沉箱浮游稳定性计算方法 ppt课件
- 格式:ppt
- 大小:992.50 KB
- 文档页数:10
海上沉箱浮游稳定性验算书进行浮游稳定性计算,以保证沉箱拖航、安装时的安全。
①CXI型沉箱要加水调平不平衡力矩(对沉箱中心) ZMx=82.92kN∙m需要后三仓加水,加水深度t{(3.6×3.65-0.22×2)×t-0.22X(3.45+3.4)}×3×1.025X3.9=JMx×2.5B加水后1.4m的浮游稳定性加水的重力及对沉箱底的重量距g={(3.6×3.65-0.22×2)×1.4-0.22X(3.45+3.4)}×3×1.025=55.38ZIMy=g×1.2=66.46kN∙m沉箱总重量G=ΣV×2.5+g=1089.06kN重心高度YC=(My+/My)/G=4.914m排水体积V=G/1.025=1062.495m3前后趾排水体积v=13.806m3浮心高度Yw=E(V-v)×T∕2+vYv)]∕V=3.579m重心到浮心距离a=Yc-Yw=1.336m定倾半径P=(I-∑i)∕V=1.628m定倾高度m=P-a=0.292>0.2满足浮游稳定要求②CX2型沉箱以沉箱仓格中心为计算圆点A要加水调平不平衡力矩(对沉箱中心)/Mx=134.735kN∙m需要后三仓加水,加水深度t{(3.65×4.5-0.22×2)×1θ.22×(3.45+4.3)}×3×1.025×4.75=ZM×2.516.35Xt-O.31=23.0612t=1.43mB加水后1.5m的浮游稳定性加水后的重力及对沉箱底的重量距g={(4.5×3.65-0.22×2)×1.5+0.22×(3.45+4.3}×3×1.025=74.438ZIMy=gX1.25=93.048kN∙m沉箱总重量G=ΣV×2.5÷g=1214.412kN重心高度YC=(My+/My)/G=4.84m排水体积V=G/1.025=1184.79m3前后趾排水v=10.038m3沉箱吃水T=(V-v)∕A=6.665m浮心高度Yw=[(V-v)×T∕2+vYv)]∕V=3.307m重心到浮心距离a=Yc-Yw=I.532m定倾半径P=(I-∑i)∕V=2.622m 定倾高度m=P-a=1.09>0.2满足浮游稳定要求③CX3型沉箱A要加水调平不平衡力矩(对沉箱中心)Z1Mx=I16.97kN∙m需要后四仓加水加水深度t{(3.6×3.65-0.22×2)×t+0.22×(3.45÷3.4)}X4X1.025义3.9二,M X2.513.06×t-0.274=18.288t=1.42mB加水后1.5m的浮游稳定性加水后的重力及对沉箱底的重量距g={(3.6×3.65-0.22×2)×1.5-0.22×(3.45+3.4)}×4×1.025=79.196kNZMy=99.00kN•沉箱总重量重心高度排水体积前后趾排水体积沉箱吃水浮心高度重心到浮心距离定倾半径定倾高度mG=ΣV×2.5+g=1575.196kNYc=(My+JMy)∕G=4.843mV=G/1.025=1536.777m3v=21.528m3T=(V-v)∕A=6.777mYw=[(V-v)×T∕2÷vYv)]∕V=3.345m a=Yc-Yw=I.498mP=(I-∑i)∕V=1.732mm=P-a=0.234>0.2满足浮游稳定要求④CX4型沉箱以沉箱仓格中心为计算圆点A由于沉箱前后趾、壁厚大小不同及马腿影响,重心不在中心上,需要加水调平不平衡力矩(对沉箱中心)∠JMx=195.03kN∙m需要后四仓加水,加水深度t{(3.65×4.5-0.22×2)×t-0.22×(3.45+4.3)}×4×1.025×4.75=Z1MX2.516.35×t-0.31=25.03583 t=1.51mB加水后1.5m的浮游稳定性加水后的重力及对沉箱底的重量距g={(3.65X4.5-0.22×2)×15-0.22X(3.45÷4.3)}×4×1.025=99.25075kNZIMy=24.063kN∙m沉箱总重量G=ΣV×2.5+g=1731013kN重心高度YC=(My+/My)/G=4.766m排水体积V=G/1.025=1688.793m3前后趾排水体积v=15.456m3沉箱吃水T=(V-v)∕A=6.198m浮心高度Yw=[(V-v)×T∕2+vYv)]∕V=3.073m重心到浮心距离a=Yc-Yw=I.693m定倾半径P=(I-Σi)∕V=2.801m定倾高度m=p-a=1.108>0.2满足浮游稳定要求⑤D4型沉箱(不考虑钢套筒重量情况)以沉箱仓格中心为计算圆点水调平不平衡力矩(对沉箱中心)Z1MX=465.68kN∙mJMz=-117.23kN∙m需要后八仓加水,加水深度t{(2.9×2.8-0.22×2)×t-0.22X(2.7+2.6)}×8×1.025×8.8=Z1MxX2.5 