整式的加减1
- 格式:ppt
- 大小:909.00 KB
- 文档页数:13
第7讲整式的加减(1)一、知识梳理1.同类项所含字母相同,并且相同字母的指数也相同的项叫做同类项.【例1】.(1)下列单项式中,a2b3的同类项是()A.a3b2B.3a2b3C.a2b D.ab3【分析】依据同类项的定义:所含字母相同,相同字母的指数相同,据此判断即可.【解答】解:A、字母a、b的指数不相同,不是同类项,故本选项不符合题意;B、有相同的字母,相同字母的指数相等,是同类项,故本选项符合题意;C、字母b的指数不相同,不是同类项,故本选项不符合题意;D、相同字母a的指数不相同,不是同类项,故本选项不符合题意;故选:B.(2)下列各选项中的两个单项式,是同类项的是()A.3和2B.﹣a2和﹣52C.﹣a2b和ab2D.2ab和2xy【分析】利用同类项的定义判断即可.【解答】解:A、3和2是同类项;B、﹣52不含字母,与﹣a2不是同类项;C、a与b的指数不同,不是同类项;D、所含字母不同,不是同类项.故选:A.(3)如果3a2b2m﹣1与﹣2a2b m+2是同类项,则m的值为()A.1B.3C.﹣1D.﹣3【分析】根据同类项的定义,含有相同的字母,并且相同字母的指数也相同,列出等式,直接计算即可.【解答】解:根据题意,得:2m﹣1=m+2,解得:m=3.故选:B.(4)如果单项式3x a+3y2与单项式﹣4xy b﹣1的和还是单项式,那么a b的值是()A.﹣6B.﹣8C.8D.﹣27【分析】先根据题意判断出单项式3x a+3y2与单项式﹣4xy b﹣1是同类项,从而依据同类项概念得出a、b的值,继而代入计算可得.【解答】解:∵单项式3x a+3y2与单项式﹣4xy b﹣1的和还是单项式,∴单项式3x a+3y2与单项式﹣4xy b﹣1是同类项,则a+3=1,2=b﹣1,解得a=﹣2,b=3,∴a b=(﹣2)3=﹣8,故选:B.【变式训练1】.(1)下列各选项的式子中,与6ab3是同类项的是()A.3ab6B.6a3b C.﹣6a2b2D.﹣ab3【分析】根据同类项的定义逐个判断即可.【解答】解:A.b的指数不相等,不是同类项,故本选项不符合题意;B.a、b的指数都不相等,不是同类项,故本选项不符合题意;C.a、b的指数都不相等,不是同类项,故本选项不符合题意;D.是同类项,故本选项符合题意;故选:D.(2)下列各组单项式中,不是同类项的是()A.32与23B.﹣5x2与36x2C.a3bc与23a3bc D.x2y与﹣0.9yx3【分析】如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.【解答】解:A.所有的常数项都是同类项;B.所含的字母相同,并且相同字母的指数也分别相同,是同类项;C.所含的字母相同,并且相同字母的指数也分别相同,是同类项;D.所含的字母相同,但相同字母的指数不相同,所以不是同类项.故选:D.(3)已知﹣2x4y2n+5与5x m+1y是同类项,那么()A.m=3,n=2B.m=3,n=﹣2C.m=2,n=3D.m=2,n=4【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:由题意得:m+1=4,2n+5=1,∴m=3,n=﹣2,故选:B.(4)若单项式2a m+6b2n+1与a5b7的和仍是单项式,则m+n的值为()A.﹣4B.4C.﹣2D.2【分析】根据差是单项式,可得它们是同类项,在根据同类项,可得m、n的值,根据有理数的加法,可得答案.【解答】解:∵单项式2a m+6b2n+1与a5b7的和仍是单项式,∴单项式2a m+6b2n+1与a5b7是同类项,∴m+6=5,2n+1=7,解得m=﹣1,n=3,∴m+n=﹣1+3=2,故选:D.2.合并同类项把多项式中的同类项合并成一项,叫做合并同类项;合并同类项后,所得项的系数是合并前各项的系数的各,且字母边同它的指数不变.【例2】.(1)计算2a2+3a2﹣a2的结果等于4a2.【分析】根据合并同类项的法则计算即可.【解答】解:原式=(2+3﹣1)a2=4a2,故答案为:4a2.(2)下列各式正确的是()A.5xy2﹣3y2x=2xy2B.4a2b2﹣5ab=﹣aC.7m2n﹣7mn2=0D.2x2+3x4=5x6【分析】先判断两项是否是同类项,再根据合并同类项法则计算,据此逐一判断即可.【解答】解:A.5xy2﹣3y2x=2xy2,此选项正确;B.4a2b2与﹣5ab不是同类项,无法计算,此选项错误;C.7m2n与﹣7mn2不是同类项,无法计算,此选项错误;D.2x2与3x4不是同类项,无法计算,此选项错误;故选:A.【变式训练2】.(1)计算﹣6ab+ab+8ab的结果等于3ab.【分析】合并同类项是指同类项的系数相加,并把得到的结果作为新系数,要保持同类项的字母和字母的指数不变,据此计算即可.