2015-2016北京朝阳高一(上)期末数学(含解析)
- 格式:pdf
- 大小:1.22 MB
- 文档页数:14
北京市朝阳区2014-2015学年度高三年级第一学期期末统一考试 数学试卷(理工类) 2015.1 (考试时间120分钟满分150分) 本试卷分为选择题(共40分)和非选择题(共110分)两部分 第一部分(选择题共40分) 一、选择题:本大题共8小题,每小题5分,共40分.为虚数单位,则复数在复平面内对应的点所在的象限是 A.第一象限 B.第二象限 C.第三象限 D.第四象限 2. 过抛物线的焦点的直线交抛物线于两点.若中点到抛物线准线的距离为6,则线段的长为 A. B. C. D.无法确定 3.设函数的图象为,下面结论中正确的是 A.函数的最小正周期是 B.图象关于点对称 C.图象可由函数的图象向右平移个单位得到 D.函数在区间上是增函数 4.某三棱锥的三视图如图所示,则该三棱锥的全面积是 A..C. D.表示不重合的两个平面,,表示不重合的两条直线.若,,,则“∥”是“∥且∥”的 A.充分且不必要条件 B.必要且不充分条件 C.充要条件 D.既不充分也不必要条件 6.在中,,则的最大值是 A. B. C. D. 7.点在的内部,且满足,则的面积与的面积之比是 A. B. 3 C. D.2 8.设连续正整数的集合,若是的子集且满足条件:当时,,则集合中元素的个数最多是() A. B. C. D. 第二部分(非选择题共110分) 二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.角的顶点在坐标原点,始边与轴的非负半轴重合,终边经过点,则的值是.()的离心率是;渐近线方程是.表示平面区域为,在区域内随机取一点,则点落在圆内的概率为. 12.有一口大钟每到整点就自动以报时,1点响1声,2点响2声,3点响3声 (12)响12声,且每次报时时相邻两次之间的间隔均为1秒.在一次大钟报时时,某人从第一声铃响开始计时如果此次是12点的报时,则此人至少需等待秒才能确定;如果此次是11点的报时,则此人至少需等待秒才能确定.的边上有异于顶点的6个点,边上有异于顶点的4个点,加上点,以这11个点为顶点共可以组成个三角形(用数字作答).14.已知函数.下列命题:①函数既有最大值又有最小值;②函数的图象轴对称;③函数在区间上零点;④函数在区间上单调递增. 其中真命题是.(填写出所有真命题的序号)15.40),[40,50),[50,60),[60,70),[70,80]绘制频率分布直方图,如图所示.若规定年龄分布在[20,40)岁的人为“青年人”,[40,60)为“中年人”, [60,80]为“老年人”. (Ⅰ)若每一组数据的平均值用该区间中点值来代替,试估算所调查的600人的平均年龄; (Ⅱ)将上述人口分布的频率视为该城市在20-80年龄段的人口分布的概率.从该城市20-80年龄段市民中随机抽取3人,记抽到“老年人”的人数为,求随机变量的分布列和数学期望. 1 6.中,底面是正方形,侧面底面,,点是的中点,点在边上移动. (Ⅰ)若为中点,求证://平面; (Ⅱ)求证:; (Ⅲ)若,二面角的余弦值等于,试判断点在边上的位置,并说明理由. 17.(本小题满分13分) 若有穷数列,,(是正整数)满足条件:,则称其为“对称数列”.例如,和都是“对称数列”. (Ⅰ)若是25项的“对称数列”,且,是首项为1,公比为2的等比数列.求的所有项和; (Ⅱ)若是50项的“对称数列”,且,是首项为1,公差为2的等差数列.求的前项和,. 18.(本小题满分13分) 设函数. 时,求函数的单调区间; (Ⅱ)设为的导函数,当时,函数的图象总在的图象的上方,求的取值范围. 19.(本小题满分14分) 已知椭圆过点,离心率为.过椭圆右顶点的两条斜率乘积为的直线分别交椭圆于两点. (Ⅰ)求椭圆的标准方程; (Ⅱ)直线是否过定点?若过定点,求出点的坐标;若不过,请说明理由. 20.(本小题满分13分) 已知函数,,,,且. (Ⅰ)当,,时,若方程恰存在两个相等的实数根,求实数的值; (Ⅱ)求证:方程有两个不相等的实数根; (Ⅲ)若方程的两个实数根是,试比较与的大小并说明理由. E A F B C P D 年龄 0.02 0.03 0.01 70 80 60 50 40 30 20。
XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案XXX2015-2016学年度第一学期期末考试高一数学一、选择题:本大题共8小题,共40分。
1.设全集 $U=\{1,2,3,4,5,6\}$,集合 $M=\{1,4\}$,$N=\{1,3,5\}$,则 $N\cap (U-M)=()$A。
$\{1\}$ B。
$\{3,5\}$ C。
$\{1,3,4,5\}$ D。
$\{1,2,3,5,6\}$2.已知平面直角坐标系内的点 $A(1,1)$,$B(2,4)$,$C(-1,3)$,则 $AB-AC=()$A。
$22$ B。
$10$ C。
$8$ D。
$4$3.已知 $\sin\alpha+\cos\alpha=-\frac{1}{\sqrt{10}}$,$\alpha\in(-\frac{\pi}{2},\frac{\pi}{2})$,则 $\tan\alpha$ 的值是()A。
$-\frac{3}{4}$ B。
$-\frac{4}{3}$ C。
$\frac{3}{4}$ D。
$\frac{4}{3}$4.已知函数 $f(x)=\sin(\omega x+\frac{\pi}{4})$($x\inR,\omega>0$)的最小正周期为 $\pi$,为了得到函数$g(x)=\cos\omega x$ 的图象,只要将 $y=f(x)$ 的图象():A.向左平移 $\frac{\pi}{4}$ 个单位长度B.向右平移$\frac{\pi}{4}$ 个单位长度C.向左平移 $\frac{\pi}{2}$ 个单位长度D.向右平移$\frac{\pi}{2}$ 个单位长度5.已知 $a$ 与 $b$ 是非零向量且满足 $3a-b\perp a$,$4a-b\perp b$,则 $a$ 与 $b$ 的夹角是()A。
$\frac{\pi}{4}$ B。
$\frac{\pi}{3}$ C。
