表象理论中转换矩阵和传递矩阵的研究
- 格式:pdf
- 大小:187.93 KB
- 文档页数:3
量⼦⼒学讲义IV.表象理论(矩阵表述)IV. 表象理论 ( 矩阵表述 )1.如何⽤矩阵表⽰量⼦态与⼒学量,并说明理由?答:矩阵表⽰⼀般⽤于本征值为离散谱的表象(相应的希尔伯空间维数是可数的)。
具体说,如果⼒学量的本征⽮为,相应本征值分别为。
假定⼀个任意态⽮为,将它展开For personal use only in study and research; not for commercial use则态⽮在表象中波函数便可⽤展开系数的⼀列矩阵表⽰其意义是:在态中,取的概率为,这与表象中波函数意义是类似的。
⼒学量⽤厄⽶⽅阵表⽰,。
显然,⼀列矩阵和⽅阵维数与希尔伯空间维数是相等的。
⽤矩阵表⽰⼒学量,有如下理由:第⼀可以反映⼒学量作⽤于⼀个量⼦态得到另⼀个量⼦态的事实。
设,式中,。
取,两端左乘,取标积得,即第⼆矩阵乘法⼀般不满⾜交换率,这恰好能满⾜两个⼒学量⼀般不对易的要求。
第三厄⽶矩阵的性质能体现⼒学量算符的厄⽶性。
对于本征值为连续谱的表象(希尔伯空间维数不可数),也可形式的运⽤矩阵表⽰,这时可将矩阵元素看成式连续分布的。
2.量⼦⼒学中,不同表象间:基⽮、波函数、⼒学量是如何变换的?答:量⼦⼒学中由⼀个表象到另⼀个表象的变换为⼳正变换,它类似于欧⽒空间中坐标转动。
设表象中的基⽮为表象中的基⽮为(1) 基⽮变换关系为式中,(为⼳正矩阵)。
设有任意态,则态在及表象中波函数分别为矩阵。
(2) 波函数变换规则为:矩阵。
(3) ⼒学量变换规则为:。
(式中与为⼒学量在、表象中矩阵)3.正变换有什么特征?答:⼳正变换特点:(1⼳正变换不改变态⽮的模,这⼀特征相当于坐标旋转变换;(2⼳正变换不改变⼒学量本征值;(3)⼒学量矩阵之迹 TrF与矩阵⾏列式 dgtF亦不因⼳正变换⽽改变.4. 学量在其⾃⾝表象中如何表⽰?其本征⽮是什么 ?答:如果⼒学量本征值为离散谱,那么,它在其⾃⾝表象中表⽰式为对⾓矩阵,为诸本征值。
本征⽮为单元素⼀列矩阵如果⼒学量本征值为连续谱,则它在其⾃⾝表象中为纯变量其本征⽮为函数。
量子力学的表象变换量子力学是描述微观粒子行为的理论,它具有许多奇特的特性和规律。
其中一个重要的概念就是表象变换,它是一个数学工具,用于描述在不同的观测角度下,量子系统的性质和行为。
量子力学的表象变换可以理解为从一个视角切换到另一个视角,就像在观察一幅画时,可以从不同的角度看到不同的景象一样。
这种变换的目的是为了更好地理解和描述量子系统的行为。
在量子力学中,存在多种不同的表象,如波函数表象(也称为薛定谔表象)和狄拉克表象(也称为自由度表象)。
在波函数表象中,系统的状态由波函数描述,而在狄拉克表象中,系统的状态由态矢量描述。
表象变换的基本原理是变换矩阵的应用。
这个变换矩阵是一个数学工具,用于在不同的表象之间建立联系。
它可以将一个态矢量或波函数从一个表象变换到另一个表象,从而描述量子系统在不同观测角度下的行为。
在量子力学中,表象变换有两种基本形式,即基态表象变换和幺正变换。
基态表象变换是将系统的基矢量从一个表象变换到另一个表象,通过变换矩阵的作用,得到新的基矢量。
幺正变换则是将整个系统的态矢量或波函数进行变换,通过变换矩阵的作用,得到新的态矢量或波函数。
通过表象变换,我们可以更好地理解和描述量子系统的性质和行为。
例如,在不同的表象下,量子系统的能量、动量和位置等物理量的表达式可以有所不同。
通过表象变换,我们可以在不同的表象下计算这些物理量,从而得到更全面的量子力学描述。
除了基本的表象变换之外,量子力学还涉及到更复杂的变换,如相互作用表象变换和相互作用绘景变换。
这些变换是为了更好地描述量子系统在相互作用下的行为和演化。
表象变换在量子力学中发挥着重要的作用。
它不仅为我们提供了一种理解和描述量子系统行为的数学工具,也为实际应用提供了基础。
例如,在量子计算和量子通信中,表象变换可以用于描述和控制量子态的演化和传输,从而实现更高效和安全的量子信息处理。
最后,需要注意的是,量子力学的表象变换本质上是一种数学工具,它并不涉及具体的实验操作。