8.04×t-0.212=16.13 t=2.03m右仓加水,加水深度3、t2{(2.9×2.8-0.22×2)×(t1+t2)-O.22X(2.7+2.6)}×5×1.025×10.85=-Z1MzX2.58.04×(t1+t2)-0.212=5.2711.3×4×t1=6.2×t2tι=0.31mt2=0.37mB后八仓加水2.0m,左五仓加水0.4m的浮游稳定性加水后的重力及对沉箱底的重量距g={(2.9×2.8-0.22×2)×2.0-0.22X(2.7+2.6)}×8×1.025=130.18kNg={(2.9×2.8-0.22×2)×0.4-0.22×(2.7+2.6)}×5×1.025=15.40kN ∠IMyι=195.18kN∙mZ1My2=IO.785kN∙m沉箱总重量重心高度排水体积前后趾排水沉箱吃水浮心高度重心到浮心距离G=ΣV×2.5÷g=4419.456kNYc=(My+JMy)∕G=6.975mV=G/1.025=4311.664m3v=15.36m,T=(V-v)∕A=8.077mYw=1(V-v)XT∕2+vYv)]∕V=4.025m a-Yc-Yw=2.95m定倾半径P=(I-Σi)∕V=4.34定倾高度m=p-a=1.39>0.2满足浮游稳定要求AZMz=-117.23kN∙m 钢护筒重量G'=π×(1.5+0.752)×0.01×49×1×7.8×IoJ24752=24.752T需要后八仓加水,加水深度t{(2.9×2.8-0.22×2)×t-0.22×(2.7+2.6)}×8×1.025×8.8=∠IMx×2.5+G'×0.28.04×t-0.212=16.2 t=2.04m左五仓加水,加水深度分别为匕、t2{(2.9×2.8-0.22×2)×(t1+t2)-0.22X(2.7+2.6)}×5×1.025×10.85=-G'XI.55+Z1MzX2.58.04×(t1+t2)-0.212=4.581.3×4×tι=6.2×t2-0.30mtι=0.25m t2B后八仓加水2.1m,左五仓加水0.3m的浮游稳定性加水后的重力及对沉箱底的重量距g={(2.9×2.8-0.22×2)X2.1-0.22×(2.7+2.6)}×8×1.025=136.71kNg={(2.9×2.8-0.22×2)×0.3-0.22×(2.7+2.6)}×5×1.025=11.28kN ZMy1=211.90kN∙mJMy1=7.33kN∙m沉箱总重量G=ΣV×2.5+g+G'=4446.68kN重心高度YC=(My+/My)∕G=6.98m排水体积V=G/1.025=4338.23 m3前后趾排水v=15.36m3沉箱吃水T=(V-v)∕A=8.13mYw=[(V-v)×T∕2+vYv)]∕V=4.05m 浮心高度重心到浮心距离a=Yc-Yw=2.93m定倾半径P=(I-∑i)∕V=4.31m定倾高度m=p-a=1.38>0.2 满足浮游稳定要求。
LNG码头沉箱浮游稳定计算共有三种沉箱计算后的干旋高度如下:(1)甲型沉箱干舷高度F=18.40-13.45=4.95米(压水1.80米)(2)乙型沉箱干舷高度F=18.00 -13.24=4.76米(压水1.80米)(3)丙型沉箱干舷高度F=21.00-15.66=5.34米(压水3.50米)(4)丙型沉箱干舷高度F=21.00-15.26=5.81米(压块石2.00米)计算甲型沉箱:高h=18.4m1,沉箱自重时的重心位置沉箱材料体积和体积矩的计算表 2006年 5 月24 日沉箱自重时的重心位置X c=7.75mY c= 4564.36÷635.91=7.18m2,有压舱水和封舱盖板时:沉箱总体重G=2.45×635.91+5+175.13=1738.11t计算沉箱排水体积和趾的排水体积,钢混凝土重度取2.5 t/m3沉箱和压舱水、封舱盖板排水体积V=(2.5×635.91+5+175.13)÷1.025=1726.74m3趾的排水体积v=73.64+3.13=76.77 m3沉箱吃水T=(1726.74-76.77)÷6.252×3.14=13.45m沉箱总体重心高度:Y c1= (2.45×635.91×7.18+5×18.37+175.13×1.6)÷1738.11=6.65m 浮心:Yw1=[(1726.74-76.77)×13.45×0.5+18.76+18.71+51.37]÷1726.74=6.47mρ=[(π/64×12.54=1198.42)-4.85×5.853/36]÷1769.91=0.55a= Y c1- Y