ANSOFT软件在电机设计中的应用教程
- 格式:ppt
- 大小:2.74 MB
- 文档页数:51
ANSOFT软件在电机设计中的应用教程引言:ANSYS公司是全球领先的工程模拟软件开发商之一,旗下的ANSOFT 软件是一套专门应用于电磁场模拟及电磁场与电路耦合仿真的工具。
该软件被广泛应用于电机设计、电机驱动器设计、变压器设计、高频设备设计等领域。
本文将重点介绍ANSOFT软件在电机设计中的应用。
一、ANSOFT软件简介ANSOFT软件是一套电磁场模拟及电磁场与电路耦合仿真工具,主要包含HFSS、Maxwell、Simplorer等几个工具。
其中,HFSS(High Frequency Structural Simulator)是ANSYS公司开发的基于有限元理论的高频结构模拟软件;Maxwell是一款用于模拟电气、电磁和机械系统中静态和动态行为以及互连行为的软件;Simplorer是一款用于嵌入式系统和电子系统设计的面向对象、基于模板和分层技术的多领域仿真环境。
二、ANSOFT软件在电机设计中的应用1.基于有限元法的电机磁场分析ANSOFT软件可通过HFSS工具,对电机中的磁场进行分析。
用户可根据实际问题建立三维模型,并设置电机的几何参数、材料属性等。
通过求解电磁场方程,可以得到电机中的各种磁场分布,如磁感应强度、磁感应线等。
这些分析结果可以直观地展示出电机的性能,为电机设计提供重要参考依据。
2.电机热分析电机在工作过程中会产生大量的热量,热问题是影响电机性能的重要因素之一、ANSOFT软件可通过HFSS和Maxwell工具,对电机的热问题进行仿真分析。
用户可设置电机的绝热条件、材料的热导率等参数,并进行热传导的数值模拟。
通过分析电机的温度分布和热耦合效应,可以评估电机的热稳定性,避免因温度过高而导致的损坏或性能下降。
3.电机电磁与电路耦合仿真在电机设计中,电机通常与驱动器和电路连接。
ANSOFT软件的Simplorer工具可以实现电机电磁与电路的耦合仿真。
用户可将电机的电磁模型与电路模型相结合,进行电机的驱动力学仿真。
如何利用ansoft中磁路法计算,一键生成maxwell有限元电磁计算模型1、以一台凸极式永磁同步电机为例:打开软件,进入下图所示截面,选中RMxprt打开选择Adjust-Speed Synchronous Machine2、进入RMxprt界面,如下图所示:3、双击Machine,出现下图界面:极数:16转子位置:内转子各种损耗:可大致设置为额定功率的2%左右额定转速:790r/min线圈交流电AC及Y3星型联接4、双击stator,出现下图界面:定子外径:250定子内径:165定子轴向长度:160叠压系数:0.97定子材料:JFE_steel_50JN800定子槽数:36定子槽型:选3斜槽数:15、双击slot,如下图示:(一开始先将Auto Design后面√去除,点确认退出,再次双击slot 进入,即出现下图设置界面)3号槽型,设置数据如上图所示6、双击winding,选择winding界面线圈层数:2线圈形式:全极式绕组线圈并联之路:2每槽导体数:38(上下两层总计数)线圈跨距:4每匝线圈数:暂时空着,系统自动计算线圈漆包厚度:0.06平均线径:单击Diameter,进入设计截面,设置如下,点击OK再选择End/Insulation界面框线圈端部长:10槽绝缘厚度:0.3楔子厚度:2层绝缘厚:0.3槽满率:0.87、双击Rotor转子外径:162.5转子内径:110转子轴向长度:160转子材料:steel_1010叠压系数:1(转子为整个铸件)磁极类型:28、双击pole极狐系数:0.8偏移:0(即磁钢内外径同心)磁钢材料:NdFe35磁钢厚度:4.659、shaft轴可不设置10、右键单击Analysis单击选择Add solution setup,出现下图额定功率:17 (设置时注意单位的选择)额定电压:340额定转速:790其它默认即可11、至此RMxprt设置完成,右键点击增加的Setup1,单击Analyze 进行分析12、分析完成后可右键,可右键Results,选择Solution Data查看相关结果参数13、右键Setup1,选择Create Maxwell Design(生成有限元计算模型)选择Maxwell2D Design(或者3D,根据自己需求选择)14、系统会根据槽极比生成最小有限元单元,如此处生成1/4模型,若想生成全模型,可在RMxprt模块下,选择窗口中RMxprt,单击Design Settings,选择出现窗口下User Defined Date,设置如下(Fraction 1注意大小写及字母与数字间空一格),再点击重新计算即可生成有限元全模型谢谢!。
