matlab基本用法小结
- 格式:doc
- 大小:131.06 KB
- 文档页数:38
MATLAB编程语言的使用方法MATLAB是一种强大的数值计算和科学编程语言,广泛应用于工程、科学和技术领域。
它的主要特点是简洁易用、功能丰富。
一、MATLAB的基本语法MATLAB的语法基本上和其他编程语言相似,主要包括变量定义、数据类型、运算符和控制结构等。
1. 变量定义在MATLAB中,变量可以直接赋值,无需提前声明或定义数据类型。
例如,可以使用以下方式定义变量x和y:x = 10y = 2.52. 数据类型MATLAB支持多种数据类型,包括数值型、字符型和逻辑型。
- 数值型:MATLAB支持的数值型包括整数型(integers)和浮点型(floating-point numbers)。
例如,可以使用以下方式定义整数变量a和浮点数变量b:a = 5b = 3.14- 字符型:MATLAB中的字符型变量被称为字符串(string)。
可以使用单引号或双引号括起来定义字符串变量。
例如:name = 'John'message = "Hello, World!"- 逻辑型:逻辑型变量只有两个可能的值,即真(true)和假(false)。
例如:isTrue = trueisFalse = false3. 运算符MATLAB支持常见的算术、逻辑和关系运算符。
- 算术运算符:包括加法、减法、乘法、除法等。
例如:result = 2 + 3 - 1 * 4 / 2 % 结果为3- 逻辑运算符:包括与(and)、或(or)和非(not)。
例如:isPositive = (x > 0) && (y > 0) % 判断x和y是否都大于0- 关系运算符:用于比较两个值之间的关系,包括等于、不等于、大于、小于、大于等于和小于等于。
例如:isEqual = (x == y) % 判断x和y是否相等isGreater = (x > y) % 判断x是否大于y4. 控制结构MATLAB支持常见的控制结构,包括条件语句(if语句)、循环语句(for循环和while循环)和函数定义等。
目录:一、说明二、数据类型及基本输入输出三、流程控制四、循环五、数组、数组运算和矩阵运算六、M脚本文件和M函数文件、函数句柄七、文件八、数据和函数的可视化一、说明看了奚啸翔同学写的Fortran基本用法小结后觉得Fortran的语法既有matlab 的特色也有C的特色。
于是就套用了奚啸翔同学文章的格式,写了这篇matlab基本用法小结。
目的是想和Fortran的语法有个对比,学起来更快。
其实学过C、Fortran和matlab中任何一个的同学要学其他两种语言的语法都是非常容易上手的,一天就能搞定了。
有兴趣的同学还可以看看百合Fortran版上的C、Fortran、matlab语法对比,一定能有不少收获。
此外,尽管这三种语言的语法有很多相近的地方,matlab作为数学软件有其强大的图形用户界面操作、数据和函数的可视化和数值计算功能,且自带很多现有的函数和工具包。
而本文只涉及一些比较系统的基本操作,在最后附带介绍一些基本的数据和函数的可视化命令。
建议要用的时候再利用matlab自带的帮助文档来搜索有用的函数和工具包。
matlab的函数和命令都是比较人性化的,比如想要搜索读取fits文件的函数,搜索fits 就能够搜到fitsread函数;需要将读出的fits数据重新做图,搜索image就可以找到imagesc函数。
从书和别人的文档都只能学到有限的比较系统的操作,看帮助文档能发现更多的东西并整理出自己的使用方法。
最后要说明的是,C必须用循环才能做到的事情Fortran和matlab用矩阵和数组运算就能做到,相对效率提高了很多;而对于一些运算量非常大的程序还是推荐用Fortran,因为相比之下matlab的运算速度比Fortran慢很多;而网上很多现有的天文软件包都是用fortran写的(比如由宇宙学参数计算模拟数据的CAMB程序和宇宙模型可能性预测LIKELIHOOD程序),虽然matlab也有很多天文软件包,但相对fortran还是逊色不少。
