控制技术概述课件
- 格式:ppt
- 大小:1.48 MB
- 文档页数:19
•智能控制理论概述•智能控制基础理论•智能控制技术与方法•智能控制系统设计与实现•智能控制在工业领域应用案例•智能控制在非工业领域应用案例•智能控制发展趋势与挑战目录智能控制定义与发展定义发展历程智能控制与传统控制比较控制对象传统控制主要针对线性、时不变系统,而智能控制则面向复杂、非线性、时变系统。
控制方法传统控制主要采用基于数学模型的方法,而智能控制则运用神经网络、模糊逻辑、遗传算法等智能算法。
控制性能传统控制在稳定性和精确性方面表现较好,而智能控制则在适应性和鲁棒性方面更具优势。
航空航天智能控制可以提高飞行器的自主导航能力、实现复杂任务的自主决策和执行。
智能控制可以实现车辆的自主驾驶、交通拥堵预测、路径规划等功能。
智能家居智能控制可以实现家居设备的远程控制、语音控制、场景定制等功能。
机器人控制智能控制可以实现机器人的自主导航、路径规划、动态避障智能制造智能控制应用领域1 2 3模糊集合与隶属度函数模糊关系与模糊推理模糊控制器设计模糊数学基础神经网络基础神经元模型与神经网络结构01神经网络学习算法02神经网络在智能控制中的应用03遗传算法基础遗传算法基本原理遗传算法优化方法遗传算法在智能控制中的应用模糊控制技术模糊控制基本原理01模糊控制器设计02模糊控制应用实例03神经网络控制技术神经网络基本原理神经网络控制器设计神经网络控制应用实例遗传算法优化技术遗传算法基本原理遗传算法优化方法遗传算法优化应用实例系统需求分析明确系统控制目标和任务分析系统环境和约束确定系统性能指标系统架构设计选择合适的控制策略根据系统需求和性能指标,选择合适的控制策略,如PID控制、模糊控制、神经网络控制等。
设计控制器结构根据所选控制策略,设计相应的控制器结构,包括输入、输出、算法等部分。
构建系统框架将控制器与被控对象、传感器和执行器等连接起来,构建完整的智能控制系统框架。
传感器模块控制算法模块执行器模块通信模块关键模块实现自动化生产线优化调度基于遗传算法的调度优化模糊控制在生产调度中的应用基于神经网络的调度预测01基于A*算法的路径规划02模糊逻辑在机器人导航中的应用03强化学习在机器人路径规划中的应用机器人路径规划与导航神经网络在故障预测中的应用采用神经网络对历史故障数据进行学习,预测未来可能出现的故障及其发生时间,为预防性维护提供决策支持。
第1章自动控制技术发展概述1.1 自动控制技术1787年瓦特发明了离心式调速器,实现了蒸汽机转速的自动调节,使蒸汽机作为转速稳定、安全可控的动力机,并得到了广泛应用,从而引发了第一次工业革命。
现代生产过程自动控制技术的出现被认为是第二次工业革命的重要标志。
自动控制系统具有以下一些重要特点,一是自动控制系统的应用范围不断扩大,控制精度不断提高,智能化程度日益增加;另一个是自动控制技术不仅仅能代替人无法完成的体力劳动,而且在大量地代替着人的脑力劳动;对于后者,其发展的空间将会更为广阔。
1.2 自动控制技术的发展概况回顾自动控制技术的发展史可以看到,它与生产过程本身的大发展有着密切的联系,从一个从简单形式到复杂形式,从局部自动控制到全局自动控制,从低级智能到高级智能的发展过程。
自动控制技术的发展,大致经历了三个阶段。
第一阶段:20世纪50年代以前可以归结为自动控制技术发展的第一阶段。
在这一时期,自动控制的理论基础是使用传递函数对控制过程进行数学描述,其控制理论以根轨迹法和频率法为基本方法,因而带有明显地依靠人工和经验进行分析和综合的色彩。
第二阶段:20世纪50-60年代,是自动控制技术发展的第二个阶段,为适应空间探索的需要而发展起来的现代控制理论已经产生,并已在某些尖端技术领域取得了惊人的成就。
值得注意的是,现代控制理论在综合和分析系统时,已经从局部控制进入到在一定意义下的全局最优控制,而且在结构上已从单环控制扩展到多环控制,其功能也从单一因素控制向多因素控制的方向发展,可以说现代控制理论是人们对控制技术在认识上的一次质的飞跃,为实现高水平的自动控制奠定了理论基础。
第三阶段:进入20世纪70年代,工业自动化的发展表现出两个明显的特点,这正是工业过程控制进入第三个阶段的标志。
第2章自动控制系统的组成及作用2.1 自动控制系统的作用一般的产品生产都要经过一系列工艺才能最终完成,其中每一个工艺的完成,都必须有一个过程,我们称之为生产过程。