w1=6.65-6.47=0.18m=ρ-a=0.55-0.18=0.38m>0.20稳定m大于0.20计算乙型沉箱:高h=18. m1,沉箱自重时的重心位置沉箱材料体积和体积矩的计算表2006年 5 月24 日沉箱自重时的重心位置X c=7.75mY c= 4371.22÷625.13=6.99m2,有压舱水和封舱盖板时:沉箱总体重G1=2.45×625.13+5+175.03=1711.59t有压舱水和封舱盖板时:沉箱总体重心Y1c=11075.56÷1711.62=6.47(m)1,计算沉箱总体排水体积:钢混凝土重度取2.5 t/m3V 1c =(2.5×625.13+5+175.05)÷1.025=1742.88÷1.025 m3=1700.37t2,沉箱趾的排水体积:v=73.64+3.13=76.77 m3沉箱吃水T=(1700.37-76.77)÷6.252×3.14=13.24m沉箱总体重心高度:= 11075.56÷1711.62=6.47mY1c浮心:Y1w=[(1700.37-76.77)×13.24×0.5+18.76+18.71+51.37] ÷1700.37=6.38mI=π/64×12.54=1198.42;∑Ir=(4.85×5.853÷36)×8=215.61ρ=(1198.42-215.61)÷1700.37=0.55a= Y c1- Y w1=6.47-6.38=0.09m=ρ-a=0.55-0.09=0.49m>0.20 稳定m大于0.20计算丙型沉箱:高h=21. m1,沉箱自重时的重心位置沉箱材料体积和体积矩的计算表2006年 5 月24 日沉箱自重时的重心位置X c=7.75mY c= 5951.91÷663.18=8.97m2,有压舱水和封舱盖板时:沉箱总体重G1=2.45×663.18+5+340.92=1970.63有压舱水和封舱盖板时:沉箱总体重心Yc= 15512.43÷1970.63=7.87m11,计算沉箱总体排水体积:钢混凝土重度取2.5 t/m3V 0 =(2.5×663.18+5)÷1.025+332.61=1955.002,沉箱趾的排水体积:v=19.83+8.71+5.49=34.03 m3沉箱吃水T=(V0-v)÷AT=(1955-34.03)÷6.252×3.14=15.66m沉箱总体浮心高度:Yw=[(V0-v)×T/2+∑v.y]÷V0Yw1=[(1955-34.03)×15.66×0.5+7.38+6.94+96.12] ÷1955=7.75m ρ=(I-∑Ir)÷V 0I=π/64×12.54=1198.42;∑Ir=(4.85×5.853÷36)×8=215.61 ρ=(1198.42-215.61)÷1955=0.50a= Y c1- Y w1=7.87-7.75=0.12m=ρ-a=0.50-0.12=0.38m>0.20 稳定(m大于0.20)计算丙型沉箱:高h=21. m 用290t块石压舱本沉箱压水3.5m时吃水15.66m,为减少其吃水,改用290t块石,块石的重度为1.55t/m3。
沉箱浮游稳定计算本工程中采用的沉箱为井字内壁圆形沉箱,结构形式如下图:沉箱主要技术参数如下:底部为边长=8.698m正八边形,底板厚度为0.7m;筒体为外径9m,内径8.55m钢筋混凝土结构;肋板为与筒体等高,厚0.25m井字形内壁结构。
沉箱结构总高为27.8m/19.3m/8.8m。
井字形内壁圆沉箱浮游稳定定倾半径计算(以27.8m沉箱为例)为便于过程计算及事后复核,对计算过程中所需要的一系列参数进行编号如下:圆沉箱外径为r外=9m圆沉箱内径为r内=8.55m 圆形沉箱内壁厚为b1=0.25m外壁厚为b2=0.45m井字形内壁的中间箱格(1#箱格)净距为l1=5.45m井字内壁中间两端箱格(2#箱格)边宽为l3=5.129m 井字内壁四角箱格(4#箱格)的边宽为l4=5.041m 借助计算机简化计算过程,以上数据均为通过AUTOCAD直接查询得到,未进行繁杂演算。
依此,下面的计算过程也是借助于计算机EXCEL表格直接形成。
通过AUTOCAD直接查询得到:参数b3为内径r内圆上△a对应的弦长CD b3=0.265m井字形内壁圆沉箱重心计算井字形内壁圆沉箱浮心计算井字形内壁圆沉箱定倾高度计算结论:井字形内壁圆沉箱无压载水时,沉箱浮游不稳定。
注水压舱时:井字形内壁圆沉箱重心计算井字形内壁圆沉箱浮心计算井字形内壁圆沉箱定倾高度计算m=0.24m>0.2m结论:井字形内壁圆沉箱每个箱格内均注入4m深海水时,沉箱浮游稳定。
综述:通过以上计算,同发计算系缆墩及引桥墩沉箱得知:(1)靠船墩、工作平台、系缆墩1沉箱(3700t)(2)系缆墩2沉箱(2793t)(3)引桥墩沉箱(1678t)。
五、整体稳定性验算按照《港口工程地基规范》第5.1.3条规定,取极端低水位进行验算。