大学matlab知识点总结在大学学习阶段,掌握MATLAB是非常重要的。
它可以帮助学生更好地理解课程知识,加深对数学、物理、工程等学科的理解,并且在毕业设计和科研项目中也非常有用。
本文将从MATLAB的基础知识、常用功能、高级技巧以及实际应用等方面进行总结,帮助大家更好地掌握这一强大的工具。
一、MATLAB基础知识1. MATLAB的基本操作MATLAB的基本操作包括变量的定义、函数的调用、矩阵的运算、图形的绘制等。
在MATLAB中,变量的定义和赋值非常简单,只需要使用等号就可以完成。
例如,定义一个变量a并赋值为1,只需要输入a=1即可。
函数的调用也非常方便,只需要输入函数名加上参数即可完成调用。
矩阵的运算也非常简单,可以使用+、-、*等运算符进行加减乘除等运算。
图形的绘制可以使用plot、scatter等函数进行绘制,也可以使用plot3函数进行三维图形的绘制。
2. MATLAB的数据类型MATLAB中的数据类型包括数值型、字符型和逻辑型等。
数值型包括整型和浮点型,可以表示整数和小数。
字符型可以表示字符串,可以用单引号或双引号括起来表示。
逻辑型包括true和false,可以表示逻辑真和逻辑假。
在MATLAB中,还可以使用矩阵、向量和数组等数据结构来表示数据。
3. MATLAB的控制流程MATLAB中的控制流程包括顺序结构、分支结构和循环结构。
顺序结构表示程序按照顺序执行,分支结构包括if语句和switch语句,可以根据条件选择不同的分支进行执行,循环结构包括for循环和while循环,可以重复执行一段代码。
二、MATLAB常用功能1. 数据可视化MATLAB提供了丰富的数据可视化函数,可以帮助用户将数据以图形的方式展现出来,包括直方图、散点图、曲线图、饼图等。
使用这些函数可以更直观地展示数据的分布、趋势和关系,并且可以进行自定义设置,使得图形更加美观。
2. 矩阵运算MATLAB是一种基于矩阵运算的语言,因此矩阵运算是其最重要的功能之一。
matlab文件操作总结MATLAB是一种高级编程语言和交互式环境,主要用于数值计算、分析和可视化。
MATLAB也可以用于文件操作,包括读取、写入和修改文件。
下面是一些基本的MATLAB文件操作总结:1. 读取文件:使用`fopen`函数打开文件,使用`fread`或`fscanf`函数读取文件内容。
示例:```matlab`fileID = fopen('','r'); % 打开文件data = fread(fileID,'%f'); % 读取数据,假设文件包含浮点数fclose(fileID); % 关闭文件````2. 写入文件:使用`fopen`函数打开文件,使用`fwrite`或`fprintf`函数写入文件内容。
示例:```matlab`fileID = fopen('','w'); % 打开文件以写入fwrite(fileID,data); % 写入数据到文件fclose(fileID); % 关闭文件````3. 追加到文件:使用`fopen`函数以追加模式打开文件,然后使用`fprintf`或`fwrite`函数写入数据。
示例:```matlab`fileID = fopen('','a'); % 打开文件以追加数据fprintf(fileID,'%f\n',newData); % 写入新数据到文件fclose(fileID); % 关闭文件````4. 处理文本文件:使用文本编辑器打开并处理文本文件。
MATLAB中的字符串变量可以用来表示和处理文本数据。
5. 二进制文件操作:MATLAB也支持二进制文件的读取和写入。
这通常涉及使用特定的格式说明符(例如'%f'表示浮点数),以及考虑字节顺序(大端或小端)。
6. 文件和路径管理:MATLAB提供了许多用于管理文件和路径的函数,例如`dir`, `pwd`, `cd`, `readdir`, `delete`, `move`, `copy`, `exist`等。
