数学分析课件PPT之十一章反常积分
- 格式:ppt
- 大小:1.13 MB
- 文档页数:61
《数学分析》第十一章反常积分首先,我们来讨论无界函数的积分。
对于一个在区间[a,b)上定义的无界函数f(x),其积分可以表示为:∫f(x)dx = lim(ξ→b-)∫f(x)dx,其中ξ是趋于b的数列。
这种积分的定义方式是将区间[a,b)划分为有限多个子区间并对每个子区间的积分进行求和,然后再取极限。
如果极限存在且有限,则称该反常积分收敛;若极限不存在或为无穷大,则称该反常积分发散。
接下来,我们来讨论无界区间上的积分。
对于一个定义在区间(-∞,a)或(a,∞)上的无界函数f(x),其积分可以表示为:∫f(x)dx = lim(ξ→±∞)∫f(x)dx,其中ξ是趋于±∞的数列。
这种积分的定义方式与上述无界函数的积分类似,即将区间划分为有限多个子区间并对每个子区间的积分进行求和,然后取极限。
同样地,如果极限存在且有限,则该反常积分收敛;若极限不存在或为无穷大,则该反常积分发散。
在讨论反常积分时,还需考虑奇点的分类。
奇点是指函数在一些点上不满足积分条件的情况。
常见的奇点包括无界点、端点以及间断点。
对于无界点,通常情况下我们可以通过取极限的方式来处理;而对于端点,需要分别对两个方向上的积分进行讨论,并判断两个反常积分是否收敛;对于间断点,要分别对间断点左、右两侧的积分进行求和,并判断两个反常积分是否收敛。
在实际应用中,我们常常需要计算一些函数的反常积分,比如Gaussian函数的积分、Beta函数的积分等。
这些积分在数学、物理、工程等领域都有广泛的应用。
在计算这些积分时,我们可以利用换元法、分部积分法等积分技巧来简化计算过程,并帮助判断反常积分的收敛性。
总之,反常积分是对于不满足黎曼积分条件的函数取极限得到的积分。
本章介绍了无界函数的积分、无界区间上的积分以及奇点的分类等内容。
通过学习本章的内容,我们能够更好地理解和应用反常积分的概念和方法。
《数学分析》第十一章反常积分1《数学分析》第十一章反常积分1第十一章反常积分在数学分析中,我们经常研究的是定义在有界闭区间上的函数的积分,这些函数在有界闭区间上的积分被称为定积分。
但是,在实际应用中,有时会遇到一些函数在一些点上的值没有定义,或者函数在一些有界闭区间上的积分不存在,这就引出了反常积分的概念。
反常积分是对于在有界闭区间上不满足定积分条件的函数进行积分,也可以看作是对定积分的扩充。
反常积分分为无穷积分和广义积分两种类型。
一、无穷积分如果函数f(x)在区间[a,+∞)上定义,而对于任意的x∈[a,+∞),f(x)都是有定义的,那么这样的函数f(x)在[a,+∞)上的积分称为无穷积分。
记作∫[a,+∞) f(x)dx如果函数f(x)在区间(-∞,a]上定义,而对于任意的x∈(-∞,a],f(x)都是有定义的,那么这样的函数f(x)在(-∞,a]上的积分称为无穷积分。
记作∫(-∞,a] f(x)dx在计算无穷积分时,常常使用变量替换或者部分积分等方法。
二、广义积分如果函数f(x)在区间[a,b]上除了其中一点x=c外都是有定义的,而在x=c处f(x)的定义和c的极限存在,那么这样的函数f(x)在[a,b]上的积分称为广义积分。
记作∫[a,b] f(x)dx如果函数f(x)在区间[a,b)上除了其中一点x=b外都是有定义的,而在x=b处f(x)的定义和b的极限存在,那么这样的函数f(x)在[a,b)上的积分称为广义积分。
记作∫[a,b) f(x)dx如果函数f(x)在区间(a,b]上除了其中一点x=a外都是有定义的,而在x=a处f(x)的定义和a的极限存在,那么这样的函数f(x)在(a,b]上的积分称为广义积分。
记作∫(a,b] f(x)dx如果函数f(x)在区间(a,b)上除了其中一点x=a和x=b外都是有定义的,而在x=a和x=b处f(x)的定义和a、b的极限存在,那么这样的函数f(x)在(a,b)上的积分称为广义积分。