计算采用费伦纽斯提出的圆弧滑动法。
土层资料见表5-4-48。
表5-4-48 土层资料土质平均顶面标高 (m) 平均厚度(m)容重3(/)kN m γ粘聚力 (/)C kN m 内摩擦角()ϕ° 淤泥质粉质粘土 -8.00 2.35 18.0 4 14 粉砂 -10.35 4.00 18.0 0 33 砾砂 -14.35 3.47 18.0 0 32 粉质粘土 -17.82 3.47 19.0 10 24 卵石 -21.29 3.47 18.0 0 45 淤泥质粉质粘土 -22.09 0.80 39.0 20 18 砂质粘土 -25.74 3.65 19.0 38 21 最危险滑动面圆心位置的确定: 最危险滑动面圆心位置是任意的,因此求得的K 值并不代表建筑物的最小稳定系数。
需计算一系列的圆心位置和半径。
因此,初选圆心位置,以最小半径R(对重力式码头而言就是圆弧通过岸壁后趾的总半径),求出1O 对应稳定安全系数1K 。
然后通过1O 作水平线,沿此直线在1O 的左右逐次取圆心2O 、3O 、4O等,直到做出一圆心n O ,其左右的安全系数均比它大为此。
通过n O 作垂线,沿此直线在n O 的上下逐次取圆心,及其对应稳定安全系数,直到做出一圆心m O 其上下的安全系数均比它大,与m O 相应的安全系数即为所求最小安全系数min K 。
(如图5-4-13)根据大量计算分析,发现最危险的滑弧中心、荷载和滑动面及水底下的深度之间存在着一定的关系(如图5-4-14),据此作出表5-4-49。
图5-4-13 码头圆弧滑动示意图h —码头高度根据以上经验公式初定圆心位置1O ,其坐标为表中参数X、Y 分别乘以后h 的值,将O 点定为坐标原点(如图5-4-13)0,13.69, 5.16,0,0.38ht h h m t m h hΔΔ=====查表5-4-49得:0.248,0.311x y ==因此,初选圆心位置( 3.40,4.26)−,以最小半径R=21.26m(对重力式码头而言就是圆弧通过岸壁后趾的总半径)画出圆弧,圆弧中包括建筑和一部分土的体积,用垂线将圆弧分成8个条体。
① CX1型沉箱以沉箱仓格中心为计算圆点A 由于沉箱前后趾、壁厚大小不同及马腿影响,重心不在中心上,需要加水调平不平衡力矩(对沉箱中心)⊿Mx=82.92 kN·m需要后三仓加水,加水深度t{(3.6×3.65-0.22×2)×t-0.22×(3.45+3.4)}×3×1.025×3.9=⊿Mx×2.513.06×t-0.274=17.285 t=1.35 mB 加水后1.4m的浮游稳定性加水的重力及对沉箱底的重量距g={(3.6×3.65-0.22×2)×1.4-0.22×(3.45+3.4)}×3×1.025=55.38 kN⊿My=g×1.2=66.46 kN·m沉箱总重量 G=∑V×2.5+g=1089.06 kN重心高度 Yc=(My+⊿My)/G= 4.914 m排水体积 V=G/1.025=1062.495 m3前后趾排水体积 v=13.806 m3沉箱吃水 T=(V-v)/A=7.244 m浮心高度 Yw=[(V-v)×T/2+vYv)]/V=3.579 m重心到浮心距离 a=Yc-Yw=1.336 m定倾半径ρ=(I-∑i)/V=1.628 m定倾高度 m=ρ-a=0.292>0.2满足浮游稳定要求② CX2型沉箱以沉箱仓格中心为计算圆点A 由于沉箱前后趾、壁厚大小不同及马腿影响,重心不在中心上,需要加水调平不平衡力矩(对沉箱中心)⊿Mx=134.735 kN·m需要后三仓加水,加水深度t{(3.65×4.5-0.22×2)×t-0.22×(3.45+4.3)}×3×1.025×4.75=⊿M×2.516.35×t-0.31=23.0612 t=1.43 mB 加水后1.5m的浮游稳定性加水后的重力及对沉箱底的重量距g={(4.5×3.65-0.22×2)×1.5+0.22×(3.45+4.3}×3×1.025=74.438 kN⊿My=g×1.25=93.048 kN·m沉箱总重量 G=∑V×2.5+g=1214.412 kN重心高度 Yc=(My+⊿My)/G= 4.84 m排水体积 V= G/1.025=1184.79 m3前后趾排水 v=10.038 m3沉箱吃水 T=(V-v)/A=6.665m浮心高度 Yw=[(V-v)×T/2+vYv)]/V=3.307m重心到浮心距离 a= Yc-Yw=1.532m定倾半径ρ=(I-∑i)/V=2.622 m定倾高度 m=ρ-a=1.09>0.2满足浮游稳定要求③ CX3型沉箱以沉箱仓格中心为计算圆点A 由于沉箱前后趾、壁厚大小不同及马腿影响,重心不在中心上,需要加水调平不平衡力矩(对沉箱中心)⊿Mx=116.97 