磁阻传感器在导航系统中的应用
- 格式:pdf
- 大小:196.45 KB
- 文档页数:8
用于组合导航系统的三轴地磁导航传感器设计作者:金海红吴东升范之国来源:《无线互联科技》2020年第06期摘 ; 要:文章针对仿生偏振光/地磁/惯导多源信息组合导航系统中的地磁导航需求,设计了一种三轴地磁导航传感器。
介绍了应用背景、设计需求与实现方法,进行了系统的误差分析,并针对不同误差来源,进行了标定测量与补偿,实现了三轴姿态角的动态测量,为多信息源融合下的导航系统提供了一种获取地磁导航信息的有效手段。
关键词:磁阻传感器;地磁导航;加速度计;组合导航1 ; ;导航技术导航技术在航空、航天、航海等领域是不可或缺的关键技术。
地磁导航是利用地球磁场矢量来确定方向的一种古老导航方法,如今,仍然在很多场合发挥着重要的作用。
但是,地磁导航也存在容易受到外界环境干扰等诸多不足,因此,设计抗干扰性强的地磁传感系统和有效的误差控制方法,是各种地磁导航应用的关键。
随着组合导航技术的不断发展,多信息源组合导航越来越凸显其技术优势[1]。
仿生偏振光导航通过对大气偏振模式的检测和演算,实现对载体姿态信息的判断,是一种自主导航方法[2]。
仿生偏振光导航、地磁导航与惯性导航三者导航方式优势互补[3-4],可以构成组合自主导航系统,为解决卫星信号拒止环境下的自主导航,提供了一种可行的技术途径。
本文针对仿生偏振光/地磁/惯导多源信息组合导航系统中的地磁导航需求,设计了一种基于磁阻技术的三轴地磁导航传感器,为多信息源融合下的自主导航系统提供一种有效的地磁导航辅助信息。
组合导航系统集成了偏振光、地磁、惯性导航传感器,是以核心信号处理与控制单元为中心,将各导航传感器送来的信息加以综合和最优化处理,然后对导航参数进行综合输出。
其中,组合导航系统中的地磁导航传感器利用地球磁场通过自身的磁强计测量载体所在位置的地磁场矢量,计算出相应载体的三轴姿态。
根据平台系统的成本、体积及使用范围等综合考虑,本文地磁导航传感器系统的设计要求为:实现三轴姿态实时动态测量。
磁场传感器原理及应用磁场传感器是一种能够感知周围磁场变化的设备,它通过测量磁场的强度和方向来获取有关周围环境的信息。
磁场传感器广泛应用于工业控制、导航系统、运动控制、安全系统等领域。
磁场传感器的原理是基于一种叫做磁阻效应的物理现象,它可以用来测量磁场的强度和方向。
磁阻效应是指在磁场中,材料的电阻会发生变化。
根据这一效应,设计师可以将磁阻器件与其他电路组合,构成磁场传感器。
磁场传感器有多种工作原理,其中包括霍尔效应、磁阻效应、磁电效应、法拉第效应等。
其中霍尔效应是使用最为广泛的原理之一。
霍尔效应是指当电流通过一条导线时,如果有磁场垂直于导线方向,那么就会在导线两侧产生电势差。
这种电势差可以用来测量磁场的强度和方向。
磁场传感器常见的类型有霍尔传感器、磁阻传感器和磁电传感器等。
霍尔传感器是最常见的一种磁场传感器,它具有高灵敏度、快速响应和低功耗的特点,广泛应用于汽车、电机控制和磁带驱动等领域。
磁阻传感器则主要用于测量磁场的方向和强度,常见于罗盘和导航系统中。
磁电传感器则是一种能够通过磁场作用产生电压或电流的传感器,广泛应用于电磁设备的测量和控制中。
磁场传感器的应用范围非常广泛。
在工业控制方面,磁场传感器可以用来检测电动机的位置和速度,实现精准控制。
在导航系统中,磁场传感器可以用来测量地理位置,实现车辆导航和航空导航。
在安全系统中,磁场传感器可以用来检测和报警,应用于入侵报警和车辆防盗系统。
此外,磁场传感器还可以应用于医疗设备、电子游戏、机器人和智能家居等领域。
