立体几何知识点整理(文科)教师
- 格式:doc
- 大小:5.46 MB
- 文档页数:22
第一章 空间几何体知识点归纳1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。
简单组合体的构成形式:⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。
1、空间几何体的三视图和直观图投影:中心投影 平行投影(1)定义:几何体的正视图、侧视图和俯视图统称为几何体的三视图。
(2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等”2、空间几何体的直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形.3、斜二测画法的基本步骤:①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上)②建立斜坐标系'''x O y ∠,使'''x O y ∠=450(或1350),注意它们确定的平面表示水平平面;③画对应图形,在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘轴,且长度保持不变;在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘轴,且长度变为原来的一半;4、空间几何体的表面积与体积⑴圆柱侧面积;l r S ⋅⋅=π2侧面⑵圆锥侧面积:l r S ⋅⋅=π侧面 ⑶圆台侧面积:()S r R l π=+侧面⑷体积公式:h S V ⋅=柱体;h S V ⋅=31锥体; ()13V h S S =+下台体上⑸球的表面积和体积:32344R V R S ππ==球球,.一般地,面积比等于相似比的平方,体积比等于相似比的立方。
第二章 点、直线、平面之间的位置关系及其论证1 、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内,,A l B ll A B ααα∈∈⎧⇒⊂⎨∈∈⎩ 公理1的作用:判断直线是否在平面内2、公理2:过不在一条直线上的三点,有且只有一个平面。
专题四:立体几何 【一、基础知识归类:】1、三视图画法规则:高平齐:主视图与左视图的高要保持平齐 长对正:主视图与俯视图的长应对正 宽相等:俯视图与左视图的宽度应相等2、空间几何体三视图:正视图(从前向后的正投影);侧视图(从左向右的正投影); 俯视图(从上向下正投影). 3、空间几何体的直观图——斜二测画法特点:①斜二测坐标系的y 轴与x 轴正方向成 45角; ②原来与x 轴平行的线段仍然与x 平行,长度不变; ③原来与y 轴平行的线段仍然与y 平行,长度为原来的一半. 常用结论:平面图形面积与其斜二侧直观图面积之比为22:1. 4、特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线):ch S =直棱柱侧面积 rh S π2=圆柱侧 '21ch S =正棱锥侧面积 rl S π=圆锥侧面积 ')(2121h c c S +=正棱台侧面积 l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表 ()l r r S +=π圆锥表()22R Rl rl r S +++=π圆台表 S 球面=24R π5、柱体、锥体、台体和球的体积公式:V Sh =柱 2V Sh r h π==圆柱 13V S h =锥 h r V 231π=圆锥'1()3V S S h =台'2211()()33V S S h r rR R h π=++=++圆台V 球=343R π 6、空间线面的位置关系①直线与直线:相交、平行、异面(不同在任何一个平面内的两条直线); ②直线与平面:属于a ⊂α、相交a∩α=A 、平行a ∥α;③ 平面与平面:平行—没有公共点:α∥β、相交—有一条公共直线:α∩β=b . 7、垂直和平行证明问题的解决方法须熟练掌握两类相互转化关系: ① 平行转化 ② 垂直转化同时注意结合运用中位线定理、勾股定理、等腰(等边)三角形“三线合一”; 平行四边形两组对边分别平行且相等,对角线互相平分;菱形对边平行且四边相等,对角线互相垂直平分并平分对角; 矩形对边平行且相等,四个角为直角,以及对角线互相平分且相等;正方形对边平行且四边相等,四个角为直角,对角线互相垂直平分且相等并平分对角; 梯形上底和下底平行; 圆直径对应圆周角为直角、垂径定理、过切点的半径垂直于切线等. 8、立体几何中体积的求法:直接法、割补法、等积转化等方法. 等积转化在三棱锥求体积或求点到面的距离问题中经常运用.【二、专题练习:】一、选择题(本大题共12小题,每小题5分,总分60分)1.(2009天津重点学校二模) 如图,直三棱柱的主视图面积为2a 2,则左视图的面积为( )A .2a 2B .a 2C .23a D .243a2.(2009枣庄市二模)一个几何体的三视图如图所示, 则这个几何体的体积等于( ) A .361a B .321a C .332a D .365a 3.(2009青岛二模)下图为长方体木块堆成的几何体三视图,则组成此几何体的长方体木块块数共有( )A .3块B .4块C .5块D .6块4.(2009广东省恩城中学)半径为2cm 的半圆纸片做成圆锥放在桌面上,一阵风吹倒它,它的最高处距桌面( )A .4cmB .2cmC .cm 32D .cm 3aaa5.(2005全国卷Ⅰ)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为 ( ) A.32B .33 C .34 D .23 6.