kN·m需要后四仓加水加水深度t{(3.6×3.65-0.22×2)×t+0.22×(3.45+3.4)}×4×1.025×3.9=⊿M×2.513.06×t-0.274=18.288 t=1.42 mB 加水后1.5m的浮游稳定性加水后的重力及对沉箱底的重量距g={(3.6×3.65-0.22×2)×1.5-0.22×(3.45+3.4)}×4×1.025=79.196 kN ⊿My=99.00 kN·m沉箱总重量 G=∑V×2.5+g=1575.196 kN重心高度 Yc=(My+⊿My)/G= 4.843 m排水体积 V= G/1.025=1536.777 m3前后趾排水体积 v=21.528 m3沉箱吃水 T=(V-v)/A=6.777 m浮心高度 Yw=[(V-v)×T/2+vYv)]/V=3.345 m重心到浮心距离 a= Yc-Yw=1.498 m定倾半径ρ=(I-∑i)/V=1.732 m定倾高度 m=ρ-a=0.234>0.2满足浮游稳定要求④ CX4型沉箱以沉箱仓格中心为计算圆点A 由于沉箱前后趾、壁厚大小不同及马腿影响,重心不在中心上,需要加水调平不平衡力矩(对沉箱中心)⊿Mx=195.03 kN·m需要后四仓加水,加水深度t{(3.65×4.5-0.22×2)×t-0.22×(3.45+4.3)}×4×1.025×4.75=⊿M×2.516.35×t-0.31=25.03583 t=1.51 mB 加水后1.5m的浮游稳定性加水后的重力及对沉箱底的重量距g={(3.65×4.5-0.22×2)×1.5-0.22×(3.45+4.3)}×4×1.025=99.25075 kN⊿My=24.063 kN·m沉箱总重量 G=∑V×2.5+g=1731.013 kN重心高度 Yc=(My+⊿My)/G=4.766 m排水体积 V=G/1.025=1688.793 m3前后趾排水体积 v=15.456 m3沉箱吃水 T=(V-v)/A=6.198 m浮心高度 Yw=[(V-v)×T/2+vYv)]/V=3.073 m重心到浮心距离 a=Yc-Yw=1.693 m定倾半径ρ=(I-∑i)/V=2.801 m定倾高度 m=ρ-a=1.11>0.2满足浮游稳定要求⑤ CX5型沉箱以沉箱仓格中心为计算圆点A 由于沉箱前后趾、壁厚大小不同及马腿影响,重心不在中心上,需要加水调平不平衡力矩(对沉箱中心)⊿Mx=175.475 kN·m⊿Mz=-4.70 kN·m 很小可以不作考虑需要后四仓加水,加水深度t{(3.65*4.5-0.2^2*2)*t-0.2^2*(3.45+4.3)}*4*1.025*4.75=⊿Mx*2.516.35*t-0.31=22.526 t1=1.40 m2、加水1.4m后的浮游稳定性加水后的重力及对沉箱底的重量距g={(3.65*4.5-0.2^2*2)*1.4-0.2^2*(3.45+4.3)}*4*1.025=92.55 kN⊿My1=111.06 kN·m沉箱重量 G=∑V×2.5+g=1500.725 kN重心高度 Yc=(My+⊿My)/G=4.76 m排水体积 V=G/1.025=1464.122 m3前后趾排水 v=13.272 m3沉箱吃水 T=(V-v)/A=6.25 m浮心高度 Yw=[(V-v)×T/2+vYv)]/V=3.10 m重心到浮心距离 a= Yc-Yw=1.66 m定倾半径ρ=(I-∑i)/V=2.79 m定倾高度m=ρ-a=1.13>0.2满足浮游稳定要求⑥ HD4型沉箱以沉箱仓格中心为计算圆点A 由于沉箱前后趾、壁厚大小不同的影响,重心不在中心上,需要加水调平不平衡力矩(对沉箱中心)⊿Mx=465.68 kN·m⊿Mz=-117.23 kN·m需要后八仓加水,加水深度t{(2.9×2.8-0.22×2)×t-0.22×(2.7+2.6)}×8×1.025×8.8=⊿Mx×2.5 8.04×t-0.212=16.13 t=2.03 m右仓加水,加水深度t1、t2{(2.9×2.8-0.22×2)×(t1+t2)-0.22×(2.7+2.6)}×5×1.025×10.85=-⊿Mz×2.58.04×(t1+t2)-0.212=5.2711.3×4×t1=6.2×t2t 1=0.31 m t2=0.37 mB 后八仓加水2.0m,左五仓加水0.4m的浮游稳定性加水后的重力及对沉箱底的重量距g={(2.9×2.8-0.22×2)×2.0-0.22×(2.7+2.6)}×8×1.025=130.18kN g={(2.9×2.8-0.22×2)×0.4-0.22×(2.7+2.6)}×5×1.025=15.40kN ⊿My1=195.18 kN·m⊿My2=10.785 