本科生毕业设计-块体非晶合金
- 格式:ppt
- 大小:12.13 MB
- 文档页数:39
块体非晶合金材料的性能、应用以及展望引言:非晶态合金又称为金属玻璃,具有长程无序、短程有序的亚稳态结构特征。
固态时其原子的三维空间呈拓扑无序排列,并在一定温度范围内这种状态保持相对稳定。
与传统的晶态合金相比,非晶合金具备很多优异的性能,如高强度、高硬度、耐磨和耐腐蚀等,因而引起人们极大的兴趣。
一、非晶合金的发展历程自1960 年加州理工学院的P.Duwez 小组采用液态喷雾淬冷法以106K/s 的冷却速率从液态急冷获得Au-Si 非晶合金以来,人们主要通过提高冷却速度的方法来获得非晶态结构。
由于受到高的临界冷却速率的限制,只能获得低维的非晶材料(非晶粉、丝、薄带等),这在很大程度上限制了非晶的应用,特别是阻碍了对其力学、物理等性能的研究。
20 世纪80 年代末90 年代初,日本东北大学(Tohoku University)的T.Masumoto 和A.Inoue 等人发现了具有极低临界冷却速率的多元合金系列,如Mg-TM-Ln,Ln-AI-TM,Zr-AI-TM,Hf-AITM ,Ti-Zr-TM(Ln 为铡系元素,TM 为过渡族元素)。
1993 年W.L.Johnson 等人发现了具有临界冷却速率低达1K/s 的Zr 基大块非晶合金。
经过二十多年的发展,非晶从只有几个微米到现在的厘米级别,现在已经有6 个体系(锆基: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5, Zr55Al10Ni5Cu30;铂基:Pd40Cu30Ni10P20;钇基:Y36Sc20Al24Co20;钯基:Pt57.5Cu14.7Ni5.3P22.5;镁基:Mg54Cu26.5Ag8.5Gd11)临界尺度达到了20mm。
对非晶态的大量研究表明,非晶合金中不存在晶界、位错、层错等晶体缺陷,非晶合金具有传统的晶态金属所不具有的诸多优良性能,如良好的机械、物理、化学性能以及磁性能。
鉴于大块非晶合金优良的力学、化学及物理性能以及在电子、机械、化工、国防等方面具有广泛的应用前景,大块非晶合金的研制就具有重要的技术和经济价值,是一个具有广阔发展前景的研究领域。
1绪论1.1 非晶合金发展概述非晶态合金不具备长程原子有序,也叫玻璃态合金,是新型材料研究的热点之一。
非晶合金具有优异的力学性能(高的强度、硬度等),耐腐蚀性能,软、硬磁性能以及储氢性能等,在机械、通讯、航空航天、汽车工业乃至国防军事上都具有广泛的应用潜力。
因此,开发块体非晶合金成为这类材料实用化的重点。
1943年,德国物理学家Kramer用蒸发沉积的方法成功制备出了非晶态薄膜,自此,非晶的研究逐步开展。
1951年,美国物理学家Turnbull通过水银的过冷实验,提出液态金属可以过冷到远离平衡熔点以下而不产生形核与长大,达到非晶态,Turnbull是非晶态合金的理论奠基人。
1960年Duwe等采用熔体快速冷却方法首先制备出Au-Si非晶态合金。
1969年,Pond等用扎辊发制备出了长达几十米的非晶薄带。
20世纪70年代后,人们制备出厚度小于50µm、宽15cm的连续非晶薄带。
1974年Chen在约10³K/s的冷却速度条件下用Pd-Cu-Si熔体首次得到毫米级直径的非晶。
20世纪80年代前期,Turnbull等采用氧化物包覆技术以10K/s的冷却速度制备出厘米级的Pd-Ni-P 非晶。
20世纪80年代,A.Inoue等在日本东北大学成功发现了La-Al-Ni和La-Al-Cu等三元合金。
此后,又制备了厘米级的四元和五元块体非晶合金。
2000年Inoue课题组成功发展了高强度Cu-Zr-Hf-Ti和Co-Fe-Ta-B快体非晶合金。
2003年,美国橡树岭国家实验室Lu和Liu使Fe基非晶合金的尺寸从过去的毫米推进到厘米级,最大直径可达12mm。
此后哈工大沈军等又将Fe基快体非晶合金尺寸提高到16mm。
最近,中科院金属所的Ma等发现了尺寸可达25mm的Mg-Cu-Ag-Pd非晶态合金。
目前世界上最大的稀土基金属玻璃材料—直径为35mm的镧基金属玻璃系,由浙江大学蒋建中等研制成功。
1.绪论虽然几千年前人类就已经开始使用金属材料了,然而在十八世纪工业革命之前,可使用的金属材料只有金、银、铜、铁、汞等十一种。
而在工业革命后的几百年里,尽管提纯、冶金技术得到了长足的发展,人类可使用的金属显著增多,但厚度达到毫米量级的块体金属材料还只局限于晶体结构。
上个世纪九十年代,科学家在实验中成功获得了多种临界尺寸在毫米量级以上的非晶合金样品。
作为一种新型材料,非晶合金不仅具有极高的强度、韧性、耐磨性和耐腐蚀性,而且还表现出了优良的磁学特性,在航空航天、精密机械以及信息等领域显示出了重要的应用价值。
【1】1.1非晶态合金非晶合金即金属玻璃,具有长程无序、短程有序的结构特点,是一种亚稳态结构,在一定温度范围内保持相对稳定的状态。