参考分析过程一、电机采用RMxprt进行路的方法计算:1、输入数据:二、计算详细输出结果-数据部分Three-Phase Induction Motor DesignFile: d:/demo/machine/3phind-1.pjt/3phind-1.resGENERAL DATAGiven Output Power (kW): 16.5 Rated Voltage (V): 460 Winding Connection: Wye Number of Poles: 2 Given Speed (rpm): 3502 Frequency (Hz): 60 Stray Loss (W): 1276 Friction and Wind Loss (W): 700 Type of Load: Constant Speed Iron Core Length (mm): 241.3 Stacking Factor of Iron Core: 0.95 Type of Steel: D23 Operating Temperature (C): 75STATOR DATANumber of Stator Slots: 36 Outer Diameter of Stator (mm): 257.175Inner Diameter of Stator (mm): 140.335 Type of Stator Slot: 2 Dimension of Stator Sloths0_stator (mm): 1.4097 hs1_stator (mm): 1.651 hs2_stator (mm): 17.7292 bs0_stator (mm): 4.064 bs1_stator (mm): 7.8486 bs2_stator (mm): 10.9728 Top Tooth Width (mm): 4.93213 Bottom Tooth Width (mm): 4.90226 Number of Conductors per Slot: 12 Number of Parallel Branches: 1 Number of Wires per Conductor: 4.378 Type of Coils: 21 Coil Pitch: 16 Wire Diameter (mm): 1.45001 Wire Wrap Thickness (mm): 0.254 Slot Insulation Thickness (mm): 0.254 Top Free Space in Slot (%): 0 Bottom Free Space in Slot (%): 0 Conductor Length Adjustment (mm): 0ROTOR DATANumber of Rotor Slots: 28 Air Gap (mm): 1.1684 Inner Diameter of Rotor (mm): 47.625 Type of Rotor Slot: 3 Dimension of Rotor Slothr0_top (mm): 0.5461 hr01_top (mm): 0.5461 hr1_top (mm): 0.254 hr2_top (mm): 5.588 br0_top (mm): 0.254 br1_top (mm): 3.81 br2_top (mm): 4.064 rr_top (mm): 0 Type of Bottom Rotor Slot: 3 Dimension of Bottom Rotor Slothr0_bottom (mm): 0 hr1_bottom (mm): 0 hr2_bottom (mm): 11.176 br0_bottom (mm): 4.064 br1_bottom (mm): 7.62br2_bottom (mm): 5.08 rr_bottom (mm): 0 Cast Rotor: Yes Half Slot: No Skew Width: 0 End Length of Bar (mm): 0 Height of End Ring (mm): 20.701 Width of End Ring (mm): 32.4104 Resistivity of Rotor Barat 75 Centigrade (ohm.mm^2/m): 0.0434086 Resistivity of Rotor Ringat 75 Centigrade (ohm.mm^2/m): 0.0434086MATERIAL CONSUMPTIONArmature Copper Density (kg/m^3): 8900 Rotor Bar Material Density (kg/m^3): 2700 Rotor Ring Material Density (kg/m^3): 2700 Armature Core Steel Density (kg/m^3): 7800 Rotor Core Steel Density (kg/m^3): 7800Armature Copper Weight (kg): 1.62757 Rotor Bar Material Weight (kg): 1.70536 Rotor Ring Material Weight (kg): 1.32265 Armature Core Steel Weight (kg): 50.4387 Rotor Core Steel Weight (kg): 18.8777 Total Net Weight (kg): 73.972Armature Core Steel Consumption (kg): 93.3773 Rotor Core Steel Consumption (kg): 27.6565RATED-LOAD OPERATIONStator Resistance (ohm): 0.253089 Stator Leakage