Matlab基本用法小结
MATLAB是一种专业的计算机语言,它可以帮助你进行许多计算和分析任务。
在本文中,我们将介绍MATLAB的一些基本用法,帮助您更好地了解它的使用方法。
MATLAB命令行
MATLAB的命令行是一个重要的功能,可以让您在没有编写脚本或函数的情况下输入MATLAB命令。
在MATLAB命令行中,您可以执行各种操作,包括简单的计算、矩阵操作、
数据可视化、符号计算和绘图等等。
在MATLAB中,您可以使用变量来存储数据,这些变量可以是数字、字符串或者数组。
变量的命名规则与其他编程语言类似,您可以使用任何字母、数字或下划线字符来命名变量。
MATLAB中有许多函数可以帮助您完成各种任务,例如计算、图像处理、统计分析、信号处理等。
MATLAB中的函数大多数都有相应的文档,并提供示例代码等详细信息来帮助您使用它们。
MATLAB具备强大的绘图功能,可以帮助您在2D或3D坐标系中绘制各种图形,包括线图、散点图、条形图、饼图、等高线图、三维图等。
您可以使用各种线条、标记和颜色来
更好地展示您的数据。
MATLAB也有一个编辑器,它可以让您更方便地编写和编辑脚本和函数。
编辑器可以在您编写代码时提供自动完成、语法检查、调试等功能,还可以帮助您更好地组织代码结
构。
MATLAB还提供了许多工具箱,可以让您在各种领域更轻松地进行计算和分析。
例如,MATLAB的图像处理工具箱提供了各种图像处理和分析功能,而信号处理工具箱则提供了声音处理、滤波、谱分析和频域分析等功能。
matlab符号运算知识点总结符号运算在Matlab中的应用非常广泛,包括代数运算、微积分、方程求解、矩阵运算等。
下面对Matlab中符号运算的一些重要知识点进行总结:代数运算在Matlab中进行代数运算,可使用符号工具箱中的函数,如syms,sym,和符号运算的基本运算符包括加减乘除、指数、对数、幂函数等。
另外,Matlab还提供了一些用于多项式运算的特殊函数,如expand、factor、simplify、collect等。
通过这些函数,可以对代数表达式进行化简、因式分解、展开等操作。
微积分在Matlab中进行微积分运算,可使用符号工具箱中的函数,如diff,int,limit等。
这些函数可用于求导、积分、极限等微积分运算。
通过这些函数,可以对符号表达式进行微积分运算,得到导数、积分、极限等结果。
方程求解在Matlab中进行方程求解,可使用符号工具箱中的函数,如solve,dsolve等。
这些函数可用于求解方程、微分方程等问题。
通过这些函数,可以对符号表达式进行方程求解,得到方程的根、微分方程的解等结果。
矩阵运算在Matlab中进行矩阵运算,可使用符号工具箱中的函数,如inv,det,eig等。
这些函数可用于求逆矩阵、求行列式、求特征值等操作。
通过这些函数,可以对符号矩阵进行各种运算,得到矩阵的逆、行列式、特征值等结果。
符号计算的优点符号计算在Matlab中的应用有许多优点。
首先,符号计算能够保留数学表达式的符号形式,不会将其计算成数值,这对于一些需要保留符号的问题非常重要。
其次,符号计算具有精度高、灵活性强的特点,能够处理复杂的数学问题。
此外,符号计算还能够进行符号表达式的化简、因式分解、展开等操作,有助于分析数学表达式的性质。
总之,Matlab中的符号运算功能丰富,能够处理各种数学问题,包括代数运算、微积分、方程求解、矩阵运算等。
符号计算在Matlab中的应用具有许多优点,能够保留数学表达式的符号形式,处理复杂的数学问题,并进行符号表达式的化简、因式分解、展开等操作。
读取图像:用imread函数读取图像文件,文件格式可以是TIFF、JPEG、GIF、BMP、PNG等。
比如>> f = imread('chestxray.jpg');读进来的图像数据被保存在变量f中。
尾部的分号用来抑制输出。
