最短路问题的闭环DNA算法
- 格式:pdf
- 大小:227.29 KB
- 文档页数:5
多源最短路算法多源最短路算法是指在图中找出多个起点到各个终点的最短路径的算法。
它是单源最短路算法的扩展,单源最短路算法只能求出一个起点到所有终点的最短路径,而多源最短路算法可以求出多个起点到所有终点的最短路径。
一、问题描述在一个有向带权图中,给定多个起点和终点,求每个起点到每个终点的最短路径。
二、常见算法1. Floyd算法Floyd算法是一种基于动态规划思想的多源最短路算法。
它通过不断地更新两个顶点之间的距离来得到任意两个顶点之间的最短路径。
Floyd 算法时间复杂度为O(n^3),空间复杂度为O(n^2)。
2. Dijkstra算法Dijkstra算法是一种单源最短路算法,但可以通过对每个起点运行一次Dijkstra算法来实现多源最短路。
Dijkstra算法时间复杂度为O(ElogV),空间复杂度为O(V)。
3. Bellman-Ford算法Bellman-Ford算法是一种解决带负权边图上单源最短路径问题的经典动态规划算法。
通过对每个起点运行一次Bellman-Ford算法来实现多源最短路。
Bellman-Ford算法时间复杂度为O(VE),空间复杂度为O(V)。
三、算法实现1. Floyd算法实现Floyd算法的核心思想是动态规划,即从i到j的最短路径可以通过i到k的最短路径和k到j的最短路径来得到。
因此,我们可以用一个二维数组dis[i][j]表示从i到j的最短路径长度,初始化为图中两点之间的距离,如果两点之间没有边相连,则距离为INF(无穷大)。
然后,我们用三重循环遍历所有顶点,每次更新dis[i][j]的值。
代码如下:```pythondef floyd(graph):n = len(graph)dis = [[graph[i][j] for j in range(n)] for i in range(n)]for k in range(n):for i in range(n):for j in range(n):if dis[i][k] != float('inf') and dis[k][j] != float('inf'):dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j])return dis```2. Dijkstra算法实现Dijkstra算法是一种贪心算法,它通过不断地选择当前起点到其他顶点中距离最小的顶点来更新最短路径。
最短路径算法的弗洛伊德算法的数学归纳法冥想证明 Version 1.0我二十年前已了解迪杰斯特拉算法,最近忽有兴趣开发了一款最短路径算法小软件EXE,了却二十年前的心愿。
余庆未了,网上了解了还有多种方法,如A-Star,johnson,bellman,SPFA等算法,其中最感兴趣的是弗洛伊德算法。
百度了,看了很多源码,大同小异。
但对弗洛伊德算法原理,网上讲的,我看后也觉似懂非懂。
利用抗战70周年纪念日放假期间,我闭关冥想,想到了N步的方法,但冥想出来的源码,总比网上讲的多一层循环。
于是继续冥想,想到了要用数学归纳法来证明弗洛伊德算法。
百度下,好似网上暂没这方面资料,于是共享出来,与诸君分享,不知对错也,网上讲到的什么迭代法,总是不太对似的,弗法可能并没有这么简单的:假设顶点数为N,N=4,5,6时,具体的弗法正确性,我就不想验证了。
假设N<=n时,弗法是正确的,如何证明N=n+1时,弗法仍是正确的?先研究下N=n弗法正确时的特性。
N=n时,所有的n个顶点两两组合的边D[i,j],不论虚边实边(直接的称实边,要通过其他顶点的叫虚边,我如此定义先),全部有值,且为最小值最短路径。
N当N=n+1时,新加一点,称最后一点K。
令最后一点K总在循环中排在最后一位,三重循环中都是排在最后一位。
令最外层循环为k,中间层循环为j,最内层循环为i。
定理一:最后一点k若改变i与j之距D[i,j],则所有经过i与j之最短路必同步更新且不分先后。
证明:假设点x经过最短路径D[i,j],D[i,x]=D[i,j]+D[j,x]或D[i,x]=D[i,j]-D[j,x]。
D[i,j]已被替换成为了D[i,k]+D[j,k],而D[j,k]+D[j,x]>=D[k,x]或D[j,k]+D[j,x]>=D[k,x].所以D[i,x]>=D[i,k]+D[k,x],所以x点必被更新,也就是执行松驰操作。
定理二:最后一点k若改变i与j之距D[i,j],则经过i与j之最短路必不经过最后一点k。
最短路问题(short-path problem)若网络中的每条边都有一个权值值(长度、成本、时间等),则找出两节点(通常是源节点与结束点)之间总权和最小的路径就是最短路问题。
最短路问题是网络理论解决的典型问题之一,可用来解决管路铺设、线路安装、厂区布局和设备更新等实际问题。
最短路问题,我们通常归属为三类:单源最短路径问题(确定起点或确定终点的最短路径问题)、确定起点终点的最短路径问题(两节点之间的最短路径)1、Dijkstra算法:用邻接矩阵a表示带权有向图,d为从v0出发到图上其余各顶点可能达到的最短路径长度值,以v0为起点做一次dijkstra,便可以求出从结点v0到其他结点的最短路径长度代码:procedure dijkstra(v0:longint);//v0为起点做一次dijkstrabegin//a数组是邻接矩阵,a[i,j]表示i到j的距离,无边就为maxlongintfor i:=1 to n do d[i]:=a[v0,i];//初始化d数组(用于记录从v0到结点i的最短路径), fillchar(visit,sizeof(visit),false);//每个结点都未被连接到路径里visit[v0]:=true;//已经连接v0结点for i:=1 to n-1 do//剩下n-1个节点未加入路径里;beginmin:=maxlongint;//初始化minfor j:=1 to n do//找从v0开始到目前为止,哪个结点作为下一个连接起点(*可优化) if (not visit[j]) and (min>d[j]) then//结点k要未被连接进去且最小begin min:=d[j];k:=j;end;visit[k]:=true;//连接进去for j:=1 to n do//刷新数组d,通过k来更新到达未连接进去的节点最小值,if (not visit[j]) and (d[j]>d[k]+a[k,j]) then d[j]:=a[k,j]+d[k];end;writeln(d[n]);//结点v0到结点n的最短路。