一个棱锥的三视图如图,则该棱锥的全面积(单位:2cm )为( ) A.48+ B.48+C.36+ D.36+7.(2009汕头一模)在空间中,有如下命题:①互相平行的两条直线在同一个平面内的射影必然是互相平行的两条直线; ②若平面α∥平面β,则平面α内任意一条直线m ∥平面β;③若平面α与平面β的交线为m ,平面α内的直线n ⊥直线m ,则直线n ⊥平面β; ④若平面α内的三点A, B, C 到平面β的距离相等,则α∥β. 其中正确命题的个数为( )个.A .0B .1C .2D .38.(2007宁夏理)已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( ) A .34000cm 3 B .38000cm 3C .32000cmD .34000cm 9.(2009泰安一模)一个几何体的三视图如图所示,则这个几何体的 体积等于( )A .4B .6C .8D .12正视图侧视图俯视图66663334410.设b a ,是两条直线,βα,是两个平面,则b a ⊥的一个充分条件是( ) A .βαβα⊥⊥,//,b a B .βαβα//,,⊥⊥b a C .βαβα//,,⊥⊂b a D .βαβα⊥⊂,//,b a11.(2009玉溪市民族中学第四次月考)若球O 的半径为1,点A 、B 、C 在球面上,它们任意两点的球面距离都等于,2π则过A 、B 、C 的小圆面积与球表面积之比为 ( ) A .121 B .81 C .61 D .4112.正六棱锥P -ABCDEF 中,G 为PB 的中点,则三棱锥D -GAC 与三棱锥P -GAC 体积之比为( )A .1:1B .1:2C .2:1D .3:2二、填空题(本大题共4小题,每小题4分,总分16分)13.如果一个水平放置的图形的斜二测直观图是一个底面为045,腰和上底均为1的等腰梯形,那么原平面图形的面积是 .14.在半径为13的球面上有A , B , C 三点,AB=6,BC=8,CA=10,则球心到平面ABC 的距离为 . 15.图2中实线围成的部分是长方体(图1)的平面展开图,其中四边形ABCD 是边长为1的正方形.若向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是14,则此长方体的体积是 .16.如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点.现将AFD ∆沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D ,作DK AB ⊥,K 为垂足.设AK t =,则t 的取值范围是 .三、解答题(本大题共6小题,总分74分)17.右图为一简单组合体,其底面ABCD 为正方形,PD ⊥平面ABCD ,//EC PD ,且2P D A D E C ===2.(1)答题卡指定的方框内已给出了该几何体的俯视图,请在方框内画出该几何体的正(主)视图和侧(左)视图;(2)求四棱锥B -CEPD 的体积; (3)求证://BE 平面PDA .18.如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠P AC =∠PBC =90 º. (Ⅰ)证明:AB ⊥PC ;(Ⅱ)若4PC =,且平面PAC ⊥平面PBC ,求三棱锥P ABC -体积.PABCDEDABC俯视图19.如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,∠BAD =∠F AB =90°,BC =12AD ,BE =12F A ,G 、H 分别为F A 、FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么? (3)设AB =BE ,证明:平面ADE ⊥平面CDE .20.如图,已知三棱柱ABC -A 1B 1C 1的所有棱长都相等,且侧棱垂直于底面,由B 沿棱柱侧面经过棱CC 1到点A 1的最短路线长为CC 1的交点为D . (1)求三棱柱ABC -A 1B 1C 1的体积;(2)在平面A 1BD 内是否存在过点D 的直线与平面ABC 平行?证明你的判断;(3)证明:平面A 1BD ⊥平面A 1ABB 1.DC 1B 1A 1CBA21.(2009届广东省重点中学高三模拟)如图:已知四棱柱ABCD—A1B1C1D1的底面是正方形,O1.O分别是上.下底面的中心,A1O⊥平面ABCD.(1)求证:平面O1DC⊥平面ABCD;(2)若点E在棱AA1上,且AE=2EA1,问在棱BC上是否存在点F,使得EF⊥BC?若存在,求出其位置;若不存在,说明理由.22.(2007-2008汕头市金山中学)已知等腰梯形PDCB 中(如图1),PB=3,DC=1,PD=BC =2,A 为PB 边上一点,且P A=1,将△P AD 沿AD 折起,使面P AD ⊥面ABCD (如图2). (Ⅰ)证明:平面P AD ⊥PCD ;(Ⅱ)试在棱PB 上确定一点M ,使截面AMC 把几何体分成的两部分1:2: MACB PD CMA V V ; (Ⅲ)在M 满足(Ⅱ)的情况下,判断直线PD 是否平行面AMC .正视图侧视图俯视图【参考答案】一、选择题1—5:C D B D A6.答案:A 解析:棱锥的直观图如右,则有PO =4,OD =3,由勾股定理,得PD =5,AB =62,全面积为:21×6×6+2×21×6×5+21×62×4=48+122,故选A . 7—9:B B A10.答案:C 解析:由b β⊥,α∥β得b α⊥,又a α⊂,可知b a ⊥,故a b ⊥的一个充分条件是C . 