【解答】解:原式=(﹣6+1+8)ab=3ab,故答案为:3ab.(2)下面计算正确的是()A.2x2﹣x2=1B.4a2+2a3=6a5C.5+m=5m D.﹣0.25ab+ab=0【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.据此逐一判断即可.【解答】解:A.2x2﹣x2=x2,故本选项不合题意;B.4a2与2a3不是同类项,所以不能合并,故本选项不合题意;C.5与m不是同类项,所以不能合并,故本选项不合题意;D.﹣0.25ab+ab=0,故本选项符合题意.故选:D.3.整式的加减【例3】.(1)化简:5m+2n﹣m﹣3n.【分析】根据合并同类项法则计算即可.【解答】解:5m+2n﹣m﹣3n=(5m﹣m)+(2n﹣3n)=4m﹣n.(2)化简:5a2﹣7﹣3a﹣5+3a﹣2a2.【分析】先找同类项,再根据合并同类项法则合并即可.【解答】解:5a2﹣7﹣3a﹣5+3a﹣2a2=5a2﹣2a2﹣3a+3a﹣7﹣5=3a2﹣12.(3)化简:7ab﹣3a2b2+7+8ab2+3a2b2﹣3﹣7ab﹣5ab2.【分析】关键合并同类项法则计算即可.【解答】解:7ab﹣3a2b2+7+8ab2+3a2b2﹣3﹣7ab﹣5ab2=(7ab﹣7ab)+(﹣3a2b2+3a2b2)+(7﹣3)+(8ab2﹣5ab2)=3ab2+4.【变式训练3】.(1)化简:3b+5a﹣2a+4b.【分析】根据把同类项的系数相加,所得结果作为系数,字母和字母的指数不变解答即可.【解答】解:3b+5a﹣2a+4b=5a﹣2a+3b+4b=(5﹣2)a+(3+4)b=3a+7b.(2)化简:8a2+4﹣2a2﹣5a﹣a2﹣5+7a.【分析】利用合并同类项法则计算可得答案.【解答】解:原式=(8﹣2﹣1)a2+(﹣5+7)a+(4﹣5)=5a2+2a﹣1.(3)化简:4a2+3b2+2ab﹣2a2+4b2﹣ab.【分析】根据合并同类项:系数相加字母部分不变,可得答案.【解答】解:4a2+3b2+2ab﹣2a2+4b2﹣ab=(4a2﹣2a2)+(3b2+4b2)+(2ab﹣ab)=2a2+7b2+ab.二、课堂训练1.下列各组单项式中,不是同类项的是()A.﹣a2与2a2B.23与32C.2ab2与2a2b D.﹣mn与2nm【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.根据同类项的定义即可判断.【解答】解:A.同类项与系数无关,是同类项,不符合题意;B.所有的数字都是同类项,是同类项,不符合题意;C.a的指数,左边是1,右边是2;b的指数,左边是2,右边是1,不是同类项,符合题意;D.同类项与字母的顺序无关.故选:C.2.单项式x m﹣1y3与﹣4xy n是同类项,则m n的值是()A.1B.3C.6D.8【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:根据题意得:m﹣1=1,n=3,解得:m=2,所以m n=23=8.故选:D.3.下列各式的计算结果正确的是()A.2x+3y=5xy B.5x﹣3x=2xC.7y2﹣5y2=2D.9a2b﹣4ab2=5a2b【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此逐一判断即可.【解答】解:A.2x与3y不是同类项,所以不能合并,故本选项不合题意;B.5x﹣3x=2x,故本选项符合题意;C.7y2﹣5y2=2y2,故本选项不合题意;D.9a2b与﹣4ab2不是同类项,所以不能合并,故本选项不合题意;故选:B.4.下列单项式中,可以与x2y3合并同类项的是()A.x3y2B.C.3x2y D.2x2y3z【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,即可判断.【解答】解:A、x3y2与x2y3,所含字母相同,但是相同字母的指数不相同,不是同类项,所以不能合并,故本选项不合题意;B、与x2y3,所含字母相同,相同字母的指数相同,是同类项,能合并,故本选项符合题意;C、x2y与x2y3,所含字母相同,但是相同字母的指数不相同,不是同类项,所以不能合并,故本选项不合题意;D、2x2y3z与x2y3,所含字母不尽相同,不是同类项,所以不能合并,故本选项不合题意;故选:B.5.写出单项式﹣a3b的一个同类项:a3b(答案不唯一).【分析】根据同类项的概念解答即可.【解答】解:单项式a3b与单项式﹣a3b的是同类项,故答案为:a3b(答案不唯一).6.已知两个单项式3xy m与﹣3x n y2的和为0,则m+n的值是3.【分析】两个单项式3xy m与﹣3x n y2的和为0则两个单项式是同类项,根据同类项的定义可得答案.