测量输给物质与参比物的功率差与温度的一种技术。
优点:?克服了DTA分析试样本身的热效应对升温速率的影响。
当试样开始吸热时,本身的升温速率大幅落后于设定值。
反应结束后,试样的升温速率又会高于设定值。
物理化学实验报告武汉大学凝固点降低法测定摩尔质量一、实验目的1. 用凝固点降低法测定某未知物的摩尔质量 2. 学会用步冷曲线对溶液凝固点进行校正3. 通过本实验了解掌握凝固点降低法测定摩尔质量的原理,加深对稀溶液依数性的理解。
二、实验原理稀溶液具有依数性,凝固点降低是依数性的一种表现,它与溶液质量摩尔浓度的关系为:*×f f f f B T T T K b ∆=-=其中,f T ∆为凝固点降低值,*f T 、f T 分别为纯溶剂、溶液的凝固点,B b 为溶液质量摩尔浓度,f K 为凝固点降低常数,它只与所用溶剂的特性有关。
如果稀溶液是由质量为B m 的溶质溶于质量为A m 的溶剂中而构成,则上式可写为:1000××B f f Am T K M m ∆=即310Bff Am M K T m =∆ (*) 式中: f K ——溶剂的凝固点降低常数(单位为K ·kg ·mol -1)M ——溶质的摩尔质量(单位为g/mol )。
如果已知溶液的f K 值,则可通过实验测出溶液的凝固点降低值 f T ∆,利用上式即可求出溶质的摩尔质量。
实验中,要测量溶剂和溶液的凝固点之差。
对于纯溶剂如图1(a )所示,将溶剂逐渐降低至过冷(由于新相形成需要一定的能量,故结晶并不析出),温度降低至一定值时出现结晶,当晶体生成时,放出的热量使体系温度回升,而后温度保持相对恒定。
对于纯溶剂来说,在一定压力下,凝固点是固定不变的,直到全部液体凝固成固体后才会下降。
相对恒定的温度即为凝固点。
对于溶液来说,除温度外还有溶液浓度的影响。
当溶液温度回升后,由于不断析出溶剂晶体,所以溶液的浓度逐渐增大,凝固点会逐渐降低。
因此,凝固点不是一个恒定的值。
如把回升的最高点温度作为凝固点,这时由于已有溶剂晶体析出,所以溶液浓度已不是起始浓度,而大于起始浓度,这时的凝固点不是原浓度溶液的凝固点。
要精确测量,应测出步冷曲线,按下一页图1(b )所示方法,外推至f T 校正。
物理化学实验报告第一篇:物理化学实验报告宁波工程学院物理化学实验报告专业班级姓名序号同组姓名指导老师实验日期实验名称实验一燃烧焓的测定一、实验目的内容宋体小四号行距:固定值20磅(下同)二、实验原理原理简明扼要(必须的计算公式和原理图不能少)三、实验仪器、试剂仪器:试剂:四、实验步骤步骤简明扼要(包括操作关键)五、实验记录与处理实验记录尽可能用表格形式六、结果与讨论第二篇:物理化学数学物理,学好很容易掌握规律,并熟练运用这些规律很多学生反映数学和物理难学,不知道怎样提高数学和物理的成绩。
北京101网校专家认为,其实,数学和物理不是很难学,学习数学和物理肯定要做很多题目,但是要明白做题的真正目的是总结解题规律和解题方法,然后运用这些规律去解决新的问题,不断总结各类题型的解题规律和解题方法是学好的关键,如果我们能有现成的解题规律,并能够熟练运用这些规律,数学和物理就能够轻松学好。
如何寻找到这些解题规律和方法呢?北京101网校的名师,可以帮助学生学好数学和物理。
因为101网校的课程是名师的总结提高课,网校课堂上老师会按知识点讲解相应的例题,而且每个类型的例题老师都会给出解题思路分析,解题方法总结、同类题目的思考突破口等详细讲解,同学们只要记住这些规律,再遇到相同类型的题目时就会举一反三了,同学们听101网校数学和物理的名师面授,再做相应的练习题目,数学和物理成绩就会很快提高上去。
