E型沉箱浮游稳定计算
- 格式:xlsx
- 大小:18.23 KB
- 文档页数:8
海上沉箱浮游稳定性验算书进行浮游稳定性计算,以保证沉箱拖航、安装时的安全。
①CXI型沉箱要加水调平不平衡力矩(对沉箱中心) ZMx=82.92kN∙m需要后三仓加水,加水深度t{(3.6×3.65-0.22×2)×t-0.22X(3.45+3.4)}×3×1.025X3.9=JMx×2.5B加水后1.4m的浮游稳定性加水的重力及对沉箱底的重量距g={(3.6×3.65-0.22×2)×1.4-0.22X(3.45+3.4)}×3×1.025=55.38ZIMy=g×1.2=66.46kN∙m沉箱总重量G=ΣV×2.5+g=1089.06kN重心高度YC=(My+/My)/G=4.914m排水体积V=G/1.025=1062.495m3前后趾排水体积v=13.806m3浮心高度Yw=E(V-v)×T∕2+vYv)]∕V=3.579m重心到浮心距离a=Yc-Yw=1.336m定倾半径P=(I-∑i)∕V=1.628m定倾高度m=P-a=0.292>0.2满足浮游稳定要求②CX2型沉箱以沉箱仓格中心为计算圆点A要加水调平不平衡力矩(对沉箱中心)/Mx=134.735kN∙m需要后三仓加水,加水深度t{(3.65×4.5-0.22×2)×1θ.22×(3.45+4.3)}×3×1.025×4.75=ZM×2.516.35Xt-O.31=23.0612t=1.43mB加水后1.5m的浮游稳定性加水后的重力及对沉箱底的重量距g={(4.5×3.65-0.22×2)×1.5+0.22×(3.45+4.3}×3×1.025=74.438ZIMy=gX1.25=93.048kN∙m沉箱总重量G=ΣV×2.5÷g=1214.412kN重心高度YC=(My+/My)/G=4.84m排水体积V=G/1.025=1184.79m3前后趾排水v=10.038m3沉箱吃水T=(V-v)∕A=6.665m浮心高度Yw=[(V-v)×T∕2+vYv)]∕V=3.307m重心到浮心距离a=Yc-Yw=I.532m定倾半径P=(I-∑i)∕V=2.622m 定倾高度m=P-a=1.09>0.2满足浮游稳定要求③CX3型沉箱A要加水调平不平衡力矩(对沉箱中心)Z1Mx=I16.97kN∙m需要后四仓加水加水深度t{(3.6×3.65-0.22×2)×t+0.22×(3.45÷3.4)}X4X1.025义3.9二,M X2.513.06×t-0.274=18.288t=1.42mB加水后1.5m的浮游稳定性加水后的重力及对沉箱底的重量距g={(3.6×3.65-0.22×2)×1.5-0.22×(3.45+3.4)}×4×1.025=79.196kNZMy=99.00kN•沉箱总重量重心高度排水体积前后趾排水体积沉箱吃水浮心高度重心到浮心距离定倾半径定倾高度mG=ΣV×2.5+g=1575.196kNYc=(My+JMy)∕G=4.843mV=G/1.025=1536.777m3v=21.528m3T=(V-v)∕A=6.777mYw=[(V-v)×T∕2÷vYv)]∕V=3.345m a=Yc-Yw=I.498mP=(I-∑i)∕V=1.732mm=P-a=0.234>0.2满足浮游稳定要求④CX4型沉箱以沉箱仓格中心为计算圆点A由于沉箱前后趾、壁厚大小不同及马腿影响,重心不在中心上,需要加水调平不平衡力矩(对沉箱中心)∠JMx=195.03kN∙m需要后四仓加水,加水深度t{(3.65×4.5-0.22×2)×t-0.22×(3.45+4.3)}×4×1.025×4.75=Z1MX2.516.35×t-0.31=25.03583 