【解答】解:∵两个单项式3xy m与﹣3x n y2的和为0,∴两个单项式是同类项,即m=2,n=1,∴m+n=3.故答案为:3.7.化简:(1)x2y﹣3x2y;(2)7ab﹣3a2b2+7+8ab2+3a2b2﹣3﹣7ab.【分析】合并同类项是指同类项的系数相加,并把得到的结果作为新系数,要保持同类项的字母和字母的指数不变,据此计算即可.【解答】解:(1)x2y﹣3x2y=(1﹣3)x2y=﹣2x2y;(2)7ab﹣3a2b2+7+8ab2+3a2b2﹣3﹣7ab=(7ab﹣7ab)+(3a2b2﹣3a2b2)+8ab2+(7﹣3)=8ab2+4.三、课后巩固1.已知﹣2x m﹣1y3与x n y m+n是同类项,那么(n﹣m)2021的值是()A.1B.﹣1C.22021D.0【分析】利用同类项定义可得m﹣1=n,m+n=3,再计算(n﹣m)2021即可.【解答】解:由题意得:,解得:,则(n﹣m)2021=(1﹣2)2021=﹣1,故选:B.2.下列各式与2a2b是同类项的是()A.2ab2B.C.a2b2D.﹣2ab【分析】直接利用同类项的定义分析得出答案.【解答】解:与2a2b是同类项的是.故选:B.3.若3x2y m与2x m+n﹣1y的和仍为一个单项式,则m2﹣n的值为()A.1B.﹣1C.﹣3D.3【分析】单项式3x2y m与2x m+n﹣1y的和仍是一个单项式,就是说它们是同类项.由同类项的定义(所含字母相同,相同字母的指数相同)可得:m=1,m+n﹣1=2,解方程即可求得m和n的值,从而得出结果.【解答】解:由题意知3x2y m与2x m+n﹣1y是同类项,所以有m+n﹣1=2,m=1,即n=2,m=1,m2﹣n=12﹣2=﹣1,故选:B.4.下列计算中正确的是()A.5a+6b=11ab B.9a﹣a=8C.a2+3a=4a3D.3ab+4ab=7ab 【分析】首先判断是不是同类项,然后再看是否合并正确.【解答】解:A.不是同类项,不能合并,不符合题意;B.应该为8a,不符合题意;C.不是同类项,不能合并,不符合题意;D.合并同类项,系数相加,字母和字母的指数不变,符合题意.故选:D.5.计算:3a﹣5a=(3﹣5)a=﹣2a.(请写出中间步骤)【分析】直接利用合并同类项法则计算得出答案.【解答】解:3a﹣5a=(3﹣5)a=﹣2a.故答案为:(3﹣5),﹣2.6.若多项式x2+2kxy﹣5y2﹣2x﹣6xy+4中不含xy项,则k=3.【分析】先合并同类项,根据已知得出2k﹣6=0,求出即可.【解答】解:x2+2kxy﹣5y2﹣2x﹣6xy+4=x2+(2kxy﹣6xy)﹣5y2﹣2x+4=x2+(2k﹣6)xy﹣5y2﹣2x+4,因为多项式x2+2kxy﹣5y2﹣2x﹣6xy+4中不含xy项,所以2k﹣6=0,解得k=3.故答案为:3.7.化简:(1)5x+2y﹣3x﹣7y;(2)3a2﹣3ab﹣5﹣2a2+3ab+7.【分析】(1)直接合并同类项得出答案;(2)直接合并同类项得出答案.【解答】解:(1)5x+2y﹣3x﹣7y=(5x﹣3x)+(2y﹣7y)=2x﹣5y;(2)3a2﹣3ab﹣5﹣2a2+3ab+7=(3a2﹣2a2)+(3ab﹣3ab)+(7﹣5)=a2+2.。
2.1.3多项式一、预习案:1、多项式:几个单项式的叫做多项式,在多项式中,每个单项式叫做多项式的。
其中,不含的项叫常数项。
一个多项式含有几项,就叫几项式。
2、多项式的次数:多项式里,次数的项的次数,就是这个多项式的次数。
3、整式:与统称为整式。
课堂导学案一.学习目标:1.掌握多项式、多项式的项及其次数,常数项的概念。
2.确定一个多项式的项、项数和次数。
3.由单项式与多项式归纳出整式概念。
4. 在自主探索的学习过程中,引导学生观察、归纳、理解多项式,并与单项式实行比较,使用化归思想,让学到的知识系统化。
学习重点:掌握整式及多项式的相关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念。
学习难点:多项式的次数。
二、课堂学习:(一)预习检查(随机抽取2~3组作汇报或提出困惑)(二)自主学习课本P57-58页并完成以下各题1.指出以下多项式的项和次数:(1)3x -1+3x 2; (2)4x 3+2x -2y 2。
2.把多项式a 3-b 3-3a 2b +3a b 2重新排列。
(1)按a 升幂排列; (2)按a 降幂排列。
(三)小组合作学,共同解决疑惑的问题 1、将多项式23465x x x --+升幂排列与降幂排列。