高一有个学员叫李诗诺,使用101网校4个月,数学成绩就由不及格冲天一跃提高到125分。
咨询电话:80997101***第三篇:物理化学一、选择题1.在蒸馏实验中,常在液体中投入一些沸石或一端封口的毛细管等多孔性物质,这样做是为了破坏哪一个亚稳状态?(C)(A)过饱和溶液(B)过冷液体(C)过热液体(D)过饱和蒸气2.外加直流电于胶体溶液,向电极作电极移动的是(B)(A)胶核(B)胶粒(C)胶团(D)紧密层下列物体为非胶体的是(D)(A)灭火泡沫(B)珍珠(C)雾(D)空气在晴朗的白昼天空呈蔚蓝色是因为(B)(A)蓝光波长短,透射作用显著(B)蓝光波长短,散射作用显著(C)红光波长长,透射作用显著(D)红光波长长,散射作用显著日出或者日落的时候,太阳成鲜红色的原因(D)(A)蓝光波长短,透射作用显著(B)蓝光波长短,散射作用显著(C)红光波长长,透射作用显著(D)红光波长长,散射作用显著丁达尔现象的发生,表明了光的(A)(A)散射(B)反射(C)折射(D)透射7.在分析化学上有两种利用光学性质测定胶体溶液的仪器,一是比色计,另一个是比浊计,分别观察的是胶体溶液的(D)(A)透射光、折射光(B)散射光、透射光(C)透射光、反射光(D)透射光、散射光明矾静水的主要原理是(B)(A)电解质对溶胶的稳定作用(B)溶胶的相互聚沉作用(C)对电解质的敏化作用(D)电解质的对抗作用由等体积的1mol/dm3KI溶液与0.8mol/dm3AgNO3溶液制备的AgI溶胶分别加入下列电解质时,其聚沉能力最强的是(D)(A)K3[Fe(CN)6](B)NaNO3(C)MgSO4(D)FeCl3一定量的以KCl为稳定剂的AgCl溶胶中加入电解质使其聚沉,下列电解质的用量由小到大的顺序正确的是(A)(A)AlCl3电解质KNO3 KAc MgSO4 AL(NO3)3 聚沉值/mol/dm3 50 110 0.81 0.095该胶粒的带电情况为(A)(A)带负电(B)带正电(C)不带电(D)不能确定下述对电动电位的描述错误的是(C)(A)表示胶粒溶剂化界面至均匀相内的电位差(B)电动电位值易随外加电解质尔变化(C)其值总是大于热力学电位值(D)当双电层被压缩到溶剂化层相结合时,电动电位值变为0 将0.012dm3 浓度为0.02mol/dm3的KCL溶液和100dm3浓度为0.005mol/dm3 的AgNO3溶液混合制备的溶胶,其胶粒在外电场的作用下电泳的方向(B)(A)向正极移动(B)向负极移动(C)不规则运动(D)静止不动使用瑞利(Reyleigh)散射光强度公式,在下列问题中可以解决的问题是:(A)A 溶胶粒子的大小;B 溶胶粒子的形状;C 测量散射光的波长;D 测量散射光的振幅。
大学物理化学实验报告-原电池电动势的测定(五篇)第一篇:大学物理化学实验报告-原电池电动势的测定大学物理化学实验报告-原电池电动势的测定篇一:原电池电动势的测定实验报告_浙江大学(1)实验报告课程名称:大学化学实验p实验类型:中级化学实验实验项目名称:原电池电动势的测定同组学生姓名:无指导老师冷文华一、实验目的和要求(必填)二、实验内容和原理(必填)三、实验材料与试剂(必填)四、实验器材与仪器(必填)五、操作方法和实验步骤(必填)六、实验数据记录和处理七、实验结果与分析(必填)八、讨论、心得一、实验目的和要求用补偿法测量原电池电动势,并用数学方法分析二、实验原理:补偿法测电源电动势的原理:必须严格控制电流在接近于零的情况下来测定电池的电动势,因为有电流通过电极时,极化作用的存在将无法测得可逆电动势。