北京市朝阳区2014-2015学年度高三年级第一学期期末统一考试数学试卷(文史类) 2015.1(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1. 设i 为虚数单位,则复数1i z =-的模z =A. 1B.2C. 2D. 222. 已知全集U =R ,若集合{}20A x x x =-<,则U A =ðA. {0x x ≤,或}1x ≥B. {0x x <,或}1x > C. }{01x x << D.{}1x x ≥ 3.一个四棱锥的三视图如图所示,则该四棱锥的侧面中,直角三角形的个数为A.1B.2C.3D.44.执行如右图所示的程序框图,则输出的i 的值是A.3B.4C.5D.65.若,a b 是两个非零的平面向量,则 “a =b ”是“()()=0⋅a +b a b -”的A. 充分且不必要条件B. 必要且不充分条件C.充要条件D. 既不充分也不必要条件6. 如图,塔AB 底部为点B ,若,C D 两点相距为100m 并且与点B 在同一水平线上,现从,C D 两点测得塔顶A 的仰角分别为45o 和30o ,则塔AB 的高约为(精确到0.1m ,3 1.73≈,2 1.41≈)A. 36.5B. 115.6C. 120.5D. 136.5DBAC 正视侧视俯视7.已知定义在R 上的函数(1)1,()221,xx x x f x x ⎧+<⎪=⎨-≥⎪⎩若直线y a =与函数()f x 的图象恰有两个公共点,则实数a 的取值范围是A. ()0,2B.[)0,2C.(]0,2D. []1,28. 如图,在正方体中1111ABCD A B C D -,M 为BC 的中点,点N 在四边形11CDDC 及其内部运动.若11MN AC ⊥,则N 点的轨迹为A. 线段B. 圆的一部分C. 椭圆的一部分D.双曲线的一部分第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9. 双曲线22:14x C y -=的离心率是 ;渐近线方程是 . 10.为了解某厂职工家庭人均月收入情况,调查了该厂80户居民月收入,列出频率分布表 如下:按家庭人均月收入分组(百元)第一组[)10,16第二组[)16,22第三组[)22,28第四组[)28,34 第五组[)34,40 第六组[]40,46频率0.10.20.15a0.10.1则这80户居民中, 家庭人均月收入在[)2800,3400元之间的有 户(用数字作答);假设家庭人均月收入在第一组和第二组的为中低收入家庭,现从该厂全体职工家庭中随机抽取一个家庭,估计该家庭为中低收入家庭的概率是 .11. 已知圆C 的圆心位于第二象限且在直线21y x =+上,若圆C 与两个坐标轴都相切,则圆C 的标准方程是______.12. 某单位有职工共60人,为了开展社团活动,对全体职工进行问卷调查,其中喜欢体育运动的共28人,喜欢文艺活动的共26人,还有12人对体育运动和文艺活动都不喜欢, 则喜欢体育运动但不喜欢文艺活动的人ABCD A 1B 1C 1D 1 M N .共有 人.13. 在平面直角坐标系中,若关于,x y 的不等式组0,,(1)y y x y k x ≥⎧⎪≤⎨⎪≤-⎩表示一个三角形区域,则实数k 的取值范围是______.14. 设2212()cos (1)sin cos 3sin f x a x a x x x =+-+(22120a a +≠),若无论x 为何值,函数()f x 的图象总是一条直线,则12a a +的值是______.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15. (本小题满分13分)某幼儿园有教师30人,对他们进行年龄状况和受教育程度的调查,其结果如下:本科 研究生 合计 35岁以下 5 2 7 35~50岁(含35岁和50岁) 1732050岁以上2 1 3(Ⅰ)从该幼儿园教师中随机抽取一人,求具有研究生学历的概率;(Ⅱ)从幼儿园所有具有研究生学历的教师中随机抽取2人,求有35岁以下的研究生或50岁以上的研究生的概率.16. (本小题满分13分)已知平面向量a =(sin ,cos )x x ,b =(sin ,cos )x x -,c =(cos ,sin )x x --,x ∈R , 函数()()f x =⋅-a b c .(Ⅰ)求函数()f x 的单调递减区间;(Ⅱ)若222f α⎛⎫= ⎪⎝⎭,求sin α的值.17. (本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,PD ⊥平面ABCD .点E 是线段BD 的中点,点F 是线段PD 上的动点.(Ⅰ)若F 是PD 的中点,求证:EF //平面PBC ; (Ⅱ)求证: CE BF ⊥;(Ⅲ)若2AB =,3PD =,当三棱锥P BCF -的体积等于43时,试判断点F 在边PD 上的位置,并说明理由.18.(本小题满分13分)已知公比为q 的等比数列{}n a ()n *∈N 中,22a =,前三项的和为7.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若01q <<,设数列{}n b 满足12...n n b a a a =⋅⋅⋅,n *∈N ,求使01n b <<的n 的最小值.19. (本小题满分13分)已知函数()e ln x f x a x =-,a ∈R . (I )若1x =是()f x 的极值点,求a 的值: (Ⅱ)当e a =时,求证:()e f x ≥.20. (本小题满分14分)已知离心率为32的椭圆2222:1(0)x y C a b a b +=>>与直线2x =相交于,P Q 两点(点P 在x 轴上方),且2PQ =.点,A B 是椭圆上位于直线PQ 两侧的两个动点,且APQ BPQ ∠=∠.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)求四边形APBQ 面积的取值范围.DAPCEFB北京市朝阳区2014-2015学年度高三年级第一学期期末统一考试数学答案(文史类)2015.1一、选择题:(满分40分)题号 1 2 3 4 5 6 7 8答案 B A D B C D B A二、填空题:(满分30分)题号9 10 11 12 13 14答案52;12y x=±28;0.322111)()339x+y+-=(22 0k< 4(注:两空的填空,第一空3分,第二空2分)三、解答题:(满分80分)15. (本小题满分13分)解:(Ⅰ)设:“从该幼儿园教师中随机抽取一人,具有研究生学历”为事件A,由题可知幼儿园总共有教师30人,其中“具有研究生学历”的共6人.则61 ()==305 P A.答:从该幼儿园教师中随机抽取一人,具有研究生学历的概率为15. ………4分(Ⅱ)设幼儿园中35岁以下具有研究生学历的教师为A1,A2,35~50岁(含35岁和50岁)具有研究生学历的教师为B1,B2,B3,50岁以上具有研究生学历的教师为C,从幼儿园所有具有研究生学历的教师中随机抽取2人,所有可能结果有15个,它们是:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,C),(A2,B1),(A2,B2),(A2,B3),(A2,C),(B1,B2),(B1,B3),(B1,C),(B2,B3),(B2,C),(B3,C),记“从幼儿园所有具有研究生学历的教师中随机抽取2人,有35岁以下的研究生或50岁以上的研究生”为事件D,则D中的结果共有12个,它们是:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,C),(A2,B 1),(A2,B2),(A2,B3),(A2,C),(B1,C),(B2,C),(B3,C),故所求概率为124()==155P D.答:从幼儿园所有具有研究生学历的教师中随机抽取2人,有35岁以下的研究生或50岁以上的研究生的概率为45. ………13分 16.