Reactance (ohm): 1.0228 Rotor Resistance (ohm): 0.287023 Rotor Leakage Reactance (ohm): 1.20946 Resistance Corresponding toIron-Core Loss (ohm): 782.242 Magnetizing Reactance (ohm): 45.0353Stator Phase Current (A): 25.1328 Current Corresponding toIron-Core Loss (A): 0.319865 Magnetizing Current (A): 5.55592Rotor Phase Current (A): 23.5764Copper Loss of Stator Winding (W): 479.595 Copper Loss of Rotor Winding (W): 478.621 Iron-Core Loss (W): 240.103 Friction & Wind Loss (W): 700 Stray Loss (W): 1276 Total Loss (W): 3174.32 Input Power (kW): 19.5777 Output Power (kW): 16.4034Mechanical Shaft Torque (N.m): 44.7289 Efficiency (%): 83.786 Power Factor: 0.913971 Rated Slip: 0.0272222 Rated Shaft Speed (rpm): 3502NO-LOAD OPERATIONNo-Load Stator Resistance (ohm): 0.253089 No-Load Stator Leakage Reactance (ohm): 1.02329 No-Load Rotor Resistance (ohm): 0.286993 No-Load Rotor Leakage Reactance (ohm): 8.04386No-Load Stator Phase Current (A): 5.92145 No-Load Iron-Core Loss (W): 257.943 No-Load Input Power (W): 2284.21 No-Load Power Factor: 0.213701 No-Load Slip: 0.00103014 No-Load Shaft Speed (rpm): 3596.29BREAK-DOWN OPERATIONBreak-Down Slip: 0.17 Break-Down Torque (N.m): 132.277 Break-Down Torque Ratio: 2.9573 Break-Down Phase Current (A): 101.661LOCKED-ROTOR OPERATIONLocked-Rotor Torque (N.m): 54.3284 Locked-Rotor Phase Current (A): 149.589 Locked-Rotor Torque Ratio: 1.21461 Locked-Rotor Current Ratio: 5.95195Locked-Rotor Stator Resistance (ohm): 0.253089 Locked-Rotor StatorLeakage Reactance (ohm): 1.01599 Locked-Rotor Rotor Resistance (ohm): 0.325616 Locked-Rotor RotorLeakage Reactance (ohm): 0.67378DETAILED DATA AT RATED OPERATIONStator Slot Leakage Reactance (ohm): 0.549208 Stator End-Winding LeakageReactance (ohm): 0.396411 Stator Differential LeakageReactance (ohm): 0.0771798 Rotor Slot Leakage Reactance (ohm): 0.943582 Rotor End-Winding LeakageReactance (ohm): 0.0526411 Rotor Differential LeakageReactance (ohm): 0.213249 Skewing Leakage Reactance (ohm): 0Slot Fill Factor (%): 78.4847 Stator Winding Factor: 0.941617Stator-Teeth Flux Density (Tesla): 1.06718 Rotor-Teeth Flux Density (Tesla): 0.642609 Lower-Part Rotor-TeethFlux Density (Tesla): 1.04649 Stator-Yoke Flux Density (Tesla): 0.891501 Rotor-Yoke Flux Density (Tesla): 0.696282 Air-Gap