t=1.51mB加水后1.5m的浮游稳定性加水后的重力及对沉箱底的重量距g={(3.65X4.5-0.22×2)×15-0.22X(3.45÷4.3)}×4×1.025=99.25075kNZIMy=24.063kN∙m沉箱总重量G=ΣV×2.5+g=1731013kN重心高度YC=(My+/My)/G=4.766m排水体积V=G/1.025=1688.793m3前后趾排水体积v=15.456m3沉箱吃水T=(V-v)∕A=6.198m浮心高度Yw=[(V-v)×T∕2+vYv)]∕V=3.073m重心到浮心距离a=Yc-Yw=I.693m定倾半径P=(I-Σi)∕V=2.801m定倾高度m=p-a=1.108>0.2满足浮游稳定要求⑤D4型沉箱(不考虑钢套筒重量情况)以沉箱仓格中心为计算圆点水调平不平衡力矩(对沉箱中心)Z1MX=465.68kN∙mJMz=-117.23kN∙m需要后八仓加水,加水深度t{(2.9×2.8-0.22×2)×t-0.22X(2.7+2.6)}×8×1.025×8.8=Z1MxX2.5 8.04×t-0.212=16.13 t=2.03m右仓加水,加水深度3、t2{(2.9×2.8-0.22×2)×(t1+t2)-O.22X(2.7+2.6)}×5×1.025×10.85=-Z1MzX2.58.04×(t1+t2)-0.212=5.2711.3×4×t1=6.2×t2tι=0.31mt2=0.37mB后八仓加水2.0m,左五仓加水0.4m的浮游稳定性加水后的重力及对沉箱底的重量距g={(2.9×2.8-0.22×2)×2.0-0.22X(2.7+2.6)}×8×1.025=130.18kNg={(2.9×2.8-0.22×2)×0.4-0.22×(2.7+2.6)}×5×1.025=15.40kN ∠IMyι=195.18kN∙mZ1My2=IO.785kN∙m沉箱总重量重心高度排水体积前后趾排水沉箱吃水浮心高度重心到浮心距离G=ΣV×2.5÷g=4419.456kNYc=(My+JMy)∕G=6.975mV=G/1.025=4311.664m3v=15.36m,T=(V-v)∕A=8.077mYw=1(V-v)XT∕2+vYv)]∕V=4.025m a-Yc-Yw=2.95m定倾半径P=(I-Σi)∕V=4.34定倾高度m=p-a=1.39>0.2满足浮游稳定要求AZMz=-117.23kN∙m 钢护筒重量G'=π×(1.5+0.752)×0.01×49×1×7.8×IoJ24752=24.752T需要后八仓加水,加水深度t{(2.9×2.8-0.22×2)×t-0.22×(2.7+2.6)}×8×1.025×8.8=∠IMx×2.5+G'×0.28.04×t-0.212=16.2 t=2.04m左五仓加水,加水深度分别为匕、t2{(2.9×2.8-0.22×2)×(t1+t2)-0.22X(2.7+2.6)}×5×1.025×10.85=-G'XI.55+Z1MzX2.58.04×(t1+t2)-0.212=4.581.3×4×tι=6.2×t2-0.30mtι=0.25m t2B后八仓加水2.1m,左五仓加水0.3m的浮游稳定性加水后的重力及对沉箱底的重量距g={(2.9×2.8-0.22×2)X2.1-0.22×(2.7+2.6)}×8×1.025=136.71kNg={(2.9×2.8-0.22×2)×0.3-0.22×(2.7+2.6)}×5×1.025=11.28kN ZMy1=211.90kN∙mJMy1=7.33kN∙m沉箱总重量G=ΣV×2.5+g+G'=4446.68kN重心高度YC=(My+/My)∕G=6.98m排水体积V=G/1.025=4338.23 m3前后趾排水v=15.36m3沉箱吃水T=(V-v)∕A=8.13mYw=[(V-v)×T∕2+vYv)]∕V=4.05m 浮心高度重心到浮心距离a=Yc-Yw=2.93m定倾半径P=(I-∑i)∕V=4.31m定倾高度m=p-a=1.38>0.2 满足浮游稳定要求。