(本小题满分13分)(Ⅰ)因为a =(sin ,cos )x x ,b =(sin ,cos )x x -,c =(cos ,sin )x x --, 所以()()sin cos ,sin cos x x x x -=+-b c ,()()f x =⋅-a b c =sin (sin cos )cos (sin cos )x x x x x x ++-.则()f x =22sin 2sin cos cos x x x x +-=sin 2cos 2x x -2sin(2)4x π=-.则当222242k x k ππ3ππ+≤-≤π+时,即88k x k 3π7ππ+≤≤π+时, 函数()f x 为减函数,k ∈Z .所以函数()f x 的单调递减区间是,88k k 3π7π⎡⎤π+π+⎢⎥⎣⎦,k ∈Z .………7分 (Ⅱ)由(Ⅰ)知,()2sin(2)4f x x π=-,又222f α⎛⎫=⎪⎝⎭, 则22sin()42απ-=,1sin()42απ-=.因为 22sin ()cos ()144ααππ-+-=,所以3cos()42απ-=±. sin sin ()44ααππ⎡⎤=-+⎢⎥⎣⎦ππππsin()cos cos()sin 4444αα=-+-.所以当3cos()42απ-=时,sin α=12326222224+⨯+⨯=; 当3cos()42απ-=-时,sin α=123226()22224-⨯+-⨯=.………13分 17. (本小题满分14分)(Ⅰ)证明:在PDB ∆中,因为点E 是BD 中点,点F 是PD 中点,所以EF //PB . 又因为EF ⊄平面PBC ,PB ⊂平面PBC , 所以EF //平面PBC .……4分 (Ⅱ)证明:因为PD ⊥平面ABCD ,且CE ⊂平面ABCD ,所以PD CE ⊥.又因为底面ABCD 是正方形,且点E 是BD 的中点, 所以CE BD ⊥.因为BDPD D =,所以CE ⊥平面PBD ,DAPCEF B而BF ⊂平面PBD ,所以CE BF ⊥. …………9分 (Ⅲ)点F 为边PD 上靠近D 点的三等分点. 说明如下:由(Ⅱ)可知, CE ⊥平面PBF . 又因为PD ⊥平面ABCD ,BD ⊂平面ABCD ,所以PD BD ⊥. 设PF x =. 由2AB =得22BD =,2CE =, 所以11122223263P BCF C BPF V V PF BD CE x x --==⨯⨯⋅⋅=⨯⨯=. 由已知2433x =, 所以2x =. 因为3PD =,所以点F 为边PD 上靠近D 点的三等分点.…14分 18. (本小题满分13分)(Ⅰ)由已知得,212327a a a a =⎧⎨++=⎩,解得2q =,11a =或12q =,14a =.则数列{}n a 的通项公式为12n n a -=或31()2n n a -=,n *∈N ……………5分(Ⅱ)因为01q <<,所以31()2n n a -=,n *∈N .(5)210...(3)21211...()()22n n n n n b a a a ---+++-=⋅⋅⋅==,n *∈N . 由01n b <<,即(5)210()12n n -<<,即(5)02n n ->,即 即5n >.则使01n b <<的最小的n 的值为6. ……………13分 19. (本小题满分13分)(I )函数()f x 的定义域为(0,)+∞.因为()e xa f x x'=-, 又1x =是()f x 的极值点,所以(1)e 0f a '=-=,解得e a =.经检验,1x =是()f x 的极值点,所以a 的值为e . ………5分 (Ⅱ)证明: 方法1:当e a =时,()e eln x f x x =-. 所以e e e()e xxx f x x x-'=-=. 若01x <<,则1<e e x <,所以e e x x <,所以e e<0x x -. 所以函数()f x 在(0,1)单调递减.若1x >,则e >e x ,所以e >e x x ,所以e e>0x x -.所以函数()f x 在(1,)+∞单调递增. 所以当1x =时,min ()(1)e f x f ==.(0x →时, e eln x x -→+∞;x →+∞时, e eln x x -→+∞.) 所以()e f x ≥. ………13分 方法2:当e a =时,()e eln x f x x =-,所以e e e()e x xx f x x x-'=-=. 设()e e x g x x =-,则()e (1)x g x x '=+,所以()g x 在(0,)+∞单调递增.又(1)0g =,所以当(0,1)x ∈时,()0g x <,即()0f x '<,所以()f x 在(0,1)单调递减; 当(1,)x ∈+∞时,()0g x >,即()0f x '>,所以()f x 在(1,)+∞单调递增. (接下来表述同解法1相应内容) 所以()e f x ≥. ………13分 20.(本小题满分14分)解:(Ⅰ)由已知得32e =,则12b a =,设椭圆方程为22221(0)4x y b b b +=>由题意可知点(2,1)P 在椭圆上, 所以224114b b+=.解得22b =. 故椭圆C 的标准方程为22182x y +=. ………4分 (Ⅱ)由题意可知,直线PA ,直线PB 的斜率都存在且不等于0. 因为APQ BPQ ∠=∠,所以PA PB k k =-.设直线PA 的斜率为k ,则直线:1(2)PA y k x -=-(0k ≠).由2248(12),x y y kx k ⎧+=⎨=+-⎩得222(14)8(12)161640k x k k x k k ++-+--=……(1). 依题意,方程(1)有两个不相等的实数根,即根的判别式0∆>成立.即()222264(12)4(14)161640k k k k k ∆=--+-->,化简得216(21)0k +>,解得12k ≠-.因为2是方程(1)的一个解,所以2216164214A k k x k --⋅=+. 所以2288214A k k x k --=+.当方程(1)根的判别式0∆=时,12k =-,此时直线PA 与椭圆相切.由题意,可知直线PB 的方程为1(2)y k x -=--.同理,易得22228()8()288214()14B k k k k x k k----+-==+-+. 由于点,A B 是椭圆上位于直线PQ 两侧的两个动点,APQ BPQ ∠=∠, 且能存在四边形APBQ ,则直线PA 的斜率k 需满足12k >. 设四边形APBQ 面积为S ,则 112222APQ BPQ A B S S S PQ x PQ x ∆∆=+=⋅-+⋅- 2222188288221414B A k k k k PQ x x k k --+-=⋅-=-++ 21614kk=+ 由于12k >,故 216161144k S k k k==++. 当12k >时,144k k +>,即110144k k<<+,即04S <<. (此处另解:设t k =,讨论函数1()4f t t t=+在1,2t ⎛⎫∈+∞⎪⎝⎭时的取值范围. 222141()4t f t t t-'=-=,则当12t >时,()0f t '>,()f t 单调递增.则当12t >时,()(4,)f t ∈+∞,即S ∈()0,4.) 所以四边形APBQ 面积S 的取值范围是()0,4. ………14分。