kN·m沉箱总重量 G=∑V×2.5+g=4419.456 kN重心高度 Yc=(My+⊿My)/G=6.975 m排水体积 V= G/1.025=4311.664 m3前后趾排水 v=15.36 m3沉箱吃水 T=(V-v)/A=8.077 m浮心高度 Yw=[(V-v)×T/2+vYv)]/V=4.025 m重心到浮心距离 a= Yc-Yw=2.95 m定倾半径ρ=(I-∑i)/V=4.34定倾高度 m=ρ-a=1.39>0.2满足浮游稳定要求⑤ HD4型沉箱以沉箱仓格中心为计算圆点名称计算式体积Vi型心距体积距Xi Zi Yi ViXi ViZi ViYi整体26.4×21×16.3 9036.72 0 -0.15 8.15 0 -1355.5 73649.27 底孔π×0.652×0.5×49 -32.503 0.2 1.55 0.25 -6.501 -50.38 -8.126前后趾25.6×0.5×0.5×2 12.8 0 -0.15 0.25 0 -1.92 3.2 25.6×0.5×0.2 2.56 0 -0.15 0.57 0 -0.384 1.451空腔0.45×20×16.3 -146.7 0 12.83 8.15 0 -1881.4 -1195.61 0.75×20×16.3 -244.5 0 -12.98 8.15 0 3172.39 -1992.68仓格(2.9×2.8-0.22×2)×15.8×48-6097.5 -1.3 0 8.4 7926.8 0 -51219.3(2.9×2.3-0.22×2)×15.8×8-832.98 8.95 0 8.4 -7455 0 -6997底角0.22×(2.7+2.6)×48 10.176 -1.3 0 0.57 -13.23 0 5.7664 0.22×(2.7+2.1)×8 1.536 9.0 0 0.57 13.747 0 0.8704合计1709.58 465.68 -117.23 12247.85A 由于沉箱前后趾、壁厚大小不同以及钢护筒重量影响,重心不在中心上,需要加水调平不平衡力矩(对沉箱中心)⊿Mx=465.67942 kN·m⊿Mz=-117.2315 kN·m钢护筒重量G`=π×1.5×0.01×49×16.3×7.8×10^3=293426=293.43 T需要后八仓加水,加水深度t{(2.9×2.8-0.22×2)×t-0.22×(2.7+2.6)}×8×1.025×8.8=⊿Mx×2.5+G`×0.28.04×t-0.212=16.95 t=2.1341838 m左五仓加水,加水深度分别为t1、t2{(2.9×2.8-0.22×2)×(t1+t2)-0.22×(2.7+2.6)}×5×1.025×10.85=G`×1.55+⊿Mz×2.58.04×(t1+t2)-0.212=2.9091.3×4×t1=6.2×t2t 1=0.18 m t2=0.21 mB 后八仓加水2.1m,左五仓加水0.2m的浮游稳定性加水后的重力及加水和钢护筒对沉箱底的重量距g={(2.9×2.8-0.22×2)×2.1-0.22×(2.7+2.6)}×8×1.025=136.71 kN g={(2.9×2.8-0.22×2)×0.2-0.22×(2.7+2.6)}×5×1.025=7.15 kN ⊿My1=211.901 kN·m⊿My2=4.293 kN·m⊿My2=G`×8.15=2391.455 kN·m沉箱总重量 G=∑V×2.5+g+G`=711.234 kN重心高度 Yc=(My+⊿My)/G=7.05 m排水体积 V=G/1.025=4596.33 m3前后趾排水 v=15.36 m3沉箱吃水 T=(V-v)/A=10.29 m浮心高度 Yw=[(V-v)×T/2+vYv)]/V=5.13 m重心到浮心距离 a=Yc-Yw=1.93 m定倾半径ρ=(I-∑i)/V=4.07 m定倾高度 m=ρ-a=2.14>0.2满足浮游稳定要求钢护筒顶面密情况封沉箱吃水 T=(V-v)/A=8.61 m浮心高度 Yw=[(V-v)×T/2+vYv)]/V=4.29 m重心到浮心距离 a= Yc-Yw=2.76 m定倾半径ρ=(I-∑i)/V=4.07 m定倾高度 m=ρ-a=1.31>0.2满足浮游稳定要求A 由于沉箱前后趾、壁厚大小不同以及钢护筒重量影响,重心不在中心上,需要加水调平不平衡力矩(对沉箱中心)⊿Mx=465.68 kN·m⊿Mz=-117.23 kN·m钢护筒重量G`=π*(1.5+0.75^2)*0.01*49*1*7.8*10^3=24752=24.752T需要后八仓加水,加水深度t{(2.9*2.8-0.2^2*2)*t-0.2^2*(2.7+2.6)}*8*1.025*8.8=⊿Mx*2.5+G`*0.28.04*t-0.212=16.2 