对非晶态的大量研究证实,非晶合金中不存在晶界、位错、层错等晶体缺陷,并兼具了金属和玻璃的特性,具有良好的机械、物理、化学以及磁性能,在电子、机械、化工、国防等方面具有广泛的应用前景,极具技术和经济价值。
【2】1.1.1非晶合金的形成理论从热力学上看,当金属或合金熔体发生结晶时,其体系自由能的变化如下式所示:ΔG= ΔH f-TΔS f,式中T为温度,ΔH f和ΔS f分别表示液相变为固相的焓变和熵变。
对于合金体系,若ΔG越大,则表明其过冷液体发生结晶转变的驱动力越大,则体系形成非晶态的能力越弱,反之形成非晶态的能力则強。
所以,由上式可知,降低ΔH f和增加ΔS f都可以使ΔG降低,从而增强体系的合金非晶态形成能力。
而实际上,一般选择三元或三元以上的合金系,使合金系中原子紧密无序堆积来降低ΔG,但考虑到若增加过多的合金元素会导致相图复杂,难以对其热力学和动力学进行分析,同时也不易得到共晶成分,反而不利于提高非晶态形成能力。
从动力学上看,球状结晶相在过冷液体中均匀形核和长大可用以下关系式表示:()⎥⎦⎤⎢⎣⎡∆-⎪⎭⎫ ⎝⎛=2330exp 10γγβαηT T b I ;⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∆--⎪⎭⎫ ⎝⎛=γγβηT T I f U exp 102 上式中I 为均匀形核率,U 为长大速率,T 为温度,T r =TT m 表示比温度,T m 表示熔点;另外,基于发现多组元合金体系,Inoue 等人提出了获得块体非晶的三个经验原则:(1)多于三种组元的多组元体系;(2)基本组元之间有大于12%的原子尺寸差;(3)基本组元之间有较大的负混合热。
本科生毕业设计块体非晶合金一、引言随着科技的不断进步,材料科学领域也在不断创新和发展。
非晶合金作为一种新型材料,因其独特的结构和性能,逐渐引起了人们的广泛。
本科生毕业设计块体非晶合金的研究,将进一步推动非晶合金的发展和应用。
二、非晶合金概述非晶合金是一种新型金属材料,其原子结构呈现出无序排列状态,不同于传统的金属材料。
这种特殊的结构使得非晶合金具有优异的性能,如高强度、高硬度、良好的耐磨性和耐腐蚀性等。
因此,非晶合金在许多领域都有广泛的应用前景,如航空航天、汽车、电子等。
三、本科生毕业设计块体非晶合金的研究内容在本科生毕业设计中,对块体非晶合金的研究主要包括以下几个方面:1、制备工艺研究:通过对不同成分的非晶合金进行制备工艺的研究,探索最佳的制备条件。
在实验过程中,需要对合金熔炼、冷却速度、成分控制等关键因素进行严格的控制,以获得高质量的块体非晶合金。
2、结构与性能研究:利用X射线衍射、电子显微镜等手段对块体非晶合金的内部结构进行表征,并对其力学性能、物理性能和化学性能进行测试。
通过对不同成分的非晶合金的结构和性能进行对比分析,找出性能最优的块体非晶合金。
3、形变与断裂行为研究:在本科生毕业设计中,需要对块体非晶合金的形变和断裂行为进行深入研究。
通过施加不同的应力或应变,观察非晶合金的形变过程和断裂方式,分析其变形机制和断裂机理。
4、应用研究:根据块体非晶合金的结构和性能特点,探讨其在各个领域的应用前景。
例如,在汽车领域,块体非晶合金可以用于制造发动机部件,以提高其耐腐蚀性和耐磨性;在航空航天领域,块体非晶合金可以用于制造结构件,以提高其轻量化和强度。
四、结论本科生毕业设计块体非晶合金的研究是一项具有重要意义的课题。
通过对块体非晶合金的制备工艺、结构与性能、形变与断裂行为以及应用前景进行系统的研究,可以进一步加深对非晶合金的理解,为其在各个领域的应用提供理论支持和实践指导。
通过毕业设计的过程,学生也可以提高自身的科研能力和综合素质,为未来的职业发展打下坚实的基础。
块体非晶合金的成分设计准则
块体非晶合金是由非晶态金属组成的材料,其成分设计准则一般包括以下几个方面:
1. 基础金属选择:块体非晶合金的基础金属一般选择具有良好玻璃形成能力的金属,如铁、铈、钇、锆、镍等。
这些金属具有高密度和高熔点,有利于形成块体非晶合金。
2. 合金元素选择:除基础金属外,块体非晶合金还可以添加其他合金元素来调整其性能。
合金元素的选择应考虑其对材料的玻璃形成能力、稳定性和物理性能的影响。
常用的合金元素包括铜、铝、铝、钴、铬等。
3. 合金元素含量:合金元素的含量对块体非晶合金的性能有较大影响。
通常情况下,合金元素的含量应控制在一定的范围内,以防止形成晶体相。
此外,不同元素的配比也会对块体非晶合金的性能产生影响,需要进行合理的设计和调整。
4. 非晶形成能力:在成分设计中,需要考虑到材料的非晶形成能力。
通常情况下,增加金属元素的非晶形成能力可以提高块体非晶合金的玻璃形成能力。
可以通过调整合金元素的含量和添加其他合金元素来提高非晶形成能力。
块体非晶合金的成分设计准则包括基础金属选择、合金元素选择和含量控制、非晶形成能力等方面。
需要综合考虑材料的玻璃形成能力、稳定性和物理性能等因素,进行合理的设计和调整。