一、主要存在的问题及其分析1、选择题和填空题得分率80%左右,选择题错得最多的是第11,12题,填空题错得最多的是第16题。
2、第17题,此题考察了平面向量的线性运算及数量积的坐标表示,涉及的知识面较全。
1、学生做题中较容易把向量平行的坐标表示与数量积的坐标表示混淆。
2、计算出现符号弄反的较多,估计是学生粗心所致。
3、第18题,本题有2个小题。
第(1)小题主要考查同角三角函数的基本关系,第(2)小题主要考查向量数量积,模的坐标表示及向量夹角余弦值,属于基础题型,基本上是公式的应用,但平均分不高,大概有6分。
存在问题主要是公式记不牢,计算不准确,对此,要加强对学生基本功,计算能力的提高。
4、第19题,本题主要考查学生对三角函数周期对称轴、对称中心、零点等方面知识的记忆与理解,属于中等偏易题型。
从学生的答题情况来看并不理想。
能拿满分12分的估计只有的学生,能拿到6分的也只有不到,甚至很多学生拿0分。
从学生答案分析,只要能对三角函数的周期、对称轴、对称中心熟练记忆与正确理解的都能拿到12分,但不少同学没有熟记或错误理解这些知识,从而没有答对。
例如对零点理解为坐标点,对称轴记为对称中心等。
另外还有部分同学因计算能力不好,在解方程时出现错误。
今后教学建议:(1)加强基础知识教学;(2)加强计算能力培养;(3)鼓励学生积极参与课堂教学积极应用所学的知识解题,答题。
5、第20题,考查目标:向量的坐标运算(加、减、数乘、数量积、求模均有考查)试题评价:该题目命题角度灵活,能很好体现向量法解决平面几何问题,在解决过程中几乎考查了“向量坐标运算”所有知识点。
能很好的考查学生对向量有关概念,定理的掌握。
难度:易主要存在问题:1、向量表示不规范,漏写“→”。
2、求对角线(求模)漏求另一条。
3、向量坐标求法(好多用起点减终点)4、第(2)问主要运算出错。
补救措施:1、加强基本概念、定理的讲解;2、加强基本题型的训练,让学生理解,巩固向量有关概念、定理等;3、加强答题书写的规范性;4、平时加强限时训练,提高计算的准确度、速度;6、第21题:本题主要考查函数的单调性、零点存在性定理和对数函数三个知识点,该题得分率偏低,大部分同学没能推理出最后的答案,平均得分7.1分,得分率为75.1%,主要存在的问题是推理问题,少部分学生是题目看不明。
2015-2016学年北京市东城区高一(上)期末数学试卷一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项,选出符合题目要求的一项并填在答题卡.1.已知集合A={0,1,2},B={2,3},则集合A∪B=()A.{1,2,3} B.{0,1,2,3} C.{2} D.{0,1,3}2.若角α的终边经过点P(1,﹣2),则tanα的值为()A.B.C.﹣2 D.3.正弦函数f(x)=sinx图象的一条对称轴是()A.x=0 B.C.D.x=π4.下列函数,既是偶函数又存在零点的是()A.f(x)=sinx B.f(x)=x2+1 C.f(x)=lnx D.f(x)=cosx5.函数f(x)=的大致图象是()A.B.C.D.6.2003年至2015年北京市电影放映场次(单位:万次)的情况如图所示,下列函数模型,最不适合近似描述这13年间电影放映场次逐年变化规律的是()A.f(x)=ax2+bx+c B.f(x)=ae x+b C.f(x)=e ax+b D.f(x)=alnx+b7.若角α与角β的终边关于y轴对称,则()A.α+β=π+kπ(k∈Z) B.α+β=π+2kπ(k∈Z)C.D.8.已知函数,若存在实数a,使得f(a)+g(x)=0,则x的取值范围为()A.[﹣1,5]B.(﹣∞,﹣1]∪[5,+∞)C.[﹣1,+∞)D.(﹣∞,5]二、填空题:本大题共6小题,每小题4分,共24分.请把答案填在相应题目横线上.9.函数y=log2(2x+1)定义域.10.sin80°cos20°﹣cos80°sin20°的值为.11.已知函数,则f(x)的最大值为.12.若a=log43,则4a﹣4﹣a=.13.已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[﹣1,0],则a+b=.14.设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f(x)满足:(1)T={f(x)|x∈S};(2)对任意x1,x2∈S,当x1<x2时,恒有f(x1)<f(x2).那么称这两个集合“保序同构”,现给出以下4对集合:①S={0,1,2},T={2,3};②S=N,T=N;③S={x|﹣1<x<3},T={x|﹣8<x<10};④S={x|0<x<1},T=R.其,“保序同构”的集合对的序号是(写出所有“保序同构”的集合对的序号).三、解答题:本大题共6个小题,共52分,解答应写出文字说明,证明过程或演算步骤.15.已知集合A={0,1},B={x|x2﹣ax=0},且A∪B=A,求实数a的值.16.设θ为第二象限角,若.求(Ⅰ)tanθ的值;(Ⅱ)的值.17.已知函数.(Ⅰ)证明:f(x)是奇函数;(Ⅱ)用函数单调性的定义证明:f(x)在(0,+∞)上是增函数.18.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入了部分数据,如表:ωx+φ0 π2πxAsin(ωx+φ)0 5 ﹣5 0(1)请将上表数据补充完整,填写在相应位置,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称心为(,0),求θ的最小值.19.某食品的保鲜时间y(单位:小时)与储存温度x(单位:℃)满足函数关系y=e kx+b (e=2718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间为192小时,在22℃的保鲜时间是48小时,求该食品在33℃的保鲜时间.20.若实数x,y,m满足|x﹣m|>|y﹣m|,则称x比y远离m.(Ⅰ)比较log206与206哪一个远离0;(Ⅱ)已知函数f(x)的定义域,任取x∈D,f(x)等于sinx和cosx远离0的那个值,写出函数f(x)的解析式以及f(x)的三条基本性质(结论不要求证明).2015-2016学年北京市东城区高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项,选出符合题目要求的一项并填在答题卡.1.已知集合A={0,1,2},B={2,3},则集合A∪B=()A.{1,2,3} B.{0,1,2,3} C.{2} D.{0,1,3}【考点】并集及其运算.【专题】计算题;集合思想;综合法;集合.【分析】根据并集的运算性质计算即可.【解答】解:∵集合A={0,1,2},B={2,3},则集合A∪B={0,1,2,3},故选:B.【点评】本题考查了集合的并集的运算,是一道基础题.2.若角α的终边经过点P(1,﹣2),则tanα的值为()A.B.C.