4
:在推导椭圆的标准方程时,我们曾得
到这样一个方程:a2cx a x c2 y2
将其变形为
x c2 y2
a2 x
c a
,
c
能解释这个方程的几何意义吗?
5
:已知点P(x,y)到定点F(c,0)的距离与
它到定直线l:x a2 c
的距离的比是常数
c a
(a>c>0),求点P的轨迹。
y
解:根据题意可得
抛物线有一条准线
根据图形的对称性可知, 椭圆和双曲线都有两条准线.
9
标准方程
x2 a2
y2 b2
1
(a b 0)
y2 x2 1 a2 b2 (a b 0)
x2 a2
y2 b2
1
(a 0,b 0)
y2 a2
x2 b2
1
(a 0,b 0)
图形
焦点坐标 准线方程
(c, 0)
a2 x
c
(1)当 0< e <1 时, 点的轨迹是椭圆.
(2)当 e >1 时, 点的轨迹是双曲线.
(3)当 e =1 时, 点的轨迹是抛物线.
其中,常数 e 叫做圆锥曲线的离心率,定点F 叫做圆锥曲线的焦点, 定直线 l 就是该圆锥 曲线的准线.
8
: (1)三种曲线分别有几条准线? (2)准线方程分别是什么?
1、理解圆锥曲线的统一定义; 2、学会分析代数式的几何意义; 3、会求动点的轨迹方程;
4、注重数形结合和分类讨论的分析方法. 5、利用圆锥曲线统一定义解决相关的
简单的圆锥曲线问题。
13
(0, c) y a2
c
பைடு நூலகம்
(c, 0)