最短路dijkstra算法详解最短路问题是图论中的一个经典问题,其目标是在给定图中找到从一个起点到其他所有节点的最短路径。
Dijkstra算法是解决最短路问题的一种常用算法,本文将详细介绍Dijkstra算法的原理、实现以及时间复杂度等相关内容。
一、Dijkstra算法的原理Dijkstra算法是一种贪心算法,其基本思想是从起点开始,逐步扩展到其他节点。
具体而言,Dijkstra算法通过维护一个集合S来记录已经找到了最短路径的节点,以及一个数组dist来记录每个节点到起点的距离。
初始时,S集合为空,dist数组中除了起点外所有节点都被初始化为无穷大。
接下来,重复以下步骤直到所有节点都被加入S集合:1. 从dist数组中选择距离起点最近的未加入S集合的节点u;2. 将u加入S集合;3. 更新与u相邻的未加入S集合的节点v的距离:如果从起点出发经过u可以得到更短的路径,则更新v对应位置上dist数组中存储的值。
重复以上步骤直至所有节点都被加入S集合,并且dist数组中存储了每个节点到起点的最短距离。
最后,根据dist数组中存储的信息可以得到起点到任意节点的最短路径。
二、Dijkstra算法的实现在实现Dijkstra算法时,需要使用一个优先队列来维护未加入S集合的节点,并且每次从队列中选择距离起点最近的节点。
由于C++标准库中没有提供优先队列,因此需要手动实现或者使用第三方库。
以下是一个基于STL堆实现的Dijkstra算法代码示例:```c++#include <iostream>#include <vector>#include <queue>using namespace std;const int INF = 0x3f3f3f3f;vector<pair<int, int>> adj[10001];int dist[10001];void dijkstra(int start) {priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq;pq.push(make_pair(0, start));dist[start] = 0;while (!pq.empty()) {int u = pq.top().second;pq.pop();for (auto v : adj[u]) {if (dist[u] + v.second < dist[v.first]) {dist[v.first] = dist[u] + v.second;pq.push(make_pair(dist[v.first], v.first));}}}}int main() {int n, m, start;cin >> n >> m >> start;for (int i = 1; i <= n; i++) {dist[i] = INF;}for (int i = 1; i <= m; i++) {int u, v, w;cin >> u >> v >> w;adj[u].push_back(make_pair(v, w));}dijkstra(start);for (int i = 1; i <= n; i++) {if (dist[i] == INF) {cout << "INF" << endl;} else {cout << dist[i] << endl;}}return 0;}```以上代码中,adj数组用于存储图的邻接表,dist数组用于存储每个节点到起点的最短距离。
遗传算法的基本原理和求解步骤遗传算法呀,就像是一场生物进化的模拟游戏呢。
它的基本原理其实是从生物遗传学那里得到灵感的哦。
我们把要解决的问题看作是一个生物种群生存的环境。
在这个算法里,每个可能的解就像是种群里的一个个体。
这些个体都有自己独特的“基因”,这个“基因”就代表了解的一些特征或者参数啦。
比如说,如果我们要找一个函数的最大值,那这个函数的输入值可能就是个体的“基因”。
然后呢,遗传算法会根据一定的规则来判断这些个体的“好坏”,就像大自然里判断生物适不适合生存一样。
这个“好坏”是通过一个适应度函数来衡量的,适应度高的个体就像是强壮的生物,更有机会生存和繁衍后代呢。
那它的求解步骤可有趣啦。
第一步是初始化种群。
就像是在一个新的星球上创造出一群各种各样的小生物。
我们随机生成一些个体,这些个体的“基因”都是随机设定的。
接下来就是计算适应度啦。
这就像是给每个小生物做个健康检查,看看它们有多适合这个环境。
然后是选择操作。
这就好比是大自然的优胜劣汰,适应度高的个体就有更大的机会被选中,就像强壮的动物更有可能找到伴侣繁衍后代一样。
再之后就是交叉操作啦。
选中的个体之间会交换一部分“基因”,就像生物繁殖的时候基因的混合,这样就可能产生出更优秀的后代呢。
最后还有变异操作。
偶尔呢,某个个体的“基因”会发生一点小变化,就像生物突然发生了基因突变。
这个变异可能会产生出一个超级厉害的个体,也可能是个不咋地的个体,不过这也给整个种群带来了新的可能性。
通过这样一轮一轮的操作,种群里的个体就会越来越适应环境,也就是我们要找的解会越来越接近最优解啦。
遗传算法就像是一个充满惊喜和探索的旅程,在这个旅程里,我们让这些“数字生物”不断进化,直到找到我们满意的答案呢。