﹣2 D.【考点】任意角的三角函数的定义.【专题】计算题;方程思想;综合法;三角函数的图像与性质.【分析】由三角函数的定义,求出值即可【解答】解:∵角α的终边经过点P(1,﹣2),∴tanα=﹣2.故选:C.【点评】本题考查三角函数的定义,利用公式求值是关键.3.正弦函数f(x)=sinx图象的一条对称轴是()A.x=0 B.C.D.x=π【考点】正弦函数的图象.【专题】方程思想;定义法;三角函数的图像与性质.【分析】根据三角函数的对称性进行求解即可.【解答】解:f(x)=sinx图象的一条对称轴为+kπ,k∈Z,∴当k=0时,函数的对称轴为,故选:C.【点评】本题主要考查三角函数的对称性,根据三角函数的对称轴是解决本题的关键.4.下列函数,既是偶函数又存在零点的是()A.f(x)=sinx B.f(x)=x2+1 C.f(x)=lnx D.f(x)=cosx【考点】函数奇偶性的性质.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】判断函数的奇偶性与零点,即可得出结论.【解答】解:对于A,是奇函数;对于B,是偶函数,不存在零点;对于C,非奇非偶函数;对于D,既是偶函数又存在零点.故选:D.【点评】本题考查函数的奇偶性与零点,考查学生的计算能力,比较基础.5.函数f(x)=的大致图象是()A.B.C.D.【考点】函数的图象;幂函数图象及其与指数的关系.【专题】函数的性质及应用.【分析】筛选法:利用幂函数的性质及函数的定义域进行筛选即可得到答案.【解答】解:因为﹣<0,所以f(x)在(0,+∞)上单调递减,排除选项B、C;又f(x)的定义域为(0,+∞),故排除选项D,故选A.【点评】本题考查幂函数的图象及性质,属基础题,筛选法是解决选择题的常用技巧,要掌握.6.2003年至2015年北京市电影放映场次(单位:万次)的情况如图所示,下列函数模型,最不适合近似描述这13年间电影放映场次逐年变化规律的是()A.f(x)=ax2+bx+c B.f(x)=ae x+b C.f(x)=e ax+b D.f(x)=alnx+b【考点】函数解析式的求解及常用方法.【专题】数形结合;转化思想;函数的性质及应用.【分析】由图象可得:这13年间电影放映场次逐年变化规律的是随着x的增大,f(x)逐渐增大,图象逐渐上升.根据函数的单调性与图象的特征即可判断出结论.【解答】解:由图象可得:这13年间电影放映场次逐年变化规律的是随着x的增大,f(x)逐渐增大,图象逐渐上升.对于A.f(x)=ax2+bx+c,取a>0,<0,可得满足条件的函数;对于B.取a>0,b>0,可得满足条件的函数;对于C.取a>0,b>0,可得满足条件的函数;对于D.a>0时,为“上凸函数”,不符合图象的特征;a<0时,为单调递减函数,不符合图象的特征.故选:D.【点评】本题考查了函数的图象与性质,考查了推理能力与计算能力,属于档题.7.若角α与角β的终边关于y轴对称,则()A.α+β=π+kπ(k∈Z) B.α+β=π+2kπ(k∈Z)C.D.【考点】终边相同的角.【专题】函数思想;综合法;三角函数的求值.【分析】根据角α与角β的终边关于y轴对称,即可确定α与β的关系.【解答】解:∵π﹣α是与α关于y轴对称的一个角,∴β与π﹣α的终边相同,即β=2kπ+(π﹣α)∴α+β=α+2kπ+(π﹣α)=(2k+1)π,故答案为:α+β=(2k+1)π或α=﹣β+(2k+1)π,k∈z,故选:B.【点评】本题主要考查角的对称之间的关系,根据终边相同的关系是解决本题的关键,比较基础.8.已知函数,若存在实数a,使得f(a)+g(x)=0,则x的取值范围为()A.[﹣1,5]B.(﹣∞,﹣1]∪[5,+∞)C.[﹣1,+∞)D.(﹣∞,5]【考点】分段函数的应用.【专题】计算题;函数思想;分析法;函数的性质及应用.【分析】由分段函数的定义分别求各部分的函数值的取值范围,从而得到函数f(x)的值域,从而化为最值问题即可.【解答】解:当x∈(﹣∞,0)时,f(x)=x2+2x∈[﹣1,+∞);当x∈[0,+∞)时,f(x)=ln(x+1)∈[0,+∞).所以f(x)∈[﹣1,+∞),所以只要g(x)∈(﹣∞,1]即可,即(x﹣2)2﹣8∈(﹣∞,1],可得(x﹣2)2≤9,解得x∈[﹣1,5].故选:A.【点评】本题考查了分段函数的应用及配方法求最值的应用,同时考查了恒成立问题,属于档题.二、填空题:本大题共6小题,每小题4分,共24分.请把答案填在相应题目横线上.9.函数y=log2(2x+1)定义域.【考点】对数函数的定义域.【专题】函数的性质及应用.【分析】直接由对数式的真数大于0求解不等式得答案.【解答】解:由2x+1>0,得x>﹣.∴函数y=log2(2x+1)定义域为.故答案为:.【点评】本题考查了函数的定义域及其求法,是基础题.10.sin80°cos20°﹣cos80°sin20°的值为.【考点】两角和与差的正弦函数.【专题】计算题;转化思想;分析法;三角函数的求值.【分析】利用两角差的正弦函数公式及特殊角的三角函数值即可计算得解.【解答】解:sin80°cos20°﹣cos80°sin20°=sin(80°﹣20°)=sin60°=.故答案为:.【点评】本题主要考查了两角差的正弦函数公式及特殊角的三角函数值在三角函数求值的应用,属于基础题.11.已知函数,则f(x)的最大值为2.【考点】两角和与差的正弦函数.【专题】计算题;转化思想;综合法;三角函数的求值.【分析】由条件利用两角和的正弦公式,正弦函数的值域,求得函数的最大值.【解答】解:∵函数=2sin(x+),∴f(x)的最大值为2,故答案为:2.【点评】本题主要考查两角和的正弦公式,正弦函数的值域,属于基础题.12.若a=log43,则4a﹣4﹣a=.【考点】对数的运算性质;有理数指数幂的化简求值.【专题】计算题;转化思想;函数的性质及应用.【分析】由a=log43,可得4a==3,4﹣a=.即可得出.【解答】解:∵a=log43,∴4a==3,4﹣a=.则4a﹣4﹣a=3﹣=.故答案为:.【点评】本题考查了指数与对数的运算性质.考查了推理能力与计算能力,属于档题.13.已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[﹣1,0],则a+b=.【考点】指数型复合函数的性质及应用.【专题】函数的性质及应用.【分析】对a进行分类讨论,分别题意和指数函数的单调性列出方程组,解得答案.【解答】解:当a>1时,函数f(x)=a x+b在定义域上是增函数,所以,解得b=﹣1,=0不符合题意舍去;当0<a<1时,函数f(x)=a x+b在定义域上是减函数,所以,解得b=﹣2,a=,综上a+b=,故答案为:【点评】本题考查指数函数的单调性的应用,以及分类讨论思想,属于档题.14.设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f(x)满足:(1)T={f(x)|x∈S};(2)对任意x1,x2∈S,当x1<x2时,恒有f(x1)<f(x2).那么称这两个集合“保序同构”,现给出以下4对集合:①S={0,1,2},T={2,3};②S=N,T=N;③S={x|﹣1<x<3},T={x|﹣8<x<10};④S={x|0<x<1},T=R.