Flux Density (Tesla): 0.402755Stator-Teeth Ampere Turns (A.T): 9.59168 Rotor-Teeth Ampere Turns (A.T): 1.12198 Lower-Part Rotor-TeethAmpere Turns (A.T): 4.79376 Stator-Yoke Ampere Turns (A.T): 36.9241 Rotor-Yoke Ampere Turns (A.T): 5.52483 Air-Gap Ampere Turns (A.T): 450.687Correction Factor for MagneticCircuit Length of Stator Yoke: 0.7 Correction Factor for MagneticCircuit Length of Rotor Yoke: 0.567404 Saturation Factor for Teeth: 1.03441Saturation Factor for Teeth & Yoke: 1.1286 Induced-Voltage Factor: 0.942131Stator Current Density (A/mm^2): 3.47642 Specific Electric Loading (A/mm): 24.6268 Stator Thermal Load (A^2/mm^3): 85.6133Rotor Bar Current Density (A/mm^2): 3.66388 Rotor Ring Current Density (A/mm^2): 2.27977Half-Turn Length ofStator Winding (mm): 585.542WINDING ARRANGEMENTThe 3-phase, 2-layer winding can be arranged in 18 slots as below:AAAAAAZZZZZZBBBBBBAngle per slot (elec. degrees): 10 Phase-A axis (elec. degrees): 105 First slot center (elec. degrees): 0 TRANSIENT FEA INPUT DATAFor one phase of the Stator Winding:Number of Turns: 72 Parallel Branches: 1 Terminal Resistance (ohm): 0.253089 End Leakage Inductance (H): 0.00105151 For Rotor End Ring Between Two Bars of One Side:End Ring Resistance (ohm): 8.44E-07 End Ring Leakage Inductance (H): 1.78E-09 Skew Leakage Inductance (H): 0 2D Equivalent Value:Equivalent Air-Gap Length (mm): 241.3 Equivalent Stator Stacking Factor: 0.95 Equivalent Rotor Stacking Factor: 0.95 Estimated Rotor Inertial Moment (kg m^2): 0.0670109三、计算详细输出结果-图形与曲线部分自动根据最小对称条件生成有限元模型自定义绕组编辑器与绕组安放图自动生成的三维分析模型输入电流/速度曲线效率/转速曲线输出功率/转速曲线功率因数/转速曲线输出转矩/转速曲线合并特性曲线四、参数化设计和优化设计Ansoft 软件能够通过选择设计可以改变的量和优化目标,自动进行参数化设计和优化设计参数化设计实例(改变转子槽深(hr2)时起动电流(LC )和起动转矩(LT)的变化)五、场分析结果实例利用Ansoft二维和三维有限元电机设计分析和优化软件可以解决以下问题从结构到性能的有限元分析,包括z电磁场分析z冲片设计z温度场分析z性能计算z电机参数计算等基于参数的电机设计方案探索、比较电机静态和动态分析z稳态特性z加减速特性z突加突减负载z可编程负载特性电机参数计算等电机故障软件模拟分析-如导条断裂、绝缘击穿等异步电机,无刷电机等在变频器供电下(非正弦供电)下的特性分析电机驱动电路与有限元的耦合仿真在考虑材料非线性等情况下回答有关z转矩脉动z损耗z温升z转矩、转速特性z效率等问题并对其进行优化以下举几个典型实例的计算结果:首先编辑模型。
有限元分析软件Ansoft在电机领域中的应用一ansoft软件各模块的简单介绍1 RMxprt该软件用于探索电机设计空间、快速确定设计方案,并能进行优化设计它已经可以进行十三种电机类型的设计:三相感应电机单相感应电机永磁无刷直流电机永磁直流电机通用电机开关磁阻电机调速运行永磁同步电机自起动三相永磁同步电机三相同步电机三相同步发电机永磁同步发电机特点:✓向导式介面,参数化输入: 工作条件,几何尺寸, 材料特性✓基于磁网路法的快速解析分析✓详细的结果输出:图形和表格✓利用对称条件生成最小有限元分析模型,用于电机动态过程详细有限元分析✓参数化设计能力:尺寸、材料等无需指定。