总的来说,磁场传感器是一种通过测量磁场的强度和方向来获取周围环境信息的设备。
它的工作原理可以是霍尔效应、磁阻效应、磁电效应等多种物理原理。
磁场传感器的应用非常广泛,涵盖了工业控制、导航系统、安全系统等许多领域。
随着技术的不断发展,磁场传感器的性能将进一步提升,应用领域也将不断扩大。
基于磁阻传感器的电动车自动驾驶系统设计与研发电动车自动驾驶系统是近年来受到广泛关注和研究的领域之一。
基于磁阻传感器的电动车自动驾驶系统设计与研发是其中的一个重要方向。
本文将围绕着这一任务名称展开,探讨基于磁阻传感器的电动车自动驾驶系统的设计和研发。
第一部分:引言自动驾驶技术的发展给交通运输行业带来了革命性的变化。
电动车作为一种环保、高效的交通工具,与自动驾驶技术的结合将进一步提升其效能。
而磁阻传感器作为一种重要的感知器件,在电动车自动驾驶系统中扮演着关键角色。
第二部分:磁阻传感器的原理和应用磁阻传感器是一种利用磁阻效应进行测量的传感器。
其原理是基于材料在磁场下的电阻值变化。
利用磁阻传感器,我们可以检测到电动车周围的磁场变化,进而实现对车辆位置、速度和方向等信息的实时感知。
磁阻传感器在电动车自动驾驶系统中的应用主要有以下几个方面:1. 地图绘制与定位:通过利用磁阻传感器,可以感知车辆在地面上的位置,从而实现对车辆轨迹的绘制和定位。
这对于自动驾驶系统来说至关重要,因为精准的地图绘制和定位是保持车辆在运行过程中的自主性和安全性的基础。
2. 环境感知:磁阻传感器可以检测到车辆周围的磁场变化,如地下交通信号灯、地下停车场等,从而实现对车辆周围环境的感知。
这对于避免碰撞、识别障碍物和规避危险非常重要。
3. 车辆控制和导航:利用磁阻传感器,电动车自动驾驶系统可以实时监测车辆的速度、方向和姿态等信息,从而实现对车辆的控制和导航。
通过与其他传感器的配合使用,可以实现精准的车辆控制和导航,进而提高自动驾驶的安全性和性能。
第三部分:基于磁阻传感器的电动车自动驾驶系统设计基于磁阻传感器的电动车自动驾驶系统的设计需要考虑以下几个方面:1. 传感器布局和安装:在设计自动驾驶系统时,需要合理布置磁阻传感器,以确保能够全面感知周围环境。
传感器的安装位置应尽量避免电磁干扰,同时要保证传感器与其他系统的良好配合。
2. 数据处理和算法设计:磁阻传感器所感知到的数据需要通过算法进行处理和分析,从而提取有用的信息。
磁阻传感器原理磁阻传感器是一种利用磁阻效应来检测磁场变化的传感器。
它广泛应用于汽车、工业自动化、消费类电子产品等领域,具有体积小、灵敏度高、成本低廉等优点。
本文将介绍磁阻传感器的工作原理及其应用。
磁阻传感器的工作原理基于磁阻效应,即在外加磁场的作用下,磁阻材料的电阻会发生变化。
磁阻传感器通常由磁阻材料、悬臂梁和电路组成。
当受测磁场作用于磁阻材料时,磁阻材料的电阻发生变化,导致悬臂梁的挠度发生改变,进而引起电路参数的变化。
通过测量电路参数的变化,就可以得知受测磁场的强度、方向等信息。
磁阻传感器有许多种类,包括磁阻电流传感器、磁阻角位移传感器、磁阻线性位移传感器等。
不同类型的磁阻传感器在工作原理上略有差异,但都是基于磁阻效应来实现磁场测量。
磁阻传感器具有许多优点。
首先,磁阻传感器的灵敏度高,可以检测微小磁场的变化。
其次,磁阻传感器的响应速度快,可以实现实时测量。
此外,磁阻传感器体积小、重量轻、功耗低,适合于集成到微型设备中。
最后,磁阻传感器的制造成本较低,易于大规模生产。
磁阻传感器在许多领域有着广泛的应用。
在汽车领域,磁阻传感器常用于发动机的转速测量、车速测量、刹车系统等。
在工业自动化领域,磁阻传感器常用于位置测量、角位移测量等。