11.答案 C12.【解析】选C .由于G 是PB 的中点,故P -GAC 的体积等于B -GAC 的体积 在底面正六边形ABCDER 中,BH =ABtan30°AB 而BD故DH =2BH 于是V D -GAC =2V B -GAC =2V P -GAC . 二、填空题13.恢复后的原图形为一直角梯形1(11)222S =+⨯=+ 14.答案:12解析:由ABC ∆的三边大小易知此三角形是直角三角形,所以过,,A B C 三点小圆的直径即为10,也即半径是5,设球心到小圆的距离是d ,则由222513d +=,可得12d =.15.【解析】向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是14,设长方体的高为x ,则()()42122214x x x +=++,所以3x =,所以长方体的体积为3.16.【解析】此题的破解可采用二个极端位置法,即对于F 位于DC 的中点时,1t =,随着F 点到C 点时,因,,CB AB CB DK CB ⊥⊥∴⊥平面A D B ,即有CB BD ⊥,对于2,1,CD BC BD ==∴,又1,2AD AB ==,因此有AD BD ⊥,则有12t =,因此t 的取值范围是1,12⎛⎫⎪⎝⎭. 三、解答题17.解:(1)该组合体的主视图和侧视图如右图示:-----3分 (2)∵PD ⊥平面ABCD ,PD ⊂平面PDCE ∴平面PDCE ⊥平面ABCD∵BC CD ⊥ ∴BC ⊥平面PDCE ----------5分 ∵11()32322S PD EC DC =+⋅=⨯⨯=梯形PDCE --6分∴四棱锥B -CEPD 的体积1132233B CEPD PDCE V S BC -=⋅=⨯⨯=梯形.----8分 (3)证明:∵//EC PD ,PD ⊂平面PDA ,EC ⊄平面PDA∴EC//平面PDA ,------------------------------------10分 同理可得BC//平面PDA ----------------------------11分∵EC ⊂平面EBC,BC ⊂平面EBC 且ECBC C =∴平面BEC //平面PDA -----------------------------13分又∵BE ⊂平面EBC ∴BE//平面PDA------------------------------------------14分 18.解析:(Ⅰ)因为PAB ∆是等边三角形,90PAC PBC ∠=∠=︒, 所以Rt PBC Rt PAC ∆≅∆,可得AC BC =. 如图,取AB 中点D ,连结PD ,CD ,则PD AB ⊥,CD AB ⊥, 所以AB ⊥平面PDC , 所以AB PC ⊥.(Ⅱ)作BE PC ⊥,垂足为E ,连结AE . 因为Rt PBC Rt PAC ∆≅∆,所以AE PC ⊥,AE BE =.由已知,平面PAC ⊥平面PBC ,故90AEB ∠=︒.因为Rt AEB Rt PEB ∆≅∆,所以,,AEB PEB CEB ∆∆∆都是等腰直角三角形. 由已知4PC =,得2AE BE ==, AEB ∆的面积2S =. 因为PC ⊥平面AEB , 所以三角锥P ABC -的体积1833V S PC =⨯⨯=.19.证明:(1)由题设知,FG =GA ,FH =HD ,所以GH =12AD .又BC =12AD ,故GH =BC ,所以四边形BCHG 是平行四边形. (2)C 、D 、F 、E 四点共面.理由如下:由BE =12AF ,G 是F A 的中点知,BE =GF ,所以EF ∥BG ,由(1)知BG ∥CH ,所以EF ∥CH ,故EC 、FH 共面. 又点D 直线FH 上,所以C 、D 、F 、E 四点共面.(3)连结EG ,由AB =BE ,BE =AG ,及∠BAG =90°知ABEG 是正方形,O B 2DC 1B 1A 1CBA故BG ⊥EA .由题设知,F A 、AD 、AB 两两垂直,故AD ⊥平面F ABE , 因此EA 是ED 在平面F ABE 内的射影,∴BG ⊥ED . 又EC ∩EA =E ,所以BG ⊥平面ADE . 又BG ∥CH ,所以CH ⊥平面ADE故由CH ⊂平面CDFE ,得平面ADE ⊥平面CDE .20.解:(1)如图,将侧面BB 1C 1C 绕棱CC 1旋转120°使其与侧面AA 1C 1C 在同一平面上,点B 运动到点B 2的位置,连接A 1B 2,则A 1B 2就是由点B 沿棱柱侧面经过棱CC 1到点A 1的最短路线。
立体几何知识点整理(文科)一.直线和平面的三种位置关系:1. 线面平行l符号表示:2. 线面相交符号表示:3。
线在面内符号表示:二.平行关系:1.线线平行:方法一:用线面平行实现。
mlmll////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα方法二:用面面平行实现。
mlml////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα方法三:用线面垂直实现.若αα⊥⊥ml,,则ml//。
方法四:用向量方法:若向量l和向量m共线且l、m不重合,则ml//。
2.线面平行:方法一:用线线平行实现.ααα////llmml⇒⎪⎭⎪⎬⎫⊄⊂方法二:用面面平行实现。
αββα////ll⇒⎭⎬⎫⊂方法三:用平面法向量实现。
若n为平面α的一个法向量,ln⊥且α⊄l,则α//l。
3.面面平行:方法一:用线线平行实现.βααβ//',','//'//⇒⎪⎪⎭⎪⎪⎬⎫⊂⊂且相交且相交mlmlmmll方法二:用线面平行实现。