其,“保序同构”的集合对的序号是②③④(写出所有“保序同构”的集合对的序号).【考点】函数解析式的求解及常用方法.【专题】转化思想;函数的性质及应用.【分析】利用:两个集合“保序同构”的定义,能够找出存在一个从S到T的函数y=f(x)即可判断出结论.【解答】解:①由于不存在一个从S到T的函数y=f(x),因此不是“保序同构”的集合对.②令f(x)=x+1,x∈S=N,f(x)∈T;③取f(x)=x﹣,x∈S,f(x)∈T,“保序同构”的集合对;④取f(x)=tan,x∈S,f(x)∈T.综上可得:“保序同构”的集合对的序号是②③④.故答案为:②③④.【点评】本题考查了两个集合“保序同构”的定义、函数的解析式及其性质,考查了推理能力与计算能力,属于档题.三、解答题:本大题共6个小题,共52分,解答应写出文字说明,证明过程或演算步骤.15.已知集合A={0,1},B={x|x2﹣ax=0},且A∪B=A,求实数a的值.【考点】集合的包含关系判断及应用.【专题】集合思想;综合法;集合.【分析】先求出集合B的元素,根据并集的运算,求出a的值即可.【解答】解:∵B={x|x2﹣ax=0},∴B={x|x=0或x=a},由A∪B=A,得B={0}或{0,1}.当B={0}时,方程x2﹣ax=0有两个相等实数根0,∴a=0.当B={0,1}时,方程x2﹣ax=0有两个实数根0,1,∴a=1.【点评】本题考查了集合的并集的定义,考查分类讨论思想,是一道基础题.16.设θ为第二象限角,若.求(Ⅰ)tanθ的值;(Ⅱ)的值.【考点】三角函数的化简求值.【专题】计算题;转化思想;分析法;三角函数的求值.【分析】(Ⅰ)由已知利用特殊角的三角函数值及两角和的正切函数公式即可计算求值.(Ⅱ)由已知利用同角三角函数关系式可求cosθ,sinθ的值,利用诱导公式,二倍角公式化简所求后即可计算求值.【解答】(本题满分9分)解:(Ⅰ)∵,∴.∴解得…(Ⅱ)∵θ为第二象限角,,∴cosθ=﹣=﹣,sinθ==,…∴…【点评】本题主要考查了特殊角的三角函数值及两角和的正切函数公式,同角三角函数关系式,诱导公式,二倍角公式在三角函数求值的应用,考查了计算能力和转化思想,属于基础题.17.已知函数.(Ⅰ)证明:f(x)是奇函数;(Ⅱ)用函数单调性的定义证明:f(x)在(0,+∞)上是增函数.【考点】函数单调性的判断与证明;函数奇偶性的判断.【专题】证明题;函数思想;综合法;函数的性质及应用.【分析】(Ⅰ)可看出f(x)的定义域为{x|x≠0},并可求出f(﹣x)=﹣f(x),从而得出f (x)是奇函数;(Ⅱ)根据增函数的定义,设任意的x1>x2>0,然后作差,通分,提取公因式,从而得到,证明f(x1)>f(x2)便可得出f(x)在(0,+∞)上是增函数.【解答】证明:(Ⅰ)函数f(x)的定义域为{x|x≠0};;∴f(x)是奇函数;(Ⅱ)设x1>x2>0,则:=;∵x1>x2>0;∴x1x2>0,x1﹣x2>0,x1x2+1>0;∴;∴f(x1)>f(x2);∴f(x)在(0,+∞)上是增函数.【点评】考查奇函数的定义及判断方法和过程,增函数的定义,以及根据增函数的定义证明一个函数为增函数的方法和过程,作差的方法比较f(x1),f(x2),作差后是分式的一般要通分,一般提取公因式x1﹣x2.18.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入了部分数据,如表:ωx+φ0 π2πxAsin(ωx+φ)0 5 ﹣5 0(1)请将上表数据补充完整,填写在相应位置,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称心为(,0),求θ的最小值.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;函数y=Asin(ωx+φ)的图象变换.【专题】三角函数的图像与性质.【分析】(1)根据表已知数据,解得A=5,ω=2,φ=﹣.从而可补全数据,解得函数表达式为f(x)=5sin(2x﹣).(2)由(Ⅰ)及函数y=Asin(ωx+φ)的图象变换规律得g(x)=5sin(2x+2θ﹣).令2x+2θ﹣=kπ,解得x=,k∈Z.令=,解得θ=,k∈Z.由θ>0可得解.【解答】解:(1)根据表已知数据,解得A=5,ω=2,φ=﹣.数据补全如下表:ωx+φ0 π2πxAsin(ωx+φ)0 5 0 ﹣5 0且函数表达式为f(x)=5sin(2x﹣).(2)由(Ⅰ)知f(x)=5sin(2x﹣),得g(x)=5sin(2x+2θ﹣).因为y=sinx的对称心为(kπ,0),k∈Z.令2x+2θ﹣=kπ,解得x=,k∈Z.由于函数y=g(x)的图象关于点(,0)成心对称,令=,解得θ=,k∈Z.由θ>0可知,当K=1时,θ取得最小值.【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,函数y=Asin(ωx+φ)的图象变换规律的应用,属于基本知识的考查.19.某食品的保鲜时间y(单位:小时)与储存温度x(单位:℃)满足函数关系y=e kx+b (e=2718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间为192小时,在22℃的保鲜时间是48小时,求该食品在33℃的保鲜时间.【考点】函数的值.【专题】应用题;函数思想;数学模型法;函数的性质及应用.【分析】根据题意,列出方程,求出,再计算x=33时的y值即可.【解答】解:由题意知,,所以e22k•e b=48,所以,解得;所以当x=33时,.答:该食品在33℃的保鲜时间为24小时.【点评】本题考查了指数函数模型的应用问题,也考查了指数运算的应用问题,是基础题目.20.若实数x,y,m满足|x﹣m|>|y﹣m|,则称x比y远离m.(Ⅰ)比较log206与206哪一个远离0;(Ⅱ)已知函数f(x)的定义域,任取x∈D,f(x)等于sinx和cosx远离0的那个值,写出函数f(x)的解析式以及f(x)的三条基本性质(结论不要求证明).【考点】不等式比较大小;对数的运算性质.【专题】数形结合;转化思想;三角函数的求值;三角函数的图像与性质.【分析】(I)利用,即可得出.(Ⅱ),可得f(x)的性质:奇偶性,周期性,单调性,最值,进而得出.【解答】解:(Ⅰ).∵,∴,∴,∴206比log206远离0.(Ⅱ)f(x)的性质:①f(x)既不是奇函数也不是偶函数;②f(x)是周期函数,最小正周期T=2π;③f(x)在区间,单调递增,f(x)在区间,,(k∈Z)单调递减;④当x=2kπ或时,f(x)有最大值1,当x=2kπ+π或时,f(x)有最小值﹣1.【点评】本题考查了新定义“x比y远离m”、对数函数的单调性、三角函数的图象与性质,考查了推理能力与计算能力,属于档题.2016年3月14日(2020年10月最新下载到博学网)。