在消费类电子产品中,磁阻传感器常用于指南针、陀螺仪等传感器的制造。
总之,磁阻传感器是一种重要的传感器技术,具有灵敏度高、成本低廉等优点,广泛应用于汽车、工业自动化、消费类电子产品等领域。
随着科技的不断发展,磁阻传感器的性能将会得到进一步提升,应用范围也将会更加广泛。
磁性传感器的应用
1、工业用途
在工业应用领域,最流行的磁性传感器类型是电流传感器,包括分流电阻器、霍尔效应集成电路、电流感应变压器、开环与闭环霍尔器件以及磁通门传感器。
2、汽车工业应用
汽车中主要用于车速、倾角、角度、距离、接近、位置等参数检测以及导航、定位等方面的应用,比如车速测量、踏板位置、变速箱位置、电机旋转、助力扭矩测量、曲轴位置、倾角测量、电子导航、防抱死检测、泊车定位、安全气囊与太阳能板中的缺陷检测、座椅位置记忆、改善导航系统的航向分辨率。
在节能降耗中,尤其是在制造商目前面临减少点滴碳排放或其它污染物压力的时候,这方面的一个重点领域是马达,马达正在从存在摩擦力的“一刻不停”的滑轮系统向电子马达转变,后者可以按需控制。
与此同时,电子马达向效率更高和更加可靠的有刷DC马达转变,而磁性传感器的应用能够让马达控制或换向更加精确。
磁传感器的应用场景分析磁传感器为电流传感、接近传感、线性速率或转动速率传感,以及定向磁异态检测,角度、位置或位移测量等许多传感方面的问题提供了独特的解决方案。
了解磁传感器技术背后的概念和它们最合适的应用将有助于帮您决定选择的磁传感器是否是您的最佳应用解决方案。
磁传感器的应用十分广泛,今天,我们就来掰一掰磁传感器在国民经济、国防建设、科学技术、医疗卫生等各个领域的应用状况。
一、工业上用途广泛在工业应用领域,最流行的磁性传感器类型是电流传感器,包括分流电阻器、霍尔效应集成电路、电流感应变压器、开环与闭环霍尔器件以及磁通门传感器。
1、电机在无刷电动机中,用磁传感器来作转子磁极位置传感和定子电枢电流换向器,磁传感器中,霍尔器件、威根德器件、磁阻器件等都可以使用,但主要还是以霍尔传感器为主。
另外磁传感器还可以对电机进行过载保护及转矩检测;交流变频器用于电机调速,节能效果极好;磁编码器的使用正在逐渐取代光编码器来对电机的转速进行检测和控制,例如,在电动车窗之中,传感器可以确定轴转动了多少圈,以控制车窗升降器的行程,传感器也可以探测到人手造成的异常负载情况,提供所谓的“防夹”功能,在碰到物体的时候,电机可以反转;用于直流电机换向和探测电流的电动助力转向传感器也是一个快速增长的应用,用于代替电动液压型系统。
2、电力电子技术电力电子表技术是电力技术和电子技术的结合,可实现交直流电流的相互变换,并可在所需的范围内实现电流、电压和频率的自由调节。
采用这些技术和产品,可做成各种特殊电源(如UPS、高频电源、开关电源、弧焊机逆变电源等)和交流变频器等产品。
这些变频装置的核心,是大功率半导体器件。
以磁传感器为基础的各种电流传感器被用来监测控制和保护这些大功率器件。
霍尔电流传感器响应速度快,且依靠磁场和被控电路耦合,不接入主电路,因而功耗低,抗过载能力强,线性好,可靠性高,既可作为大功率器件的过流保护驱动器,又可作为反馈器件,成为自控环路的一个控制环节。
磁导航传感器技术说明1、前言磁导航传感器主要运用于自主导航机器人、室内室外巡检机器人、自主导航运输车AGV(AGC)、自动手推车等自主导航设备,完成自主导航设备的预设运行路线检测及定位。
基于预设磁轨迹的导航方式是自主移动平台如AGV、巡检机器人、无轨货架等自主导航设备最重要的一种导航方式。
相比基于光电传感器和视觉传感器的色条导航方式,磁导航可靠性更高,不受环境光和地面条件的影响;相比激光导航方式,磁导航系统简单、实现容易、成本低廉。