可用一定变化范围的变量表示✓优化设计功能✓求解时考虑材料非线性b – h特性✓自动设计功能: 槽型设计和线规选择✓提供丰富的预设计电机模型库✓输入数据自动验证✓提供美国、中国材料库和公制、英制尺寸✓针对电机种类的多种绕组型式和用户定义绕组连接方式✓多种负栽种类: 恒功率、恒转矩、恒转速、风机水泵✓三维斜槽和端部效应✓无刷电机、开关磁阻电机、永磁同步电机驱动线路类型、控制方式选择和开关管参数设定2. Maxwell 2D二维电磁场、温度场,瞬态场分析软件,Maxwell® 2D 是一个功能强大、结果精确、易于使用的二维电磁场有限元分析软件,一般在电磁物体满足轴向均匀或RZ对称的条件下采用。
3. Maxwell 3D包括电场、稳态磁场和交流磁场、动态电磁场、损耗计算和热分析模块,其核心是针对三维电磁场分析而优化的有限元技术。
向导式的用户界面、精度驱动的自适应剖分技术和强大的后处理器使得Maxwell 3D成为业界最佳的高性能三维电磁设计软件。
可以分析涡流、位移电流、集肤效应和领近效应具有不可忽视作用的系统,得到电机、母线、变压器、线圈中涡流的整体特性。
功率损耗、线圈损耗、某一频率下的阻抗(R和L)、力、转矩、电感、储能等参数可以自动计算。
第31卷 第5期2009年10月电气电子教学学报JO U RN A L O F EEEVol.31 No.5Oct.2009Ansoft 软件在电机教学中的应用费德成,孙玉坤,朱熀秋(江苏大学电气信息工程学院,江苏镇江212013)收稿日期:2008 11 24;修回日期:2009 07 25基金项目:江苏省研究生教育教学改革研究与实践课题(YJ G08-YB31);江苏大学校基金资助项目(09J DG014)第一作者:费德成(1979 ),男,博士,讲师,主要从事特种电机和混合动力汽车研究,E m ail:feidech eng@摘 要:本文借助Ans oft 软件工具对开关磁阻电机进行优化设计、静态矩角特性分析和电动运行分析,并在后处理中制作了瞬态磁场分布动画。
通过使用静态分析和动态分析图形教学,便于学生理解电机的结构原理以及运行特性,提高学生的形象思维能力,从而提高教学效果。
本文方法对于其他电机的教学具有很好的参考价值。
关键词:An soft;开关磁阻电机;静态分析;动态分析中图分类号:T M 3文献标识码:A 文章编号:1008 0686(2009)05 0095 03The Teaching Research of Electrical Machinary Based on AnsoftFEI De cheng,SUN Yu kun,ZHU Huang qiu(Sc hool of Electrical and I nf or mational Eng ine ering ,Jiang su Univ er sity ,Zh enj iang 212013,China)Abstract:The Ansoft softw are has been used for the optim ized design,static torque angle char acteristic analysis and electric operation analysis of sw itched r eluctance motor.The Animation for transient magnetic field distribution field distribution is made.T he static and transient analysis g raphs hav e been used in the electr ical m achinary teaching.T he structure principle and running characteristics are easy to be under stood fo r the students.The image thinking ability and learning interest are increasing.So the teaching effects and the students'creativity are improved.The metho d has r eference v alue for the teaching pr ocess of other electr ical m achine.Keywords:ansoft;sw itched reluctance motor ;static analysis;transient analy sis 开关磁阻电机结构简单坚固、调速范围宽、性能较好和系统可靠性高,其应用范围不断扩大。
基于Ansoft在“电机学”课程教学中应用学习“电机学”这门课程,在“电机学”的教学中引入Ansoft有限元软件建立虚拟电机模型,使学生能够更加深刻地理解电机的结构及其原理。
首先,引导学生学习Ansoft 软件的功能和各个模块的应用,文章根据已有的一款表貼式三相永磁同步电动机的参数,建立虚拟电机模型,利用Maxwell 2D模块进行有限元分析,得到该电机的定子、转子磁场的磁力线、气隙磁密和铁心损耗等相关性能数据。
通过建立虚拟电机模型可使学生的抽象思维能力得到提高,更好地理解电机学和电磁场相关的理论知识,改善教学效果。
