分位数回归ppt课件
- 格式:ppt
- 大小:375.50 KB
- 文档页数:39
分位数回归分析简介分位数回归分析(Quantile Regression Analysis)是一种统计分析方法,用来研究因变量与一个或多个自变量之间关系的非线性问题。
相比于传统的OLS(Ordinary Least Squares)回归分析,分位数回归分析更加灵活,能够提供对不同分位数的因变量条件分布的估计。
分位数回归的定义在传统的OLS回归中,我们通过找到一条线性回归方程来描述自变量和因变量之间的关系。
但是,OLS回归假设因变量在各个条件上的分布是相同的,即在不同的自变量取值下,因变量的条件分布是相同的。
而在分位数回归中,我们允许因变量在不同条件下的分布产生变化,因此可以更准确地描述不同区间的因变量与自变量之间的关系。
分位数回归的目标是找到一组系数,用于描述自变量与因变量在给定分位数时的关系。
分位数回归通过最小化残差的绝对值之和来估计这组系数。
这种方法使得我们能够探索不同分位数下自变量和因变量之间的变化。
分位数回归的优势相比于OLS回归,分位数回归具有以下优势:1.非线性建模能力:分位数回归能够对因变量和自变量之间的非线性关系进行建模,从而更准确地描述实际数据的特征。
2.探索条件分布的能力:由于分位数回归允许因变量在不同条件下的分布变化,因此可以提供对不同分位数的条件分布的估计,进一步帮助我们理解数据的性质。
3.对异常值的鲁棒性:分位数回归对异常值更加鲁棒,因为它通过最小化残差的绝对值之和来估计系数,而不是最小二乘法中常用的最小化残差的平方和。
4.考虑不完全因果关系:分位数回归可以用来研究因变量对自变量的影响程度,考虑到因变量可能由其他未观测的变量影响,从而提供了一种更加全面的因果分析方法。
分位数回归的应用分位数回归广泛应用于各个领域,以下是一些常见的应用场景:1.收入和贫困研究:分位数回归可以用来研究不同收入水平下的贫困率变化,进一步探讨收入不平等的影响因素。
2.教育研究:分位数回归可以用来研究教育水平对工资收入的影响情况,从而分析教育对个体生活水平的提高程度。
分位数回归解读
分位数回归(Quantile regression)是一种回归分析方法,最早由Roger Koenker和Gilbert Bassett于1978年提出。
相较于传统的回归分析,分位数回归研究自变量与因变量的条件分位数之间的关系,而不仅仅是条件期望。
这使得分位数回归能够更加全面地描述因变量条件分布的全貌,而不仅仅是分析条件期望。
分位数回归的主要优势有以下两点:
1. 能够更加全面地描述被解释变量条件分布的全貌,而不是仅仅分析被解释变量的条件期望。
通过分析不同分位数下的回归系数估计量,可以了解解释变量对不同水平被解释变量的影响程度,从而得到更加丰富的信息。
2. 分位数回归对离群值的影响较小。
在传统最小二乘回归中,离群值会对估计结果产生较大影响。
而分位数回归则可以通过选择合适的分位数,使得离群值对估计结果的影响减小,从而提高模型的鲁棒性。
在实际应用中,分位数回归可以用于各个领域,例如经济学、金融学、医学、社会科学等。
通过对自变量与因变量的条件分位数之间的关系进行建模,分位数回归能够为研究者提供更加全面和深入的分析结果。
1。
2、不同分位点拟合曲线的比较# 散点图attach(engel) # 打开engel数据集,直接运行其中的列名,就可以调用相应列plot(income,foodexp,cex=0.25,type="n", # 画图,说明①xlab="Household Income", ylab="Food Expenditure")points(income,foodexp,cex=0.5,col="blue") # 添加点,点的大小为0.5abline( rq(foodexp ~ income, tau=0.5), col="blue" ) # 画中位数回归的拟合直线,颜色蓝abline( lm(foodexp ~ income), lty = 2, col="red" ) # 画普通最小二乘法拟合直线,颜色红taus = c(0.05, 0.1, 0.25, 0.75, 0.9, 0.95)for(i in 1:length(taus)){ # 绘制不同分位点下的拟合直线,颜色为灰色abline( rq(foodexp ~ income, tau=taus[i]), col="gray" )}detach(engel)3、穷人和富人的消费分布比较# 比较穷人(收入在10%分位点的那个人)和富人(收入在90%分位点的那个人)的估计结果# rq函数中,tau不在[0,1]时,表示按最细的分位点划分方式得到分位点序列z = rq(foodexp ~ income, tau=-1)z$sol # 这里包含了每个分位点下的系数估计结果x.poor = quantile(income, 0.1) # 10%分位点的收入x.rich = quantile(income, 0.9) # 90%分位点的收入ps = z$sol[1,] # 每个分位点的tau值qs.poor = c( c(1,x.poor) %*% z$sol[4:5,] ) # 10%分位点的收入的消费估计值qs.rich = c( c(1,x.rich) %*% z$sol[4:5,] ) # 90%分位点的收入的消费估计值windows(, 10,5)par(mfrow=c(1,2)) # 把绘图区域划分为一行两列plot(c(ps,ps),c(qs.poor,qs.rich),type="n", # type=”n”表示初始化图形区域,但不画图xlab=expression(tau), ylab="quantile")plot(stepfun(ps,c(qs.poor[1],qs.poor)), do.points=F,add=T)plot(stepfun(ps,c(qs.poor[1],qs.rich)), do.points=F,add=T, col.hor="gray", col.vert="gray")ps.wts = ( c(0,diff(ps)) + c(diff(ps),0) )/2ap = akj(qs.poor, z=qs.poor, p=ps.wts)ar = akj(qs.rich, z=qs.rich, p=ps.wts)plot(c(qs.poor,qs.rich), c(ap$dens, ar$dens),type="n", xlab="Food Expenditure", ylab="Density")lines(qs.rich,ar$dens,col="gray")lines(qs.poor,ap$dens,col="black")legend("topright", c("poor","rich"), lty=c(1,1),col=c("black","gray"))上图表示收入(income)为10%分位点处(poor,穷人)和90%分位点处(rich,富人)的食品支出的比较。