如果图片是彩色的,可以用rgb2gray转换成灰度图:>> f = rgb2gray(f);然后可以用size函数看图像的大小>> size(f)如果f是灰度图像,则可以用下面的命令把这个图像的大小赋给变量M和N>> [M, N] = size(f);用whos命令查看变量的属性>> whos f显示图像:用imshow显示图像imshow(f, G)其中f是图像矩阵,G是像素的灰度级,G可以省略。
比如>> imshow(f, [100 200])图像上所有小于等于100的数值都会显示成黑色,所有大于等于200的数值都会显示成白色。
pixval命令可以用来查看图像上光标所指位置的像素值。
pixval例如>> f = imread('rose_512.tif');>> whos f>> imshow(f)如果要同时显示两幅图像,可以用figure命令,比如>> figure, imshow(g)用逗号可以分割一行中的多个命令。
imshow的第二个参数用一个空的中括号:>> imshow(h, [])可以使动态范围比较窄的图像显示更清楚。
写图像。
用imwrite写图像imwrite(f, 'filename')文件名必须包括指明格式的扩展名。
也可以增加第三个参数,显式指明文件的格式。
比如>> imwrite(f, 'patient10_run1.tif', 'tif')也可以写成>> imwrite(f, 'patient10_run1.tif')还可以有其他参数,比如jepg图像还有质量参数:>> imwrite(f, 'filename.jpg', 'quality', q)q是0到100之间的一个整数。
matlab系统使用方法Matlab是一种广泛应用于科学计算和工程设计的强大软件工具。
它提供了一种方便且高效的编程环境,使用户能够进行数据分析、可视化、算法开发和模型建立等。
本文将介绍Matlab的一些基本使用方法,帮助读者快速入门并掌握这个工具的基本技巧。
我们需要了解Matlab的界面。
当我们打开Matlab时,会出现一个称为Command Window的窗口,它是与Matlab交互的主要界面。
在Command Window中,我们可以输入命令或表达式,并立即看到结果。
此外,Matlab还提供了其他窗口,如Editor窗口用于编写和编辑代码,Workspace窗口用于管理变量,Figure窗口用于显示图形等。
接下来,让我们学习一些Matlab的基本操作。
首先是变量的定义和赋值。
在Matlab中,我们可以使用等号“=”来定义一个变量,并通过赋值运算符“=”为其赋值。
例如,如果我们要定义一个变量x并将其赋值为5,可以输入“x = 5”。
在Command Window中按下回车键后,变量x的值将被存储起来,并可以在后续的计算中使用。
除了基本的数值操作外,Matlab还提供了许多内置的函数和工具箱,用于处理不同类型的数据。
例如,如果我们想计算一个向量的平均值,可以使用Matlab提供的mean函数。
只需输入“mean(vector)”即可计算出向量的平均值。
Matlab还具有强大的矩阵操作功能。
我们可以使用矩阵来存储和处理数据。
在Matlab中,矩阵可以通过一对方括号来定义。
例如,我们可以使用以下命令定义一个3x3的矩阵A:A = [1, 2, 3; 4, 5, 6; 7, 8, 9]在以上命令中,分号用于分隔行,逗号用于分隔列。
定义完成后,矩阵A将被存储在内存中,并可以通过变量名进行调用。
Matlab还支持各种数学运算和函数,如加减乘除、幂运算、三角函数等。
我们可以直接在Command Window中输入表达式进行计算。
matlab重要知识点总结一、基本语法MATLAB的基本语法类似于传统的编程语言,包括变量、数据类型、运算符、控制流等。
在MATLAB中,变量赋值使用等号(=)操作符,例如:a = 5; % 将5赋值给变量aMATLAB中常见的数据类型包括数值、字符、逻辑值等。
数值可以是整数或浮点数,字符可以是单引号或双引号括起来的字符串。