βαβαα//,////⇒⎪⎭⎪⎬⎫⊂且相交mlml三.垂直关系:1. 线面垂直:方法一:用线线垂直实现。
αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥lABACAABACABlACl,方法二:用面面垂直实现。
lαββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥l l m l m ,2. 面面垂直:方法一:用线面垂直实现。
βαβα⊥⇒⎭⎬⎫⊂⊥l l方法二:计算所成二面角为直角. 3. 线线垂直:方法一:用线面垂直实现。
m l m l ⊥⇒⎭⎬⎫⊂⊥αα方法二:三垂线定理及其逆定理。
PO l OA l PA l αα⊥⎫⎪⊥⇒⊥⎬⎪⊂⎭方法三:用向量方法:若向量l 和向量m 的数量积为0,则m l ⊥。
三.夹角问题。
(一) 异面直线所成的角: (1) 范围:]90,0(︒︒ (2)求法: 方法一:定义法。
步骤1:平移,使它们相交,找到夹角。
步骤2:解三角形求出角.(常用到余弦定理)余弦定理:abcb a 2cos 222-+=θ(计算结果可能是其补角)方法二:向量法。
高中文科数学立体几何知识点总结材料立体几何知识点整理(文科)l 若向量 l 和向量 m 共线且 l 、m一. 直线和平面的三种地点关系:αm 不重合,则 l // m 。
1. 线面平行l2. 线面平行:α 符号表示:方法一:用线线平行实现。
lβ2. 线面订交α l // m m l //llAα符号表示:方法二:用面面平行实现。
3. 线在面内nl//ll //αlα符号表示:二. 平行关系:1. 线线平行:方法三:用平面法向量实现。
方法一:用线面平行实现。
若 n 为平面的一个法向量,n l 且 l,则ll //l // 。
ll // mmm方法二:用面面平行实现。
lβ//3. 面面平行:γl l // mαmm方法一:用线线平行实现。
方法三:用线面垂直实现。
l // l 'm // m'//若 l, m,则 l // m 。
l , m 且订交l ', m'且订交lβml' αm'高中文科数学立体几何知识点总结材料2. 面面垂直:方法一:用线面垂直实现。
C方法二:用线面平行实现。
βll //m ////l αl , m且订交mβllθAB方法二:计算所成二面角为直角。
α3. 线线垂直:方法一:用线面垂直实现。
lC AαBlllmmmα方法二:三垂线定理及其逆定理。
PPOlOAl PA三.垂直关系:A Ol1. 线面垂直:αl方法一:用线线垂直实现。
l AC 方法三:用向量方法:lAB若向量 l 和向量 m 的数目积为0 ,则 lm 。
AC lAB A AC,AB三. 夹角问题。
(一 )异面直线所成的角:方法二:用面面垂直实现。
(1) 范围: (0 ,90 ](2) 求法:Pβlnmlmlm, lα方法一:定义法。
αAθO步骤 1 :平移,使它们订交,找到夹角。
步骤 2 :解三角形求出角。
(常用到余弦定理 )余弦定理:aca 2b 2c 2θbcos2ab(计算结果可能是其补角 )方法二:向量法。
立体几何知识点第一章 空间几何体1、空间几何体的结构:空间几何体分为多面体、旋转体、简单组合体⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。
简单组合体的构成形式:①由简单几何体拼接而成;②由简单几何体截去或挖去一部分而成⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台2、空间几何体的三视图(1)定义:正视图:光线从几何体的前面向后面正投影得到的投影图;侧视图:光线从几何体的左面向右面正投影得到的投影图; 俯视图:光线从几何体的上面向下面正投影得到的投影图。
(2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等” 3、空间几何体的直观图:斜二测画法的基本步骤:必修216P 4、空间几何体的表面积与体积 ⑴圆柱侧面积;l r S ⋅⋅=π2侧面⑵圆锥侧面积:l r S ⋅⋅=π侧面⑶圆台侧面积:l r S +⋅⋅=π侧面⑷体积公式:h S V ⋅=柱体 h S V ⋅=31锥体 ()13V h S S =+下台体上⑸球的表面积和体积:23443S R V R ππ==球球第二章 点、直线、平面之间的位置关系 一、几个公理:1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内,,A l B ll A B ααα∈∈⎧⇒⊂⎨∈∈⎩公理1的作用:判断直线是否在平面内2、公理2:过不在一条直线上的三点,有且只有一个平面若A ,B ,C 不共线,则A ,B ,C 确定平面α 推论1:过直线和直线外一点有且只有一个平面推论2:过两条相交直线有且只有一个平面推论3:过两条平行直线有且只有一个平面L θ∙l (注:扇形的弧长等于圆心角乘以半径.提醒圆心角为弧度角,例如60° π3弧度,45° π4弧度,90° π2弧度等等)1的长图中:扇形的半径长为l ,圆心角为θ,弧ABm公理2及其推论的作用:确定平面、判定多边形是否为平面图形的依据3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线,P P l P l αβαβ∈∈⇒=∈ 且公理3作用:(1)判定两个平面是否相交的依据 (2)证明点共线、线共点等 4、公理4:也叫平行公理,平行于同一条直线的两条直线平行. 