LNG码头沉箱浮游稳定计算共有三种沉箱计算后的干旋高度如下:(1)甲型沉箱干舷高度F=18.40-13.45=4.95米(压水1.80米)(2)乙型沉箱干舷高度F=18.00 -13.24=4.76米(压水1.80米)(3)丙型沉箱干舷高度F=21.00-15.66=5.34米(压水3.50米)(4)丙型沉箱干舷高度F=21.00-15.26=5.81米(压块石2.00米)计算甲型沉箱:高h=18.4m1,沉箱自重时的重心位置沉箱材料体积和体积矩的计算表 2006年 5 月24 日沉箱自重时的重心位置X c=7.75mY c= 4564.36÷635.91=7.18m2,有压舱水和封舱盖板时:沉箱总体重G=2.45×635.91+5+175.13=1738.11t计算沉箱排水体积和趾的排水体积,钢混凝土重度取2.5 t/m3沉箱和压舱水、封舱盖板排水体积V=(2.5×635.91+5+175.13)÷1.025=1726.74m3趾的排水体积v=73.64+3.13=76.77 m3沉箱吃水T=(1726.74-76.77)÷6.252×3.14=13.45m沉箱总体重心高度:Y c1= (2.45×635.91×7.18+5×18.37+175.13×1.6)÷1738.11=6.65m 浮心:Yw1=[(1726.74-76.77)×13.45×0.5+18.76+18.71+51.37]÷1726.74=6.47mρ=[(π/64×12.54=1198.42)-4.85×5.853/36]÷1769.91=0.55a= Y c1- Y w1=6.65-6.47=0.18m=ρ-a=0.55-0.18=0.38m>0.20稳定m大于0.20计算乙型沉箱:高h=18. m1,沉箱自重时的重心位置沉箱材料体积和体积矩的计算表2006年 5 月24 日沉箱自重时的重心位置X c=7.75mY c= 4371.22÷625.13=6.99m2,有压舱水和封舱盖板时:沉箱总体重G1=2.45×625.13+5+175.03=1711.59t有压舱水和封舱盖板时:沉箱总体重心Y1c=11075.56÷1711.62=6.47(m)1,计算沉箱总体排水体积:钢混凝土重度取2.5 t/m3V 1c =(2.5×625.13+5+175.05)÷1.025=1742.88÷1.025 m3=1700.37t2,沉箱趾的排水体积:v=73.64+3.13=76.77 m3沉箱吃水T=(1700.37-76.77)÷6.252×3.14=13.24m沉箱总体重心高度:= 11075.56÷1711.62=6.47mY1c浮心:Y1w=[(1700.37-76.77)×13.24×0.5+18.76+18.71+51.37] ÷1700.37=6.38mI=π/64×12.54=1198.42;∑Ir=(4.85×5.853÷36)×8=215.61ρ=(1198.42-215.61)÷1700.37=0.55a= Y c1- Y w1=6.47-6.38=0.09m=ρ-a=0.55-0.09=0.49m>0.20 稳定m大于0.20计算丙型沉箱:高h=21. m1,沉箱自重时的重心位置沉箱材料体积和体积矩的计算表2006年 5 月24 日沉箱自重时的重心位置X c=7.75mY c= 5951.91÷663.18=8.97m2,有压舱水和封舱盖板时:沉箱总体重G1=2.45×663.18+5+340.92=1970.63有压舱水和封舱盖板时:沉箱总体重心Yc= 15512.43÷1970.63=7.87m11,计算沉箱总体排水体积:钢混凝土重度取2.5 t/m3V 0 =(2.5×663.18+5)÷1.025+332.61=1955.002,沉箱趾的排水体积:v=19.83+8.71+5.49=34.03 m3沉箱吃水T=(V0-v)÷AT=(1955-34.03)÷6.252×3.14=15.66m沉箱总体浮心高度:Yw=[(V0-v)×T/2+∑v.y]÷V0Yw1=[(1955-34.03)×15.66×0.5+7.38+6.94+96.12] ÷1955=7.75m ρ=(I-∑Ir)÷V 0I=π/64×12.54=1198.42;∑Ir=(4.85×5.853÷36)×8=215.61 ρ=(1198.42-215.61)÷1955=0.50a= Y c1- Y w1=7.87-7.75=0.12m=ρ-a=0.50-0.12=0.38m>0.20 稳定(m大于0.20)计算丙型沉箱:高h=21. m 用290t块石压舱本沉箱压水3.5m时吃水15.66m,为减少其吃水,改用290t块石,块石的重度为1.55t/m3。