运算符包括算术运算符(+、-、*、/等)、关系运算符(>、<、==等)、逻辑运算符(&&、||、~等)等。
控制流包括条件语句(if-else)、循环语句(for、while)、函数调用和返回值等。
二、数组操作在MATLAB中,数组是一种基本的数据结构,可以用来表示向量、矩阵和多维数组。
数组的索引从1开始,和传统的编程语言不同,这点需要注意。
可以使用括号([])来创建数组,例如:v = [1, 2, 3, 4]; % 创建一个一维数组M = [1, 2; 3, 4]; % 创建一个二维矩阵也可以使用函数来创建特定类型的数组,例如linspace()函数创建等间距的一维数组,rand()函数创建随机的矩阵等。
数组的操作包括索引、切片、拼接、转置等。
索引和切片可以用来提取数组的部分元素,拼接可以用来合并数组,转置可以用来改变数组的维度。
三、矩阵运算MATLAB中的矩阵运算是其强大功能之一。
可以使用*操作符进行矩阵乘法,使用.\和./进行逐元素的除法,使用'操作符进行转置等。
矩阵还可以进行逐元素的加法、减法、乘法、除法等运算。
除了基本的矩阵运算,MATLAB还提供了许多用于矩阵操作的函数,例如inv()函数求逆矩阵,det()函数求行列式,eig()函数求特征值等。
四、函数和脚本在MATLAB中,可以使用function关键字来定义函数,例如:function y = myfunc(x)y = x^2 + 1;end也可以使用脚本文件(.m文件)来存储一系列的命令,例如:% 脚本文件example.mx = linspace(0, 2*pi, 100);y = sin(x);plot(x, y);函数可以接受任意数量的输入参数和输出参数,也可以使用全局变量和局部变量来进行计算。
Matlab基本用法小结一、说明 (2)二、数据类型及基本输入输出 (3)1、数据类型,声明及赋初值 (3)2、基本输入输出 (4)三、流程控制 (5)1、运算符 (5)2、IF (5)3、switch-case结构 (6)4、try-catch结构 (7)四、循环 (7)1、while (7)2、for (8)五、数组、数组运算和矩阵运算 (8)1、数值数组 (8)2、数组运算和矩阵运算 (10)3、逻辑数组 (13)4、字符串数组 (14)5、元胞数组 (14)6、构架数组 (16)7、空数组 (17)六、M脚本文件和M函数文件、函数句柄 (17)1、matlab script file: (17)2、matlab function (18)3.函数句柄的使用 (19)七、文件 (20)八、数据和函数的可视化 (21)1.二维数据的可视化 (21)2.三维数据的可视化 (23)3.图像控制命令 (23)九、独立的回调函数 (24)一、说明看了奚啸翔同学写的Fortran基本用法小结后觉得Fortran的语法既有matlab的特色也有C的特色。
于是就套用了奚啸翔同学文章的格式,写了这篇matlab基本用法小结。
目的是想和Fortran的语法有个对比,学起来更快。
其实学过C、Fortran和matlab中任何一个的同学要学其他两种语言的语法都是非常容易上手的,一天就能搞定了。
有兴趣的同学还可以看看百合Fortran版上的C、Fortran、matlab 语法对比,一定能有不少收获。
此外,尽管这三种语言的语法有很多相近的地方,matlab作为数学软件有其强大的图形用户界面操作、数据和函数的可视化和数值计算功能,且自带很多现有的函数和工具包。
而本文只涉及一些比较系统的基本操作,在最后附带介绍一些基本的数据和函数的可视化命令。
建议要用的时候再利用matlab自带的帮助文档来搜索有用的函数和工具包。
matlab的函数和命令都是比较人性化的,比如想要搜索读取fits文件的函数,搜索fits就能够搜到fitsread函数;需要将读出的fits数据重新做图,搜索image就可以找到imagesc函数。
从书和别人的文档都只能学到有限的比较系统的操作,看帮助文档能发现更多的东西并整理出自己的使用方法。