符号表示:,a b c b a c ⇒ 公理4作用:证明两直线平行5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补,1212a a b b ''∠∠⇒∠∠ 且与方向相同=,1212180a a b b ''∠∠⇒∠+∠︒ 且与方向相反=作用:该定理也叫等角定理,可以用来证明空间中的两个角相等 二、空间两条直线的位置关系:相交直线:同一平面内,有且只有一个公共点 平行直线:同一平面内,没有公共点 异面直线: 不同在任何一个平面内,没有公共点 三、直线和平面的三种位置关系: 1.直线和平面平行符号表示: l2. 直线和平面相交符号表示:3. 直线在平面内符号表示:四、平面与平面的位置关系:1、平行:没有公共点 2、相交:有一条公共直线 五、平行关系: 1. 线线平行:证明两直线平行的常用方法:①三角形中位线定理:三角形中位线平行并等于底边的一半; ②平行四边形的性质:平行四边形两组对边分别平行;③线面平行的性质:如果一条直线平行于一个平面,经过这条直线的平面与这个平面相交,那么这条直线和它们的交线平行;a a ab b αβαβ⊂⇒=⎫⎪⎬⎪⎭④平行线的传递性:,a b c b a c ⇒⑤面面平行的性质:如果一个平面与两个平行平面相交,那么它们的交线平行;a ab b αβαγβγ=⇒=⎫⎪⎬⎪⎭⑥垂直于同一平面的两直线平行; a a b b αα⊥⎫⇒⎬⊥⎭2. 线面平行:方法一:判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
第一章 空間幾何體知識點歸納1、空間幾何體の結構:空間幾何體分為多面體和旋轉體和簡單組合體⑴常見の多面體有:棱柱、棱錐、棱臺;常見の旋轉體有:圓柱、圓錐、圓臺、球。
簡單組合體の構成形式: 一種是由簡單幾何體拼接而成,一種是由簡單幾何體截去或挖去一部分而成。
⑵棱柱:有兩個面互相平行,其餘各面都是四邊形,並且每相鄰兩個四邊形の公共邊都互相平行,由這些面所圍成の多面體叫做棱柱。
⑶棱臺:用一個平行於棱錐底面の平面去截棱錐,底面與截面之間の部分,這樣の多面體叫做棱臺。
1、空間幾何體の三視圖和直觀圖投影:中心投影 平行投影(1)定義:幾何體の正視圖、側視圖和俯視圖統稱為幾何體の三視圖。
(2)三視圖中反應の長、寬、高の特點:“長對正”,“高平齊”,“寬相等”2、空間幾何體の直觀圖(表示空間圖形の平面圖). 觀察者站在某一點觀察幾何體,畫出の圖形.3、斜二測畫法の基本步驟:①建立適當直角坐標系xOy (盡可能使更多の點在坐標軸上) ②建立斜坐標系'''x Oy ∠,使'''x O y ∠=450(或1350),注意它們確定の平面表示水準平面;③畫對應圖形,在已知圖形平行於X 軸の線段,在直觀圖中畫成平行於X ‘軸,且長度保持不變;在已知圖形平行於Y 軸の線段,在直觀圖中畫成平行於Y ‘軸,且長度變為原來の一半;一般地,原圖の面積是其直觀圖面積の22倍,即22S S 原图直观=4、空間幾何體の表面積與體積⑴圓柱側面積;l r S ⋅⋅=π2侧面⑵圓錐側面積:l r S ⋅⋅=π侧面 ⑶圓臺側面積:()S r R l π=+侧面⑷體積公式:h S V ⋅=柱体;h S V ⋅=31锥体; ()13V h S S S S =+⋅+下下台体上上⑸球の表面積和體積:32344R V R S ππ==球球,.一般地,面積比等於相似比の平方,體積比等於相似比の立方。
O 2O 1h lrR第二章 點、直線、平面之間の位置關係及其論證1 、公理1:如果一條直線上兩點在一個平面內,那麼這條直線在此平面內,,A l B ll A B ααα∈∈⎧⇒⊂⎨∈∈⎩公理1の作用:判斷直線是否在平面內2、公理2:過不在一條直線上の三點,有且只有一個平面。
立体几何知识点整理(文科)一.直线和平面的三种位置关系:1. 线面平行l符号表示:2. 线面相交符号表示:3. 线在面内符号表示:二.平行关系: 1.线线平行:方法一:用线面平行实现。
m l m l l ////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα方法二:用面面平行实现。
m l m l ////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαβ 方法三:用线面垂直实现。
若αα⊥⊥m l ,,则m l //。
方法四:用向量方法:若向量l 和向量m 共线且l 、m 不重合,则m //。
2.线面平行:方法一:用线线平行实现。
ααα////l l m m l⇒⎪⎭⎪⎬⎫⊄⊂ 方法二:用面面平行实现。
αββα////l l ⇒⎭⎬⎫⊂ 方法三:用平面法向量实现。
若n 为平面α的一个法向量,l n ⊥且α⊄l ,则α//l 。
3.面面平行:方法一:用线线平行实现。
lβααβ//',','//'//⇒⎪⎪⎭⎪⎪⎬⎫⊂⊂且相交且相交m l m l m m l l 方法二:用线面平行实现。
βαβαα//,////⇒⎪⎭⎪⎬⎫⊂且相交m l m l 三.垂直关系: 1. 线面垂直:方法一:用线线垂直实现。
αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥l AB AC A AB AC AB l ACl ,方法二:用面面垂直实现。
αββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥l l m l m ,2. 面面垂直:方法一:用线面垂直实现。
βαβα⊥⇒⎭⎬⎫⊂⊥l l方法二:计算所成二面角为直角。
3.线线垂直:方法一:用线面垂直实现。
m l m l ⊥⇒⎭⎬⎫⊂⊥αα方法二:三垂线定理及其逆定理。
PO l OA l PA l αα⊥⎫⎪⊥⇒⊥⎬⎪⊂⎭方法三:用向量方法: 若向量和向量的数量积为0,则m l ⊥。
三.夹角问题。