2021年3月第3期总第580期水运工程Port & Waterway EngineeringMar. 2021No. 3 Serial No. 580基于沉箱浮游稳定性计算原理的浮码头横稳性计算方法张兴旺(中铁第五勘察设计院集团有限公司,北京102600)摘要:浮码头中的浮箱横稳性关乎旅游码头运营安全及游客人身安全。
JTS 165-7—2014《游艇码头设计规范》发布之前,工程设计中浮箱横稳性计算均采用重力式沉箱浮游稳定性计算原理。
在梳理沉箱和浮箱计算原理的基础上,采用理论 分析、公式推导、工程案例验证的研究方法,证实了浮箱横稳性计算采用重力式沉箱浮游稳定性计算原理是合理可行的。
研究成果对后续研究及设计工作具有重要的参考价值。
关键词:横稳性;浮游稳定性;浮码头中图分类号:U 656文献标志码:A文章编号:1002-4972(2021)03-0058-06Calculation method of horizontal stability of floating wharfbased on calculation principle of caissons floating stabilityZHANG Xing-wang(China Railway Fifth Survey and Design Institute Group Co., Ltd., Beijing 102600, China)Abstract : The horizontal stability of the pontoon in the floating wharf is related to the operation safety of thetourist wharf and the personal safety of tourists. Before the issuance of JTS 165-7一2014 Code for design ofmarinas, the calculation principle of the floating stability of the pontoon in the engineering design was based on the calculation principle of the floating stability of the gravity caisson. Based on combing the calculation principles ofcaissons and pontoons, this paper uses the research methods of theoretical analysis, formula derivation andengineering case verification to verify that it is reasonable and feasible to calculate the floating stability of pontoons by using gravity caisson floating stability calculation principles. The research results of this paper have importantreference value for the follow-up research and design work.Keywords : horizontal stability; floating stability; floating wharf20世纪90年代飞速发展的游艇产业掀起了 游艇码头的建设热潮[1],国内已建游艇码头多采用浮码头结构形式 。
