第八章 反常积分
- 格式:pdf
- 大小:63.19 KB
- 文档页数:5
7反常积分——反常积分的概念和计算反常积分是微积分中的一个重要概念,是对一些函数在一些区间上的积分进行无穷求和的过程。
与定积分不同,反常积分是对未能被定积分求解的函数进行求解的方法,常见于一些函数在一些点上无界或不连续。
本文将详细介绍反常积分的概念和计算方法。
一、反常积分的概念反常积分是对一些在一些点不连续或无界的函数进行积分求解的方法。
在实际应用中,我们常遇到一些函数在一些点附近出现无穷大的情况,或者在其中一点上不连续的情况,这时就需要用到反常积分进行求解。
具体来说,反常积分可以分为以下两种情况:1.类型一:函数在积分区间其中一点附近无界的情况。
设函数f(x)在区间(a,b]上有定义,且x=b是f(x)的发散点,则反常积分的定义为:∫f(x)dx = lim┬(t→b)〖∫[a,t] f(x)dx〗即求解函数在区间[a,t]上的定积分,然后将t无限趋近于b来求解该反常积分。
2.类型二:函数在积分区间其中一点不连续的情况。
设函数f(x)在区间[a,b]上有定义,且x=c是f(x)的不连续点,则反常积分的定义为:∫f(x)dx = ∫[a,c) f(x)dx + ∫[c,b] f(x)dx即将不连续点c拆分成两个积分区间,在每个区间上分别求解定积分,然后求和。
需要注意的是,反常积分只在函数在一些点附近出现无界或不连续时才有意义。
如果函数在积分区间上连续且有界,那么反常积分与定积分是等价的。
二、反常积分的计算方法对于类型一的反常积分,我们可以通过以下几种方法进行计算:1.无界函数的积分计算当函数f(x)在x=b附近无界时,我们可以通过计算一个足够大的正数M,使得对于任意t>b有,f(x),<M。
然后计算定积分∫[a,t] f(x)dx,再令t无限趋近于b,即可求得反常积分的值。
2.函数在无穷远点(正无穷和负无穷)处的积分计算如果函数在正无穷远点处无界且不连续,可以将反常积分转化为辐角积分的形式。
数学分析重点概念整理第一章 集合与函数1. 集合定理1.1.1可列个可列集之并也是可列集。
定理1.1.2 有理数集Q 是可列集Descartes 乘积集合{(,)|}A B x y x A y B ⨯=∈∈并且 2. 映射与函数映射的基本要素映射要求元素的像必须是唯一的,但不要求逆像也具有唯一性。
基本初等函数Dirichlet 函数,任何有理数都是其周期。
定义1.2.7 算术平均值:1...n a a n ++,调和平均值111...nna a ++第二章 数列极限1.实数系的连续性上确界的定义:下确界的定义:定理 2.1.1(确界存在定理——实数系连续性定理)非空有上界的数集必有上确界;非空有下界的数集必有下确界。
定理2.1.2非空有界数集的上(下)确界是唯一的。
2.数列与数列极限数列极限的形式 (1)唯一性定理2.2.1 收敛数列的极限必唯一 (2)有界性定理2.2.2收敛数列必有界 (3)数列的保序性定理2.2.3 设数列{},{}n n x y 均收敛,若,且a b <,则存在正整数N ,当n N >是,成立n n x y <四则运算只能推广到有限个数列的情况3.无穷大量4.收敛准则定理2.4.1 单调有界数列必定收敛。
(确界存在定理)用定理证明的时候先用方法证明有界性(归纳法等),再证明单调性(做差)用闭区间套定理可以证明定理2.4.3 实数集R 是不可列集。
定理2.4.5(Bolzano-Weierstrass 定理)有界数列必有收敛子列。
定理 2.4.6 若{}n x 是一个无界数列,则存在子列{}k n x 使得lim k n k x →∞=∞。
定理2.4.7(Cauchy收敛原理)数列{}n x收敛的充要条件是{}n x是基本数列。
由实数构成的基本数列必存在实数极限,这一性质称为实数系的完备性,有理数不具有完备性。
实数系之间的推理关系:定理2.4.8 实数系的完备性等价于实数系的连续性。
反常积分表反常积分表是一种数学工具,用于计算反常积分的值。
反常积分是指无法通过基本积分公式或分部积分法等方法直接求解的积分。
反常积分的计算需要借助极限或无穷级数等概念。
以下是一些常见的反常积分表:1. 第一类反常积分当积分区间为无穷区间时,即∫ f(x)dx其中n为正无穷或负无穷。
此时,如果积分结果无限大或不存在,则称为第一类反常积分。
反之,如果积分结果有限,则称为收敛的第一类反常积分。
一些常见的收敛的第一类反常积分如下:∫ 1/x dx = ln(n) (n趋近于正无穷)∫-∞ e dx = 1∫ ln(x) dx = -12. 第二类反常积分当被积函数在积分区间上存在无限大的点时,即∫a f(x)dx其中a和n都是实数。
此时,如果积分结果无限大或不存在,则称为第二类反常积分。
反之,如果积分结果有限,则称为收敛的第二类反常积分。
一些常见的收敛的第二类反常积分如下:∫ 1/√x dx = 2∫ 1/x dx = 13. 第三类反常积分当被积函数既在积分区间上存在无限大的点,又在某些点上不连续或发散时,即∫a f(x)dx其中a和n都是实数。
此时,如果积分结果无限大或不存在,则称为第三类反常积分。
反之,如果积分结果有限,则称为收敛的第三类反常积分。
一些常见的收敛的第三类反常积分如下:∫ ln(ln(1/x))/x dx = γ (Euler-Mascheroni常数)∫ sin(1/x)/x dx = π/2以上是一些常见的反常积分表,可以作为参考工具用于计算反常积分的值。