为此,可用一个方向相反但数值相同的电动势对抗待测电池的电动势,使电路中没有电流通过,这时测得的两级的电势差就等于该电池的电动势E。
如图所示,电位差计就是根据补偿法原理设计的,它由工作电流回路、标准回路和测量电极回路组成。
① 工作电流电路:首先调节可变电阻RP,使均匀划线AB上有一定的电势降。
② 标准回路:将变换开关SW合向Es,对工作电流进行标定。
借助调节Rp使得IG=0来实现Es=UCA。
③ 测量回路:SW扳回Ex,调节电势测量旋钮,直到IG=0。
读出Ex。
UJ-25高电势直流电位差计:1、转换开关旋钮:相当于上图中SW,指在N处,即SW接通EN,指在X1,即接通未知电池EX。
2、电计按钮:原理图中的K。
3、工作电流调节旋钮:粗、中、细、微旋钮相当于原理图中的可变电阻RP。
-1-2-3-4-5-64、电势测量旋钮:中间6只旋钮,×10,×10,×10,×10,×10,×10,被测电动势由此示出。
三、仪器与试剂:仪器:电位差计一台,惠斯登标准电池一只,工作电源,饱和甘汞电池一支,银—氯化银电极一支,100mL容量瓶5个,50mL滴定管一支,恒温槽一套,饱和氯化钾盐桥。
初中物理化学实验评估报告范文一、实验目的1.了解空气成分的含量及其特性。
2.学习使用化学试剂进行氧气含量测定的方法。
3.掌握实验操作技能,提高实验的准确性和安全性。
二、实验原理空气中主要成分为氮气和氧气,其中氧气含量约为21%,氮气含量约为78%。
本实验利用化学反应来测定空气中氧气的含量,具体原理如下:铁与氧气在高温条件下反应,生成氧化铁。
这是一个明显的氧气-铁的化学反应。
反应方程式为:4Fe + 3O2 -> 2Fe2O3通过化学方程式,我们可以知道,每1mol的氧气(O2)能与4mol的铁(Fe)发生反应,生成2mol的氧化铁(Fe2O3),由此可以推算出空气中氧气的含量。
三、实验材料与仪器材料:粗铁末、硫酸铜、磷酸。
仪器:坩埚、三角瓶、酒精灯、电子天平、试剂瓶等。
四、实验步骤1.将粗铁末放入坩埚中,用电子天平称取一定质量(m1)。
2.将坩埚放入酒精灯上加热,待铁末完全燃烧后,取下坩埚。
3.将燃烧后的坩埚连同生成的氧化铁一起称取质量(m2)。
4.分别使用下列公式计算出氧气含量(V%)和氮气含量(N%):V% = (4 x m2)/(m2 - m1) x 100%N% = 100% - V%五、实验结果与分析通过实验数据的测定,我们计算出氧气含量约为20.7%,氮气含量约为78.1%,与空气中氧气的实际含量相近,误差较小。
通过实验我们了解到,空气中氧气和氮气的浓度比例基本稳定,符合空气成分的理论值,实验结果较为准确。
六、实验评估与总结本实验通过测定空气中氧气含量的方法,让我们更深入地了解到空气的成分及其含量比例。
实验操作简单,能够很好地锻炼实验操作技能,并提高实验的准确性和安全性。
在实验过程中,应注意加热坩埚的过程中防止溅射,避免产生安全隐患。
在称取质量时要准确读数,避免误差的产生。
总的来说,本实验顺利完成,达到了实验目的。
通过实践操作,加深了对空气成分及其测定方法的理解,为今后的学习和研究打下了基础。
三一文库()〔物理化学实验报告〕*篇一:物理化学------各个实验实验报告参考1燃烧热的的测定一、实验目的1.通过萘和蔗糖的燃烧热的测定,掌握有关热化学实验的一般知识和测量技术。
了解氧弹式热计的原理、构造和使用方法。
2.了解恒压燃烧热与恒容燃烧热的差别和相互关系。
3.学会应用图解法校正温度改变值。