(一) 异面直线所成的角:(1) 范围:]90,0(︒︒ (2)求法:方法一:定义法。
步骤1:平移,使它们相交,找到夹角。
步骤2:解三角形求出角。
(完整)高中文科数学立体几何部分整理.doc立体几何高中文科数学立体几何部分整理第一章空间几何体(一)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影。
平行投影分为正投影和斜投影。
2.三视图——是观察者从三个不同位置观察同一个空间几何体而画出的图形;正视图——光线从几何体的前面向后面正投影,得到的投影图;侧视图——光线从几何体的左面向右面正投影,得到的投影图;正视图——光线从几何体的上面向下面正投影,得到的投影图;注:(1)俯视图画在正视图的下方,“长度”与正视图相等;侧视图画在正视图的右边,“高度”与正视图相等,“宽度”与俯视图。
(简记为“正、侧一样高,正、俯一样长,俯、侧一样宽” .( 2)正视图,侧视图,俯视图都是平面图形,而不是直观图。
3.直观图:3.1 直观图——是观察着站在某一点观察一个空间几何体而画出的图形。
直观图通常是在平行投影下画出的空间图形。
3.2 斜二测法:step1:在已知图形中取互相垂直的轴 Ox 、 Oy ,(即取 xoy 90 );step2:画直观图时,把它画成对应的轴 o ' x ',o ' y' ,取 x ' o ' y' 45 (or 135 ) ,它们确定的平面表示水平平面;step3:在坐标系 x ' o ' y ' 中画直观图时,已知图形中平行于数轴的线段保持平行性不变,平行于 x 轴(或在 x 轴上)的线段保持长度不变,平行于y 轴(或在 y 轴上)的线段长度减半。
结论:一般地,采用斜二测法作出的直观图面积是原平面图形面积的2倍 .4解决两种常见的题型时应注意:(1)由几何体的三视图画直观图时,一般先考虑“俯视图”.(2)由几何体的直观图画三视图时,能看见的轮廓线和棱画成实线,不能看见的轮廓线和棱画成虚线。
【例题点击】将正三棱柱截去三个角(如图1 所示 A ,B , C 分别是△GHI 三边的中点)得到几何体如图2,则该几何体按图2 所示方向的侧视图(或称左视图)为()HA G ABBB侧视BBBCCIEDEDEEEEA .B .C .D .立体几何解:在图 2 的右边放扇墙 (心中有墙 ), 可得答案 A(二)立体几何1.棱柱1.1 棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
在高中阶段的文科课程中,立体几何是数学的一个重要分支,它涉及到空间中的几何形体的性质和相关的计算问题。
通过学习立体几何,可以帮助学生提高空间想象能力、逻辑思维和解决实际问题的能力。
本文将介绍高二年级文科立体几何的主要知识点。
1. 空间几何基础知识
- 空间、点、直线、平面的概念
- 点线面之间的关系
- 空间几何图形的分类:直线、射线、线段、面、多边形等
2. 空间几何投影
- 平行投影与中心投影的概念
- 平行投影与中心投影的性质
- 平行投影与中心投影的应用
3. 空间几何旋转
- 空间几何旋转的概念与性质
- 空间几何旋转的公式和计算方法 - 空间几何旋转的应用举例
4. 空间几何平移
- 空间几何平移的概念与性质
- 空间几何平移的计算方法和公式 - 空间几何平移的应用
5. 空间几何对称
- 空间几何对称的概念与性质
- 空间几何对称的计算方法和公式 - 空间几何对称的应用
6. 空间几何相似
- 空间几何相似的概念与性质
- 空间几何相似的判定方法
- 空间几何相似的计算方法和应用。
高中文科数学立体几何部分整理第一章 空间几何体(一)空间几何体的三视图及直观图1.投影:区分中心投影及平行投影。
平行投影分为正投影和斜投影。
2.三视图——是观察者从三个不同位置观察同一个空间几何体而画出的图形;正视图——光线从几何体的前面向后面正投影,得到的投影图; 侧视图——光线从几何体的左面向右面正投影,得到的投影图; 正视图——光线从几何体的上面向下面正投影,得到的投影图; 注:(1)俯视图画在正视图的下方,“长度”及正视图相等;侧视图画在正视图的右边,“高度”及正视图相等,“宽度”及俯视图。
(简记为“正、侧一样高,正、俯一样长,俯、侧一样宽”. (2)正视图,侧视图,俯视图都是平面图形,而不是直观图。
3.直观图:3.1直观图——是观察着站在某一点观察一个空间几何体而画出的图形。
直观图通常是在平行投影下画出的空间图形。
3.2斜二测法:step1:在已知图形中取互相垂直的轴Ox 、Oy ,(即取90xoy ∠=︒ ); step2:画直观图时,把它画成对应的轴'',''o x o y ,取'''45(135)x o y or ∠=︒︒,它们确定的平面表示水平平面;step3:在坐标系'''x o y 中画直观图时,已知图形中平行于数轴的线段保持平行性不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半。
结论:一般地,采用斜二测法作出的直观图面积是原平面图形面积的4倍. 解决两种常见的题型时应注意:(1)由几何体的三视图画直观图时,一般先考虑“俯视图”.(2)由几何体的直观图画三视图时,能看见的轮廓线和棱画成实线,不能看见的轮廓线和棱画成虚线。
【例题点击】将正三棱柱截去三个角(如图1所示A B C ,,分别是GHI △三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )E FDIA H GBC EF D AB C侧视 图1图2 BEA .BEB . BEC .BED .解:在图2的右边放扇墙(心中有墙),可得答案A (二)立体几何 1.棱柱1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