2、多项式a 3-3ab 2+3a 2b-b 3是 次 项式,它的各项的次数都是 ,按字母b 降幂排列得 .3、把多项式-5x 2-6x 4+2x-31x 3+5按字母x 的升幂排列为: . 4、 把多项式4x 3y 2-xy 3-2x 2y 4+3x 4-5按x 的降幂排列,再按y 的升幂排列. 5、 把多项式5x 3y-y 4-3xy 3+2x 2y 2-7.按y 的升幂排列:(四)巩固练习(先独做后交流,共同解决): 1.判断题(对的画“√”,错的画“×”)1、(1)263m-是整式;( ) (2)单项式6ab 3的系数是6,次数是4;( ) (3)acb 23-是多项式;( ) 2、将以下多项式中的(1),(2)按字母x 的降幂排列,(3),(4)按字母y 的升幂排列:()2221x y xy ++= ;()33222532x y xy y x -+-= ;()7233322-+-y x y x xy= ;()4342233454y y x x y x xy --+-= 。
整式的加减(1)——初中数学第一册教案Addition and subtraction of integral form (1) -- teaching plan of mathematics volume 1 in j unior high school整式的加减(1)——初中数学第一册教案前言:小泰温馨提醒,数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种,在人类历史发展和社会生活中,数学发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。
本教案根据数学课程标准的要求和针对教学对象是初中生群体的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划、并以启迪发展学生智力为根本目的。
便于学习和使用,本文下载后内容可随意修改调整及打印。
整式的加减(1)教学目的1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。
2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。
教学分析重点:整式的加减运算。
难点:括号前是-号,去括号时,括号内的各项都要改变符号。
突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。
教学过程一、复习1、叙述合并同类项法则。
2、叙述去括号与添括号法则。
3、化简:y2+(x2+2xy-3y2)-(2x2-xy-2y2)二、新授1、引入整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。
2、例题例1 (P166例1)求单项式5x2y,-2 x2y,2xy2,-4xy2的和。
分析:式子5x2y+(-2 x2y)+2xy2+(-4xy2)就是这四个单项式的和。
几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。
解:(略,见教材P166)例2(P166例2)求3x2-6x+5与4x2-7x-6的和。
解:(3x2-6x+5)+(4x2-7x-6)(每个多项式要加括号)=3x2-6x+5+4x2-7x-6 (去括号)=7x2+x-1 (合并同类项)例3。
注:《初中数学典型题思路分析》已被多位老师选用备课。
可提供样本!《初中数学典型题思路分析》亮点:内容为王!A.题目典型易错,重思路分析—“渔、鱼”兼得!按照★到★★★★标注难度。
B.整体难度较大.严格选题,标注难度,不用浪费时间重复做简单题。
二、整式的加减(二)——去括号与添括号基础知识讲解【学习目标】1.掌握去括号与添括号法则,充分注意变号法则的应用;2.会用整式的加减运算法则,熟练进行整式的化简及求值.【要点梳理】要点一、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.要点诠释:(1)去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.(3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形.要点二、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.要点诠释:(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号是两种相反的变形,因此可以相互检验正误:如:()a b c a b c +-+- 添括号去括号,()a b c a b c -+-- 添括号去括号要点三、整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.要点诠释:(1)整式加减的一般步骤是:①先去括号;②再合并同类项.