北京市朝阳区2014~2015学年第一学期期末学业评价试题高三数学试卷(文史类)(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1. 设i 为虚数单位,则复数1i z =-的模z =A. 1B.2C. 2D. 222. 已知全集U =R ,若集合{}20A x x x =-<,则U A =ðA. {0x x ≤,或}1x ≥B. {0x x <,或}1x > C. }{01x x << D.{}1x x ≥ 3.一个四棱锥的三视图如图所示,则该四棱锥的侧面中,直角三角形的个数为A.1B.2C.3D.4正视图 侧视图 俯视图4.执行如右图所示的程序框图,则输出的i 的值是A.3B.4C.5D.65.若,a b 是两个非零的平面向量,则 “a =b ”是“()()=0⋅a +b a b -”的A. 充分且不必要条件B. 必要且不充分条件C.充要条件D. 既不充分也不必要条件 6. 如图,塔AB 底部为点B ,若,C D 两点相距为100m 并且与点B 在同一水平线上,现从,C D 两点测得塔顶A 的仰角分别为45o 和30o ,则塔AB 的高约为(精确到0.1m ,3 1.73≈,2 1.41≈)A. 36.5B. 115.6C. 120.5D. 136.5DBAC7.已知定义在R 上的函数(1)1,()221,xx x x f x x ⎧+<⎪=⎨-≥⎪⎩若直线y a =与函数()f x 的图象恰有两个公共点,则实数a 的取值范围是A. ()0,2B.[)0,2C.(]0,2D. []1,2 8. 如图,在正方体中1111ABCD A BC D -,M 为BC 的中点,点N 在四边形11CDDC 及其内部运动.若11MN AC ⊥,则N 点的轨迹为A. 线段B. 圆的一部分C. 椭圆的一部分D.双曲线的一部分第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9. 双曲线22:14x C y -=的离心率是 ;渐近线方程是 . 10.为了解某厂职工家庭人均月收入情况,调查了该厂80户居民月收入,列出频率分布表 如下:按家庭人均月收入分组(百元)第一组[)10,16第二组[)16,22第三组[)22,28第四组[)28,34 第五组[)34,40 第六组[]40,46频率0.10.20.15a0.10.1则这80户居民中, 家庭人均月收入在[)2800,3400元之间的有 户(用数字作答);假设家庭人均月收入在第一组和第二组的为中低收入家庭,现从该厂全体职工家庭中随机抽取一个家庭,估计该家庭为中低收入家庭的概率是 .ABCD A 1B 1C 1D 1 M N .11. 已知圆C 的圆心位于第二象限且在直线21y x =+上,若圆C 与两个坐标轴都相切,则圆C 的标准方程是 ______.12. 某单位有职工共60人,为了开展社团活动,对全体职工进行问卷调查,其中喜欢体育运动的共28人,喜欢文艺活动的共26人,还有12人对体育运动和文艺活动都不喜欢, 则喜欢体育运动但不喜欢文艺活动的人共有 人.13. 在平面直角坐标系中,若关于,x y 的不等式组0,,(1)y y x y k x ≥⎧⎪≤⎨⎪≤-⎩表示一个三角形区域,则实数k 的取值范围是______.14. 设2212()cos (1)sin cos 3sin f x a x a x x x =+-+(22120a a +≠),若无论x 为何值,函数()f x 的图象总是一条直线,则12a a +的值是______.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15. (本小题满分13分)某幼儿园有教师30人,对他们进行年龄状况和受教育程度的调查,其结果如下:本科 研究生 合计 35岁以下 5 2 7 35~50岁(含35岁和50岁) 1732050岁以上2 1 3(Ⅰ)从该幼儿园教师中随机抽取一人,求具有研究生学历的概率;(Ⅱ)从幼儿园所有具有研究生学历的教师中随机抽取2人,求有35岁以下的研究生或50岁以上的研究生的概率. 16. (本小题满分13分)已知平面向量a =(sin ,cos )x x ,b =(sin ,cos )x x -,c =(cos ,sin )x x --,x ∈R , 函数()()f x =⋅-a b c .(Ⅰ)求函数()f x 的单调递减区间;(Ⅱ)若222f α⎛⎫=⎪⎝⎭,求sin α的值.17. (本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,PD ⊥平面ABCD .点E 是线段BD 的中点,点F 是线段PD 上的动点. (Ⅰ)若F 是PD 的中点,求证:EF //平面PBC ; (Ⅱ)求证: CE BF ⊥;(Ⅲ)若2AB =,3PD =,当三棱锥P BCF -的体积等于43时,试判断点F 在边PD 上的位置,并说明理由.18.(本小题满分13分)已知公比为q 的等比数列{}n a ()n *∈N 中,22a =,前三项的和为7.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若01q <<,设数列{}n b 满足12...n n b a a a =⋅⋅⋅,n *∈N ,求使01n b <<的n 的最小值.19. (本小题满分13分)已知函数()e ln x f x a x =-,a ∈R . (I )若1x =是()f x 的极值点,求a 的值: (Ⅱ)当e a =时,求证:()e f x ≥.DAPCEFB20. (本小题满分14分)已知离心率为32的椭圆2222:1(0)x yC a ba b+=>>与直线2x=相交于,P Q两点(点P在x轴上方),且2PQ=.点,A B是椭圆上位于直线PQ两侧的两个动点,且APQ BPQ∠=∠.(Ⅰ)求椭圆C的标准方程;(Ⅱ)求四边形APBQ面积的取值范围.S>15?北京市朝阳区2014~2015学年第一学期期末学业评价试题高三数学试卷(文史类)参考答案一、选择题:(满分40分)题号 1 2 3 4 5 6 7 8 答案 B A D B C D B A 二、填空题:(满分30分)题号9 10 11 12 13 14答案52;12y x=±28;0.322111)()339x+y+-=(22 0k< 4(注:两空的填空,第一空3分,第二空2分)三、解答题:(满分80分)15. (本小题满分13分)解:(Ⅰ)设:“从该幼儿园教师中随机抽取一人,具有研究生学历”为事件A,由题可知幼儿园总共有教师30人,其中“具有研究生学历”的共6人.则61 ()==305 P A.答:从该幼儿园教师中随机抽取一人,具有研究生学历的概率为15. ………4分(Ⅱ)设幼儿园中35岁以下具有研究生学历的教师为A1,A2,35~50岁(含35岁和50岁)具有研究生学历的教师为B1,B2,B3,50岁以上具有研究生学历的教师为C,从幼儿园所有具有研究生学历的教师中随机抽取2人,所有可能结果有15个,它们是:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,C),(A2,B1),(A2,B2),(A2,B3),(A2,C),(B1,B2),(B1,B3),(B1,C),(B2,B3),(B2,C),(B3,C),记“从幼儿园所有具有研究生学历的教师中随机抽取2人,有35岁以下的研究生或50岁以上的研究生”为事件D,则D中的结果共有12个,它们是:(A1,A2),(A1,B1),(A1,B 2),(A1,B3),(A1,C),(A2,B1),(A2,B2),(A2,B3),(A2,C),(B1,C ),(B 2,C ),(B 3,C ),故所求概率为124()==155P D . 