立体几何题型与方法(文科)1.平面平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。
(1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内 ,推出点在面内), 这样可根据公理2证明这些点都在这两个平面的公共直线上。
(2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。
(3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合 2. 空间直线.(1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点(2). 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如右图). (直线与直线所成角]90,0[︒︒∈θ)(向量与向量所成角])180,0[ ∈θ(3). 两异面直线的距离:公垂线段的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.[注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面) 3. 直线与平面平行、直线与平面垂直.(1). 空间直线与平面位置分三种:相交、平行、在平面内.(2). 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行⇒线面平行”)(3). 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行⇒线线平行”)(4). 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理), ● 三垂线定理的逆定理亦成立.POAa直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直⇒线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.性质:如果两条直线同垂直于一个平面,那么这两条直线平行.(5).a.垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.b.射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上。
4. 平面平行与平面垂直.(1). 空间两个平面的位置关系:相交、平行.(2). 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(“线面平行⇒面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.(3). 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行⇒线线平行”)(4). 两个平面垂直判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直判定二:如果一条直线与一个平面垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直⇒面面垂直”)(5). 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.5. 棱柱. 棱锥(1). 棱柱.a.①直棱柱侧面积:ChS=(C为底面周长,h是高)该公式是利用直棱柱的侧面展开图为矩形得出的.②斜棱住侧面积:lCS1=(1C是斜棱柱直截面周长,l是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.b.{四棱柱}⊃{平行六面体}⊃{直平行六面体}⊃{长方体}⊃{正四棱柱}⊃{正方体}.{直四棱柱} {平行六面体}={直平行六面体}.PαβθM ABOc.棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形........;正棱柱的各个侧面都是全等的矩形...... ②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形. ③过棱柱不相邻的两条侧棱的截面都是平行四边形. d.平行六面体:定理一:平行六面体的对角线交于一点.............,并且在交点处互相平分. [注]:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.推论一:长方体一条对角线与同一个顶点的三条棱所成的角为γβα,,,则 1cos cos cos 222=++γβα. 推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为γβα,,,则2cos cos cos 222=++γβα. ④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不相交,若两条边相交,则应是充要条件)(2). 棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形. [注]:①一个三棱锥四个面可以都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V Sh V ==.a.