最后要说明的是,C必须用循环才能做到的事情Fortran和matlab 用矩阵和数组运算就能做到,相对效率提高了很多;而对于一些运算量非常大的程序还是推荐用Fortran,因为相比之下matlab的运算速度比Fortran慢很多;而网上很多现有的天文软件包都是用fortran 写的(比如由宇宙学参数计算模拟数据的CAMB程序和宇宙模型可能性预测LIKELIHOOD程序),虽然matlab也有很多天文软件包,但相对fortran还是逊色不少。
二、数据类型及基本输入输出1、数据类型,声明及赋初值matlab中存储的数据类型(class)有以下几种:而实际上matlab不需要对变量做声明,当它发现一个新的变量名时,将默认将其为双精度浮点类型(double)并分配内存空间。
(这比C和Fortran方便了许多,但在完成大运算量的程序时就显得浪费存储空间了)当需要把变量a从double转为其他类型的时候,比如要转为int16型,可以使用以下命令:a=int16(a)当需要创建一个字符型变量x并对其赋初值时,用以下格式:x='字符串';注意:(1)在命令后加“;”表示不在command window中显示结果,而对上例来说如果不加“;”则会显示所赋字符串内容。
(2)所有的命令必须在英文输入状态下,如果使用中文输入状态下全角的“;”,将被处理为非法字符。
其中logical,cell和structure为逻辑,元胞和构架数组类型,将在后面的数组部分提到;function handle为函数句柄类型,将在后面的“M脚本文件和M函数文件、函数句柄”部分提到;java类供JA V A API应用程序接口使用,本文不进行说明。
最后说明一下,matlab也支持复数操作,赋值的时候直接输入即可,比如:a=1+2i;2、基本输入输出输入:v=input('message') %将用户输入的内容赋给变量vv=input('message','s') %将用户输入的内容作为字符串赋给变量vkeyboard %用户可以从键盘输入任意多个指令v=yesinput('prompt',default,possib)%prompt为文字提示,default为缺省设置“值”,possib为设置值的范围。
%该指令无法在notebook中运行。
输出:disp(a)%显示变量a的内容,另一种显示变量内容的方法是输入变量名,但是这样显示的结果带有“a=”。
三、流程控制1、运算符(1)关系操作符== ~= > >= < <=(2)涉及相互关系的集合运算符& | ~ xor% xor 相异元素返回1,相同元素返回02、IF(1) 基本:if 逻辑判断式……end(2) 多重判断:if 逻辑判断式......else if 逻辑判断式......else 逻辑判断式......endendend3、switch-case结构和C的switch语句一样switch 变量case数值1……case数值2……case 数值k %当变量等于数值k的时候,执行本组命令,然后跳出该结构。
……otherwise……%该命令可以不存在,在变量不等于前面所有的检测值的时候,执行此组命令。
end case4、try-catch结构try %只有当matlab执行本组命令发生错误时,后一组命令才会被执行……catch……%如果此组命令执行又出错,matlab将终止该结构。
end%可以调用lasterr函数查询出错原因。
如果函数的运行结果为一个空串,则表明这组命令被成功执行了。
四、循环1、whilewhile 表达式……end2、forfor x=数值…………end%其中的数值可以是数组;或者是类似下面的表达“1:4”,表示从1到4循环;还可以是“1:0.1:4”,表示以0.1为步长从1到4循环。
五、数组、数组运算和矩阵运算1、数值数组matlab中数组不需要声明。
(1)对一维数值数组赋初值逐个元素输入:x=[1 2 pi/2]冒号生成:x=1:0.1:4定数线性采样法:x=linspace (a,b,n)%相当于第一个数为a,最后一个数为b,以n为采样点数等间距采样。