t=2.04 m左五仓加水,加水深度分别为t1、t2{(2.9*2.8-0.2^2*2)*(t1+t2)-0.2^2*(2.7+2.6)}*5*1.025*10.85=G`*1.55+ ⊿Mz*2.58.04*(t1+t2)-0.212=-4.581.3*4*t1=6.2*t2t1=-0.25m t2=-0.30mB 后八仓加水2.1m,左五仓加水0.3m的浮游稳定性加水后的重力及对沉箱底的重量距g={(2.9*2.8-0.2^2*2)*2.1-0.2^2*(2.7+2.6)}*8*1.025=136.71 kN g={(2.9*2.8-0.2^2*2)*0.3-0.2^2*(2.7+2.6)}*5*1.025=11.28 kN ⊿My1=211.90 kN·m⊿My1=7.33 kN·m沉箱总重量 G=∑V×2.5+g+G`=4446.68 kN重心高度 Yc=(My+⊿My)/G=6.98 m排水体积 V=G/1.025=4338.23 m3前后趾排水 v=15.36 m3沉箱吃水 T=(V-v)/A=8.13 m浮心高度 Yw=[(V-v)×T/2+vYv)]/V=4.05 m重心到浮心距离 a= Yc-Yw=2.93 m定倾半径ρ=(I-∑i)/V=4.31 m定倾高度 m=ρ-a=1.38>0.2满足浮游稳定要求。
西港区一期工程30万吨级码头沉箱浮游稳定计算一、沉箱浮游稳定性验算沉箱在溜放或漂浮、拖运和安放过程中应保证不倾覆,要求沉箱具有一定的浮游稳定性。
沉箱的稳定性可用定倾中心高度(定倾半径)ρ表示。
沉箱在外力矩的作用下发生倾斜,在倾斜的过程中,沉箱的浮心位置发生变化。
在小倾角(小于15°)的情况下(沉箱漂浮时的倾斜一般属于小倾角),浮心W的变化接近于圆弧,此圆弧的中心M称为定倾中心;圆弧的半径ρ称为定倾半径;定倾中心M距重心C 的距离m称为定倾中心高度。
m=ρ-a,在进行理论计算时要求精确到厘米。
当m>0时,即定倾中心M在重心之上,沉箱在外力矩作用下发生倾斜时,存在一个由沉箱重力G和浮力V*γ(γ为水的重度)构成的扶正沉箱的力偶,此时沉箱稳定。
反之,m<0,即M在C之下,沉箱在外力矩作用下发生倾斜时,则存在一个使沉箱继续倾斜的力偶,这时沉箱是不稳定的。
为了保证沉箱的浮游稳定性,沉箱在有掩护区域近程浮运时,m≥20cm。
沉箱在无掩护区并远程浮运时,如采用块石、砂等固定物压载,m≥40cm;如采用海水压载,m≥50cm,并密封舱顶。
(近程浮运是指在同一港区或运程在30海里以内;远程浮运是指在港际间整个浮运时间内有夜间航行或运程≥30海里)当沉箱浮游稳定不满足时,可采用压舱方法,使重心降低。
通常用水压舱的方法,优点:施工比较方便。
缺点:有自由液面存在,降低了压舱效果。
此外还可采用固体(如砂、石或混凝土块等)压舱。
优点:压舱效果好。
缺点:施工不方便。
同时为了保证沉箱在溜放或者漂浮、拖运和安放时不没顶,应有足够的干舷高度F。
在拖运时,干舷高度应满足:F=H-T≥B02tanθ+2h3+sF:沉箱的干舷高度(m)h:波高(m)θ:沉箱的倾角,溜放时,采用滑道末端的坡角,浮运时采用6°—8°S:沉箱干舷的富裕高度(m),一般取0.5—1m。
当沉箱吃水和干舷高度不满足要求时,可不采用或不完全采用压舱方法来保证浮游稳定,可以采用起重船或浮筒吊扶的方法。
附件1 沉箱浮游稳定计算一、沉箱浮游稳定计算1、沉箱重心高度空箱重心高度=9203.39/1074.273=8.57m2、沉箱吃水及干舷高度(1)空箱吃水空箱重P空=2.45×1074.273=2631.97t底板及箱趾以上箱体截面积A=13.5×19.25=259.875 m2空箱排水体积V空排=2631.97/1.025=2567.78 m3空箱吃水T空=(2567.78 -19.25-7.7-26.95-0.963)/ 259.875=9.67m 三、沉箱浮稳计算1、设浮稳注水高度h稳=4.646m(箱15个格舱均注此高度)该水体积为V注水=3.55×4.1×4.646×15=1014.338m3该水重量P注水=1.025×1014.338=1039.696t2、沉箱重心高度设沉箱重心高度为X0X0=ΣViYi/V总=10486.087/1498.609=6.997m3、沉箱吃水T0(1)箱总重:注水后沉箱总重P总= V总×2.45=3671.591t(2)箱总排水体积V排=3671.591/1.025=3582.04m3(3)沉箱吃水T= (V排—V趾)/ A=(3582.04-7.7-19.25) /259.875=13.68m注:A= 19.25×13.5=259.875m2(4)干舷高度F=H-T=20-13.68=6.32 m>B/2×tgθ+2h/3+0.75=2.149mH = 20m B = 13.5m T = 13.68m θ = 7º h = 0.75干舷高度满足要求。