①正棱锥定义:底面是正多边形;顶点在底面的射影为底面正多边形的中心.b.棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.c.特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心. ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心. ④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心. ⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心. ⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径; ⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的距离等于半径.(3).圆锥的特征圆锥的定义:以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥。
(1)轴截面是等腰三角形;(2)母线的平方等于底面半径与高的平方和: 222l r h =+(3)圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形。
6、圆台的结构特征1. 圆台的定义:用一个平行于底面的平面去截圆锥,我们把截面和底面之间的部分称为圆台。
2. 圆台的结构特征⑴ 圆台的上下底面和平行于底面的截面都是圆; ⑵ 圆台的截面是等腰梯形;⑶ 圆台经常补成圆锥,然后利用相似三角形进行研究。
3. 圆台的面积和体积公式S 圆台侧 = π·(R + r)·l (r 、R 为上下底面半径) S 圆台全 = π·r 2+ π·R 2+ π·(R + r)·l V圆台= 1/3 (π r 2+ π R 2+ π r R) h (h 为圆台的高)) 平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比; 4. 球:a.球的截面是一个圆面.①球的表面积公式:24R S π=.②球的体积公式:334R V π=.附:①圆柱体积:h r V 2π=(r 为半径,h 为高)②圆锥体积:h r V 231π=(r 为半径,h 为高)③锥体体积:Sh V 31=(S 为底面积,h 为高)7.其他定理:(1)确定平面的条件:①不公线的三点;②直线和直线外一点;③相交直线; (2)直线与直线的位置关系: 相交 ; 平行 ; 异面 ;直线与平面的位置关系: 在平面内 ; 平行 ; 相交(垂直是它的特殊情况) ; 平面与平面的位置关系: 相交 ;; 平行 ;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线图圆锥段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短。
(5)最小角定理:斜线与平面内所有直线所成的角中最小的是与它在平面内射影所成的角。
(6)异面直线的判定: ①反证法;②过平面外一点与平面内一点的直线,和平面内不过该点的直线是异面直线。
(7)过已知点与一条直线垂直的直线都在过这点与这条直线垂直平面内。
(8)如果—直线平行于两个相交平面,那么这条直线平行于两个平面的交线。
8.唯一性定理:(1)过已知点,有且只能作一直线和已知平面垂直。
(2)过已知平面外一点,有且只能作一平面和已知平面平行。
(3)过两条异面直线中的一条能且只能作一平面与另一条平行。
9.空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形)(1)异面直线所成的角:通过直线的平移,把异面直线所成的角转化为平面内相交直线所成的角。
异面直线所成角的范围:oo(2)线面所成的角:①线面平行或直线在平面内:线面所成的角为o 0; ②线面垂直:线面所成的角为o90; ③斜线与平面所成的角:范围oo 线面所成的角范围090ooα≤≤(3)二面角:关键是找出二面角的平面角。
方法有:①定义法;②三垂线定理法;③垂面法; 二面角的平面角的范围:0180oo10.距离的求法:(1)点点、点线、点面距离:点与点之间的距离就是两点之间线段的长、点与线、面间的距离是点到线、面垂足间线段的长。
求它们首先要找到表示距离的线段,然后再计算。
注意:求点到面的距离的方法:①直接法:直接确定点到平面的垂线段长(垂线段一般在二面角所在的平面上); ②转移法:转化为另一点到该平面的距离(利用线面平行的性质); ③体积法:利用三棱锥体积公式。
(2)线线距离:关于异面直线的距离,常用方法有:①定义法,关键是确定出b a ,的公垂线段;②转化为线面距离,即转化为a 与过b 而平行于a 的平面之间的距离,关键是找出或构造出这个平面;③转化为面面距离;(3)线面、面面距离:线面间距离面面间距离与线线间、点线间距离常常相互转化; 10.常用的结论:(1)若直线l 在平面α内的射影是直线l ',直线m 是平面α内经过l 的斜足的一条直线,l 与l ' 所成的角为1θ,l '与m 所成的角为2θ, l 与m 所成的角为θ,则这三个角之间的关系是cos cos cos θθθ=;(2)如何确定点在平面的射影位置:①Ⅰ、如果一个角所在平面外一点到角两边距离相等,那么这点在平面上的射影在这个角的平分线上;Ⅱ、经过一个角的顶角引这个角所在平面的斜线,如果斜线和这个角的两边夹角相等,那么斜线上的点在平面上的射影在这个角的平分线所在的直线上;Ⅲ、如果平面外一点到平面上两点的距离相等,则这一点在平面上的射影在以这两点为端点的线段的垂直平分线上。