x=logspace(a,b,n)%相当于第一个数为10a,最后一个数为10b,以n为采样点数等间距采样。
(2)对一维数值数组的寻访x(3) %寻访第三个元素x([1 2 3]) %寻访第1,2,3个元素x(1:3) %寻访第1到3个元素x(3:-1:1) %由前三个元素倒排成子数组x(find(x>0.5)) %由大于0.5的元素构成的子数组(3)对二维数值数组赋初值逐个赋值:x=[1,2,3; 3,4,6; 7,8,9]%“;”为二维数组“行”的分隔符号,而“,”和空格为同一行元素的分隔符。
整列赋值:x(:,[4,5])=4 %第4、5列赋值为4元素重排:A=reshape(1:9,3,3)%将1到9重新排列成一个(3*3)矩阵,注意matlab是列“优先”,即先排第一列再排第二列,而不是按行来排。
(4)二维数组元素的标识和寻访“全下标”标识:A(3,5) %第3行第5列元素“单下标”标识:对于一个(m*n)维数组A中第r行第c列元素,其“单下标”表示为:A(l)%这里l=(c-1)*m+r2、数组运算和矩阵运算(1)数组运算指令含义A.'相当于conj(A'),conj的作用help一下吧……A=s把标量s赋给A的每个元素s+B标量s分别与B元素之和s-B,B-s标量s分别与B元素之差s.*A标量s分别与A元素之积s./B,B.\ss分别被B的元素除A的每个元素自乘n次A.^p对A的各个元素分别求非整数幂p.^A以p为底,分别以A的元素为指数求幂A+B对应元素相加A-B对应元素相减A.*B对应元素相乘A./BA的元素被B的对应元素除B.\A同上exp(A)以e为底,分别以A的元素为指数求幂log(A)对A的各个元素求对数sqrt(A)对A的各个元素求平方根求A各个元素的函数值A#B对应元素的关系运算,#代表关系运算符A@B对应元素的逻辑运算,@代表逻辑运算符(2)矩阵运算指令含义A'共轭转置s*A标量s分别与A元素之积S*inv(B)B阵的逆乘sA^nA阵为方阵时,自乘n次A^p方阵A的非整数乘方p^AA阵为方阵时,标量的矩阵乘方A+B矩阵相加A-B矩阵相减A*B矩阵相乘A/BA右除BB\AA左除Bexpm(A)A的矩阵指数函数logm(A)A的矩阵对数函数sqrtm(A)A的矩阵平方根函数funm(A,'FN')一般矩阵函数3、逻辑数组看例子就明白了:A=zeros(2,5); %预生成一个(2*5)全零数组A(:)=-4:5; %运用“全元素”方法向A赋值L=abs(A)>3 %产生一个与A同维的“0 -1”逻辑值数组islogical(L) %判断L是否逻辑值数组。
输出若为1,则是X=A(L) %把L中逻辑值为1对应的A元素取出4、字符串数组(1)字符串数组赋初值S=['aa''bb']或者:S=char('aa','bb')还可以:S=str2mat('aa',' ','bb') %这里空串会产生空行而:S=str2cat('aa',' ','bb') %这里空串不会产生空行(2) 字符串操作函数int2str %把整数数组转换为串数组num2str %把非整数数组转换为串数组mat2str %把数值数组转换为串数组%请使用help搜索其他的字符串操作函数。
5、元胞数组元胞数组和一般数值数组和字符串数组不同,其元素可以是任意类型和大小的对象。
这和C的结构型数组有些类似。
(1)创建元胞数组有以下两种创建方式:外标识元素赋值:a=char('aa' 'bb');b=1:9;c=2:5;d=[1+2i];A(1,1)={a}; A(1,2)={b}; A(2,1)={c}; A(2,2)={d};内涵的直接赋值:a=char('aa' 'bb');b=1:9;c=2:5;d=[1+2i];A{1,1}=a; A{1,2}=b; A{2,1}=c; A{2,2}=d;(2)元胞数组内容的调取注意在这里()访问的是元胞,用{}访问的是元胞中存储的内容。