椭圆形沉箱码头由于受力合理和断面经济,已首次用于大连大窑湾深水泊位码头上,是外海基岩较高地区开敞式码头的主要结构型式之一,有很好的发展前景[1]。
椭圆形沉箱的浮游稳定计算内容,在港口工程专业书籍里尚属缺项,在此加以补充。
椭圆形沉箱实际上是由中间的矩形段和两端的半圆段组成,近似椭圆形,简称椭圆沉箱,依椭圆沉箱两端半圆段内的箱格形状,又可分为扇形箱格的Ⅰ型和非扇形箱格的Ⅱ型椭圆沉箱,如图1和图2所示。
沉箱内壁厚为b 1,外壁厚为b 2;中间箱格纵向净长为l 1,横向净宽为l 2;中间矩形段长为L 1;两端半圆的内半径为r 内,外半径为r 外;沉箱外围宽为B ,外围长为L=L 1+2r 外=L 1+B 。
矩形沉箱浮游稳定计算中定倾半径ρ的计算式可视为通式,同样适用于椭圆沉箱[2]:ρ=I 0-ΣiV(1)式中:I o 为椭圆沉箱断面在水面处对纵向形心轴(x o -x o)的惯性矩(m 4);∑i 为椭圆沉箱各箱格内压载水对椭圆沉箱纵向形心轴(x o -x o)平行的自身形心轴的惯性矩之和(m 4);V 为椭圆沉箱的排水量(m 3)。
两类椭圆沉箱浮游稳定计算问题的关键在于如何求出通式中的∑i 式,下面分别阐述。
椭圆沉箱浮游稳定的计算法董中亚(中交四航局第二工程有限公司,广东广州510231)摘要:在矩形箱格的矩形沉箱和扇形箱格之圆形沉箱的浮游稳定计算原理的基础上,对两种类型椭圆沉箱两端半圆段内不同几何形状的箱格之自身对称轴的惯性矩,经图形转轴公式和平行移动公式转换,并经数学推导得到对椭圆形沉箱纵向形心轴平行的箱格自身形心轴的惯性矩i 及其之和Σi 的计算式,从而解决了椭圆形沉箱浮游稳定计算的问题。
关键词:椭圆沉箱;惯性矩;平行移动;转轴公式中图分类号:TU 473.2文献标志码:A文章编号:1002-4972(2011)01-0087-07收稿日期:2007-09-10作者简介:董中亚(1942—),男,高级工程师,从事港口工程施工技术管理和设计工作。
西港区一期工程30万吨级码头沉箱浮游稳定计算一、沉箱浮游稳定性验算沉箱在溜放或漂浮、拖运和安放过程中应保证不倾覆,要求沉箱具有一定的浮游稳定性。
沉箱的稳定性可用定倾中心高度(定倾半径)ρ表示。
沉箱在外力矩的作用下发生倾斜,在倾斜的过程中,沉箱的浮心位置发生变化。
在小倾角(小于15°)的情况下(沉箱漂浮时的倾斜一般属于小倾角),浮心W的变化接近于圆弧,此圆弧的中心M称为定倾中心;圆弧的半径ρ称为定倾半径;定倾中心M距重心C 的距离m称为定倾中心高度。
m=ρ-a,在进行理论计算时要求精确到厘米。
当m>0时,即定倾中心M在重心之上,沉箱在外力矩作用下发生倾斜时,存在一个由沉箱重力G和浮力V*γ(γ为水的重度)构成的扶正沉箱的力偶,此时沉箱稳定。
反之,m<0,即M在C之下,沉箱在外力矩作用下发生倾斜时,则存在一个使沉箱继续倾斜的力偶,这时沉箱是不稳定的。
为了保证沉箱的浮游稳定性,沉箱在有掩护区域近程浮运时,m≥20cm。
沉箱在无掩护区并远程浮运时,如采用块石、砂等固定物压载,m≥40cm;如采用海水压载,m≥50cm,并密封舱顶。
(近程浮运是指在同一港区或运程在30海里以内;远程浮运是指在港际间整个浮运时间内有夜间航行或运程≥30海里)当沉箱浮游稳定不满足时,可采用压舱方法,使重心降低。
通常用水压舱的方法,优点:施工比较方便。
缺点:有自由液面存在,降低了压舱效果。
此外还可采用固体(如砂、石或混凝土块等)压舱。
优点:压舱效果好。
缺点:施工不方便。
同时为了保证沉箱在溜放或者漂浮、拖运和安放时不没顶,应有足够的干舷高度F。
在拖运时,干舷高度应满足:F=H-T≥B02tanθ+2h3+sF:沉箱的干舷高度(m)h:波高(m)θ:沉箱的倾角,溜放时,采用滑道末端的坡角,浮运时采用6°—8°S:沉箱干舷的富裕高度(m),一般取0.5—1m。
当沉箱吃水和干舷高度不满足要求时,可不采用或不完全采用压舱方法来保证浮游稳定,可以采用起重船或浮筒吊扶的方法。