2、特点2.1、先进技术方案磁导航传感器使用目的是可靠地检测导航磁条的位置,为AGV控制系统提供基础控制数据。
我们的磁导航传感器采用美国PNI公司的磁阻传感器为磁场检测器件,PNI的磁传感器广泛运用于航空、航天、航海、工业等领域,是检测精度、可靠性、灵敏度最高的一类磁传感器,是高端电子罗盘普遍采用的解决方案。
基于此技术方案,HQ系列磁导航传感器能够检测到5高斯(0.5mT)以下微弱的N极或S极磁场信号,从而对磁条位置进行准确判断。
低端磁导航传感器一般会采用霍尔传感器解决方案,其特点是成本低、设计简单、灵敏度低,此类传感器适合用于检测强磁场,不适用于AGV导航。
2.2、人性化指示灯设计磁导航传感器一般是多点位的,比如HQ-1916磁导航传感器有16个磁场探测点,组成一个阵列。
一般的磁导航传感器采用一个指示灯的设计方案,当任意一个或多个探测点触发时,传感器指示灯做出指示动作,传感器输出相应的电平信号。
这种设计的缺点是很明显的,在AGV或机器人调试过程中,由于磁条的磁场强度是较为不稳定的,如果我们不能够很直观的获知磁导航传感器在磁条上方的几个探测点处于触发状态,有可能出现磁导航传感器安装位置偏高,传感器工作于临界状态,只有1个探测点处于有效磁场强度区间。
这种情况下,AGV运行过程中会出现丢失磁条目标的情况。
我们新的设计则非常直观,在每个探测点上方设计了一个指示灯。
当这个探测点附近具有磁场,并且在用户预设响应范围之内,比如3mT~10mT之间,其指示灯亮起,传感器输出相应电平或者数字信号。
常见磁传感器及原理和应用常见的磁传感器有霍尔效应传感器、磁阻传感器、磁电传感器和磁势传感器等。
1. 霍尔效应传感器:霍尔效应传感器是一种利用霍尔效应测量磁力或磁场的传感器。
霍尔效应是一种基于洛伦兹力的现象,当导电体载流时,不同方向上的磁场将会对其产生力。
这个现象可以通过霍尔元件来检测,通过测量霍尔元件输出的电压信号来判断磁场的方向和强度。
霍尔效应传感器具有结构简单、响应速度快、精度高的特点,常用于测量电机的位置和速度、检测磁场的方向等。
2. 磁阻传感器:磁阻传感器是一种通过测量磁场对磁性材料的磁阻影响来检测磁场的传感器。
磁阻传感器通常由磁敏电阻和信号处理电路组成。
当磁敏电阻处于磁场中时,磁阻值会发生变化,通过测量磁阻值的变化可以得到磁场的信息。
磁阻传感器具有结构简单、响应速度快、精度较高以及抗干扰能力强的特点,广泛应用于汽车、电池管理系统、工业自动化等领域。
3. 磁电传感器:磁电传感器是一种利用铁电材料的磁电效应来检测磁场的传感器。
磁电效应是指铁电材料在磁场作用下会产生电场。
磁电传感器通常由铁电材料和电极组成,通过测量电极上的电压信号来判断磁场的强度和方向。
磁电传感器具有灵敏度高、响应速度快、可靠性好的特点,广泛应用于声波、振动以及磁场等测量领域。
4. 磁势传感器:磁势传感器是一种利用磁感应强度和磁导率之间关系来检测磁场的传感器。
磁势传感器通常由磁致伸缩材料和传感器芯片组成,通过测量磁致伸缩材料的长度变化来判断磁场的强度。
磁势传感器具有结构简单、响应速度快、有功耗小的特点,广泛应用于位移、振动等测量领域。
这些常见的磁传感器在工业自动化、汽车电子、消费电子等领域有着广泛的应用。
例如,在汽车电子领域中,霍尔效应传感器可以用于测量引擎的转速、车速以及车辆的位置等信息;磁阻传感器可以用于测量刹车踏板的位置、气囊部署状态等;磁电传感器可以用于测量车门开关、座椅调节器等的位置信息。
在消费电子领域中,这些磁传感器也被广泛应用于磁卡、指南针、磁力计等设备中。