关键词:电机学;Ansoft;虚拟电机模型;Maxwell 2D“电机学”是电气工程及其自动化及相关专业一门重要的专业基础课程,包括变压器、异步电机、同步电机和直流电机等内容,主要讲授各种电机的结构、基本原理和特性等,不但要求学生掌握理论知识,同时,要培养学生的动手能力,为后续的专业课程打下基础。
由于电机学涉及电、磁、力和热等多学科知识,该课程包含抽象概念较多,特别是电磁场相关知识,要求学生要具备较好想象力,然而有相当一部分学生理解起来比较困难。
针对以上的问题,本文在“电机学”课程教学中引入Ansoft有限元分析软件,建立虚拟电机模型,通过仿真分析得到电机内部的磁力线分布、三相电流和额定力矩等参数,便于让学生能够直观认识电机学的内部机理,提高对该课程的学习兴趣,达到较好的教学效果[1]。
1 关于Ansoft有限元软件简介1.1 ANSYS软件的来源ANSYS软件是美国ANSYS公司研制的大型通用有限元分析(Finite Element Analysis,FEA)软件,是世界范围内增长最快的计算机辅助工程(Computer Aided Engineering,CAE)软件,能与多数计算机辅助设计(Computer Aided Design,CAD)软件接口,实现数据的共享和交换,如CREO,NASTRAN,ALOGOR,I-DEAS,AutoCAD等,是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件,在众多领域有着广泛的应用。
ANSOFT建模1、在ANSOFT软件中建立电机模型第一步、在ANSOFT绘制电机模型第二步、选择“Modeler”菜单下的“Export”项会出现下面的窗口选择保存为“step”格式的文件。
这时可以退出ANSOFT软件。
ANSYS仿真一、稳态温度仿真第一步创建稳态温度仿真模型第二步、添加材料及属性,属性主要为“导热系数”选择“Engineering data”→”Edit”开始添加材料第三步、添加完材料后,导入在ANSOFT下创建的电机模型,选择“Geometry”按下面选项选择选择ANSOFT下保存的“step”格式的电机模型第四步、导入模型后,给模型添加材料。
选择“Model”→”Edit”进入下面的窗口,按下面的步骤给电机的各个部分选择对应的材料。
第五步、添加完材料后,返回主窗口,更新修改后的工程文件如果没有问题,会变为第六步、添加热载荷首先添加自由度,在温度场分析中选择为温度,按下面窗口选择。
接下来,编辑温度,并选择应用区域,这儿定义整个模型的初始温度相同。
下面添加热载荷,按下面的窗口选择,这里选择“热生成率”。
编辑添加的热生成率数值,并选择应用区域,这儿选择所有的绕组。
添加完载荷后,更新一下工程文件,通过后,可以选择“Solve”进行求解。
如果求解成功后,左边的窗口会变成右边的窗口。
第七步、查看仿真结果。
按下面的窗口选择观察变量。
二、瞬态温度仿真第一步、建立瞬态温度分析模型第二步、添加材料及属性,方法与稳态时相同。
但材料的属性不同,这里需要添加材料的“密度”、“导热系数“、“比热容”。
“Toolbar”窗口如下。
按照各个选项添加数据。
除了添加载荷不同,接下来的步骤与稳态时相同。
设置仿真步数为多步。
按下窗口设置载荷数据,设置为“阶梯数据”。
11/ 11。
一、概述此文档介绍了利用Ansoft Maxwell2D 11.0电磁场有限元分析软件对永磁同步发电机进行磁场分析的方法,读者应先了解Ansoft软件的基本使用方法后阅读本文,Ansoft软件的基本使用方法可参阅《Ansoft工程电磁场有限元分析》(刘国强著,电子工业出版社)。
永磁同步发电机磁场分析的基本流程见图1。
图1 磁场分析的基本流程二、求解空载磁场1.绘制有限元模型(Define Model)Ansoft Maxwell2D 有限元建模的方法主要有三种,一是直接在Maxwell2D 中绘制,选择Define Model-Draw Model 进入后在软件提供的绘图界面上绘制电机模型。
二是利用Ansoft RMXpert导入,点开Maxwell 11 3D的界面,选择Project-Insert RMxpert Design,然后逐项输入电机各项数据。
输入完各项数据后,点击RMxpert-Analyze all,求解电机模型。
求解完成后,点击RMxpert-Analysis Setup-Export-Maxwell 2D Project,生成一个Maxwell 2D模型。
在弹出的对话框中,Project Name中填写模型的名字,Location填写模型存放的路径。
三是用AutoCAD绘制后导入。
将绘制后的AutoCAD图形存成*.dxf格式,在Ansoft Maxwell2D 绘图界面中点击File-Import,选中*.dxf文件在出现的设置转换参数对话框中,将Number of segments for poligonalization of a circle 和Number of segments between control points of a spline 后的数量设置得大一点,点击ok,将AutoCAD图形转换为Maxwell 2D模型图形*.sm2。
界面后选择File-Open, 打开转换好的图形。