(2)两个整式相加减时,减数一定先要用括号括起来.(3)整式加减的最后结果中:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.三、《整式的加减》全章复习与巩固【学习目标】1.理解并掌握单项式与多项式的相关概念;2.理解整式加减的基础是去括号和合并同类项,并会用整式的加减运算法则,熟练进行整式的加减运算、求值;3.深刻体会本章体现的主要的数学思想----整体思想.【知识网络】【要点梳理】要点一、整式的相关概念1.单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式.要点诠释:(1)单项式的系数是指单项式中的数字因数.(2)单项式的次数是指单项式中所有字母的指数和.2.多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.要点诠释:(1)在多项式中,不含字母的项叫做常数项.(2)多项式中次数最高的项的次数,就是这个多项式的次数.(3)多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式.3.多项式的降幂与升幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列.另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列.要点诠释:(1)利用加法交换律重新排列时,各项应连同它的符号一起移动位置;(2)含有多个字母时,只按给定的字母进行降幂或升幂排列.4.整式:单项式和多项式统称为整式.要点二、整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.要点诠释:辨别同类项要把准“两相同,两无关”:(1)“两相同”是指:①所含字母相同;②相同字母的指数相同;(2)“两无关”是指:①与系数无关;②与字母的排列顺序无关.2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.要点诠释:合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持不变.3.去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.4.添括号法则:添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括号前面是“-”,括号内各项的符号都要改变.5.整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项.。
整式的加减(1)课题:3.4整式的加减(1)授课人:刘成欣教学目标和要求:1.理解同类项、合并同类项的概念,在具体情景中,认识同类项。
掌握合并同类项的法则。
2.经历概念的形成过程和法则的探究过程,培养观察、归纳、概括能力,发展应用意识。
3.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流的能力。
教学重点和难点:重点:理解同类项的概念,正确合并同类项。
难点:根据同类项的概念在多项式中找同类项并正确的合并。
教学方法:分层次教学,讲授、练习相结合。
教学过程:一、预习展示1、同类项:所含相同,并且相同字母的也相同的项,叫做同类项。
2、把合并成一项叫做合并同类项。
3、合并同类项法则:合并同类项时,把同类项的相加,和的指数不变。
二、感悟导入1、创设问题情境⑴、5个人+8个人=⑵、5只羊+8只羊=⑶、5个人+8只羊=(数学教学要紧密联系学生的生活实际、学习实际,这是新课程标准所赋予的任务。
学生尝试按种类、颜色等多种方法进行分类,一方面可提供学生主动参与的机会,把学生的注意力和思维活动调节到积极状态;另一方面可培养学生思维的灵活性,同时体现分类的思想方法。
)2、如图长方形是由两个长方形组成的,求这个长方形的面积。
长方形的面积可以用代数式表示为8n+5n ,或(8+5)n ,从而8n+5n=(8+5)n=13n 。
这就是说到我们计算8n+5n 时,可以先将它们的系数相加,再乘n 就可以了。
利用乘法分配律也可以得到这个结果。
三、合作探究1、观察下列各单项式,把你认为相同类型的式子归为一类。
8x 2y , -mn 2, 5a , -x 2y , 7mn 2,83, 9a , -32xy , 0, 0.4mn 2,95,2xy 2。
由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示。
要求学生观察归为一类的式子,思考它们有什么共同的特征?请学生说出各自的分类标准,并且肯定每一位学生按不同标准进行的分类。