(5)浮心高度 y w = (V-u)T/2+uy uV=6.791m(6)重心到浮心距离a=6.997-6.791=0.206m Arrayρ = (×4.1×4.1×4.1×15/12)/ 3582.04=1.016m其中,I=LB3/12,L为沉箱长度,B为沉箱在吃水面处宽度。
2.5沉箱浮游稳定计算(以CX1为例进行计算)沉箱设计图如下一、重心位置计算沉箱共分五个部分(各部分如上图所示),各部分体积分别设为V1~V5,各部分重心坐标设为(x i,z i)(i=1…5)。
V1=0.5×1.0×21.4=10.7m3x1=1/2=0.5mz1=0.5/2=0.25 mV2=21.4×0.4×(1/2)=4.28 m3x2=1×(2/3)=0.667 mz2=0.5+(0.4/3)=0.633 mV3=10×21.4×14.8=3167.2 m3x3=1+(10/2)=6 mz3=14.8/2=7.4 mV4=-10×(4×4.58-0.2×0.2×2)×(14.8-0.7)=-2571.84 m3x4=1.32+(11-1.32-0.32)/2=6.0 mz4=(14.8-0.7)/2+0.7=7.75 m4.58-0.4=4.18V5=-10×(1/3)×0.2×(4×4.58+3.6×4.18+(4×4.58×3.6×4.18) )=-33.31 m3x5=1.32+(11-1.32-0.32)/2=6.0 mz5=0.5+0.11=0.61 m沉箱的总体积:V=∑V i总=V1+V2+V3+V4+V5=10.7+4.28+3167.2-2571.84-33.31=577.03 m3沉箱的重心坐标设为(x,z)x=(∑V i x i)/V总=(V1x1+V2x2+V3x3+V4x4+V5x5)/V总=(10.7×0.5+4.28×0.667+3167.2×6-2571.84×6.0-33.31×6.0)/577.03 =3380.5/577.03=5.858 mz=(∑V i z i)/V总=(V1z1+V2z2+V3z3+V4z4+V5z5)/V总=(10.7×0.25+4.28×0.633+3167.2×7.40-2571.84×7.75-33.31×0.61)/577.03 =3490.585/577.03=6.05m二、浮心位置计算:假设沉箱处于正浮状态时,其吃水深度为h空载吃水,海水比重为γ海水=1.03t/ m3,γ砼=2.40 t/ m3。
一、沉箱浮游稳定计算Ⅰ、概念浮游稳定性顾名思义是指物体在浮游状态下的稳定性。
我们计算沉箱浮游稳定是为了保证沉箱在水下漂浮、拖运和沉放的过程中不发生倾覆。
浮游稳定性用定倾中心高度来表示和量化。
浮体在外力矩的作用下发生倾斜,在倾斜过程中浮体的浮心位置也随之变化。
根据小倾角(倾角<15°)理论,在小倾角情况下(沉箱倾斜一般属于小倾角),浮心的运行轨迹接近于圆弧,圆弧的圆心称为定倾中心M,圆弧的半径称为定倾半径ρ,定倾中心距浮体重心C的距离称为定倾中心高度m。
•从图上我们可以看出,当m>0时,即定倾中心M在重心C之上,沉箱在外力矩作用下发生倾斜时,存在一个由沉箱重力G和浮力Vγ构成的扶正沉箱的力偶,此时沉箱是稳定的;当m<0时,即M在C之下,则存在一个使沉箱继续倾斜的力偶,此时沉箱是不稳定的。
•为了保证沉箱的浮游稳定性有一定的安全度,《重力式码头设计与施工规范》规定近程(同一港区内或运程30海里内)浮运m≥0.2米;远程(整个浮运内有夜间航行或运程大于等于30海里)浮运分两种情况,固体压载时m≥0.4米,液体压载时m≥0.5米。
因为自由液面的存在将降低压舱的效果。
•定倾高度m=ρ-αα为重心C到浮心W的距离。
当C在W之上时α为正值,反之为负值。
•定倾半径:ρ=(Ⅰ—Σi)/ VⅠ——沉箱在水面处的断面对纵轴的惯性矩。
惯性矩是面积对轴的二次矩,量纲是长度单位的四次方,与面积的大小和面积对轴的分布远近有关。
惯性矩的几何意义:是任意平面上所有微面积dA与其坐标Y(或Z)平方乘积的总和。
工程中常把惯性矩表示为平面图形的面积与其一长度平方的乘积。
选择不同方向的中心轴计算结果是不同的,选择沉箱的横轴计算,因为有三次幂的存在,其I值、ρ值和m值都会大很多,也就是说沉箱在横轴方向的倾覆可能要远小于在纵轴方向的倾覆可能。
由于这个结论很明显也很直观,所以我们只需要对不利情况进行计算。
•Σi——自由液面的惯性矩之和(各格舱压舱水的水面面积对其纵轴的惯性矩之和。