二、实验原理燃烧热是指1mol物质完全燃烧时所放出的热量,在恒容条件下测得的燃烧热为恒容燃烧热(QV),恒压条件下测得燃烧热为恒压燃烧热(Qp)。
若把参加反应的气体和生成气体视为理想气体,则Qp?QV??nRT。
若测得Qp或QV中的任一个,就可根据此式乘出另一个。
化学反应热效应(包括燃烧热)常用恒压热效应(Qp)表示。
在盛有定量水的容器中,放入装有一定量样品和样体的密闭氧弹,然后使样品完全燃烧,放出热量使水和仪器升温,若仪器中水量为W(g),仪器热容W?,燃烧前后温度为t0和tn,则m(g)物质燃烧热QV?(Cw?w)t(n?t0。
若水的比热容)C =1。
摩尔质量为M的物质。
其摩尔燃烧热为QMV??m(W?W?)(tn?t0),热容W?可用已知燃烧热的标准物质(苯甲酸,QV=26.434J?g?1)来标定。
将其放入量热计中,燃烧测其始末速度,求W?。
一般因每次水量相同,可作为一个定量来处理。
QMV?m(tn?t0)三.实验步骤1热容W?的测定1)检查压片用的钢模,用电子天平称约0.8g苯甲酸,倒入模具,讲样品压片,除去样品表面碎屑,取一段棉线,在精密天平上分别称量样品和棉线的质量,并记录。
2)拧开氧弹盖,擦净内壁及电极接线柱,用万用表检查两电极是了解燃烧热的定义,水当量的含义。
压片要压实,注意不要混用压片机。
否通路,将称好的棉线绕加热丝两圈后放入坩埚底部,并将样品片压,在棉线上旋紧弹盖,并再次检查电极是否通路,将氧弹放在充氧架上,拉动扳手充氧。
充毕,再次检查电极。
3)将氧弹放入热量计内桶,称取适量水,倒入量热计内桶,水量以没氧弹盖为宜,接好电极,盖上盖子,打开搅拌开关,开始微机操作。
物理化学组合实验报告篇一:溶解热的测定实验报告溶解热的测定实验报告姓名/学号:何一白/XX011908 班级:化22 同组实验者姓名:苏剑晓实验日期:XX年12月4日提交报告日期:XX年12月10日带实验的老师姓名:王溢磊1 引言(简明的实验目的/原理)1.1 实验目的1.测量硝酸钾在不同浓度水溶液的溶解热,求硝酸钾在水中溶解过程的各种热效应。
2.掌握量热装置的基本组合及电热补偿法测定热效应的基本原理。
3.复习和掌握常用的测温技术。
1.2 实验原理物质溶于溶剂中,一般伴随有热效应的发生。
盐类的溶解通常包含着几个同时进行的过程:晶格的破坏、离子或分子的溶剂化、分子电离(对电解质而言)等。
热效应的大小和符号决定于溶剂及溶质的性质和它们的相对量。
在热化学中,关于溶解过程的热效应,需要了解以下几个基本概念。
溶解热在恒温恒压下,溶质B溶于溶剂A(或溶于某浓度溶液)中产生的热效应,用?solH表示。
摩尔积分溶解热在恒温恒压下,1mol溶质溶解于一定量的溶剂中形成一定浓度的溶液,整个过程产生的热效应。
用?solHm表示。
?solHm??solH(1) nB式中, nB为溶解于溶剂A中的溶质B的物质的量。
摩尔微分溶解热在恒温恒压下,1mol溶质溶于某一确定浓度的无限量的溶液中产生的热效应,以(??solH??H)T,P,nA表示,简写为(sol)nA。
?nB?nB稀释热在恒温恒压下,一定量的溶剂A加到某浓度的溶液中使之稀释,所产生的热效应。
摩尔积分稀释热在恒温恒压下,在含有1mol溶质的溶液中加入一定量的溶剂,使之稀释成另一浓度的溶液,这个过程产生的热效应,以?dilHm表示。
?dilHm??solHm2??solHm1(2)式中,?solHm2、?solHm1为两种浓度的摩尔积分溶解热。
摩尔微分稀释热在恒温恒压下,1mol溶剂加入到某一浓度无限量的溶液中所发生的热效应,以(??solH??H)T,P,nB表示,简写为(sol)nB。