答:从幼儿园所有具有研究生学历的教师中随机抽取2人,有35岁以下的研究生或50岁以上的研究生的概率为45. ………………13分 16.(本小题满分13分)(Ⅰ)因为a =(sin ,cos )x x ,b =(sin ,cos )x x -,c =(cos ,sin )x x --, 所以()()sin cos ,sin cos x x x x -=+-b c ,()()f x =⋅-a b c =sin (sin cos )cos (sin cos )x x x x x x ++-.则()f x =22sin 2sin cos cos x x x x +-=sin 2cos 2x x -2sin(2)4x π=-.则当222242k x k ππ3ππ+≤-≤π+时,即88k x k 3π7ππ+≤≤π+时,函数()f x 为减函数,k ∈Z .所以函数()f x 的单调递减区间是,88k k 3π7π⎡⎤π+π+⎢⎥⎣⎦,k ∈Z . ………………7分 (Ⅱ)由(Ⅰ)知,()2sin(2)4f x x π=-,又222f α⎛⎫=⎪⎝⎭, 则22sin()42απ-=,1sin()42απ-=.因为 22sin ()cos ()144ααππ-+-=,所以3cos()42απ-=±. sin sin ()44ααππ⎡⎤=-+⎢⎥⎣⎦ππππsin()cos cos()sin 4444αα=-+-.所以当3cos()42απ-=时,sin α=12326222224+⨯+⨯=;当3cos()42απ-=-时,sin α=123226()22224-⨯+-⨯=.………………13分 17. (本小题满分14分)(Ⅰ)证明:在PDB ∆中,因为点E 是BD 中点,点F 是PD 中点, 所以EF //PB .又因为EF ⊄平面PBC ,PB ⊂平面PBC , 所以EF //平面PBC .…………4分 (Ⅱ)证明:因为PD ⊥平面ABCD , 且CE ⊂平面ABCD , 所以PD CE ⊥.又因为底面ABCD 是正方形,且点E 是BD 的中点, 所以CE BD ⊥. 因为BDPD D =,所以CE ⊥平面PBD ,而BF ⊂平面PBD ,所以CE BF ⊥. …………9分 (Ⅲ)点F 为边PD 上靠近D 点的三等分点. 说明如下:由(Ⅱ)可知, CE ⊥平面PBF .又因为PD ⊥平面ABCD ,BD ⊂平面ABCD ,所以PD BD ⊥. 设PF x =. 由2AB =得22BD =,2CE =, 所以11122223263P BCF C BPF V V PF BD CE x x --==⨯⨯⋅⋅=⨯⨯=. 由已知2433x =, 所以2x =. 因为3PD =,所以点F 为边PD 上靠近D 点的三等分点.…………14分18. (本小题满分13分) (Ⅰ)由已知得,212327a a a a =⎧⎨++=⎩,解得2q =,11a =或12q =,14a =.则数列{}n a 的通项公式为12n n a -=或31()2n n a -=,n *∈N ……………5分(Ⅱ)因为01q <<,所以31()2n n a -=,n *∈N .(5)210...(3)21211...()()22n n n n n b a a a ---+++-=⋅⋅⋅==,n *∈N . DAPCEFB由01n b <<,即(5)210()12n n -<<,即(5)02n n ->,即 即5n >.则使01n b <<的最小的n 的值为6. …………………13分19. (本小题满分13分)(I )函数()f x 的定义域为(0,)+∞. 因为()e xaf x x'=-, 又1x =是()f x 的极值点,所以(1)e 0f a '=-=,解得e a =. 经检验,1x =是()f x 的极值点,所以a 的值为e . ………5分 (Ⅱ)证明: 方法1:当e a =时,()e eln x f x x =-.所以e e e()e x xx f x x x-'=-=. 若01x <<,则1<e e x <,所以e e x x <,所以e e<0x x -. 所以函数()f x 在(0,1)单调递减.若1x >,则e >e x ,所以e >e x x ,所以e e>0x x -. 所以函数()f x 在(1,)+∞单调递增. 所以当1x =时,min ()(1)e f x f ==.(0x →时, e eln x x -→+∞;x →+∞时, e eln x x -→+∞.) 所以()e f x ≥. ………13分 方法2:当e a =时,()e eln x f x x =-,所以e e e()e x xx f x x x-'=-=.设()e e x g x x =-,则()e (1)x g x x '=+,所以()g x 在(0,)+∞单调递增.又(1)0g =,所以当(0,1)x ∈时,()0g x <,即()0f x '<,所以()f x 在(0,1)单调递减; 当(1,)x ∈+∞时,()0g x >,即()0f x '>,所以()f x 在(1,)+∞单调递增.(接下来表述同解法1相应内容)所以()e f x ≥. ………13分20.(本小题满分14分)解:(Ⅰ)由已知得32e =,则12b a =,设椭圆方程为22221(0)4x y b b b +=> 由题意可知点(2,1)P 在椭圆上,所以224114b b+=.解得22b =. 故椭圆C 的标准方程为22182x y +=. ………4分 (Ⅱ)由题意可知,直线PA ,直线PB 的斜率都存在且不等于0.因为APQ BPQ ∠=∠,所以PA PB k k =-.设直线PA 的斜率为k ,则直线:1(2)PA y k x -=-(0k ≠).由2248(12),x y y kx k ⎧+=⎨=+-⎩得222(14)8(12)161640k x k k x k k ++-+--=……(1).依题意,方程(1)有两个不相等的实数根,即根的判别式0∆>成立.即()222264(12)4(14)161640k k k k k ∆=--+-->, 化简得216(21)0k +>,解得12k ≠-. 因为2是方程(1)的一个解,所以2216164214A k k x k --⋅=+. 所以2288214A k k x k --=+. 当方程(1)根的判别式0∆=时,12k =-,此时直线PA 与椭圆相切.由题意,可知直线PB 的方程为1(2)y k x -=--.同理,易得22228()8()288214()14B k k k k x k k ----+-==+-+. 由于点,A B 是椭圆上位于直线PQ 两侧的两个动点,APQ BPQ ∠=∠, 且能存在四边形APBQ ,则直线PA 的斜率k 需满足12k >. 设四边形APBQ 面积为S ,则112222APQ BPQ A B S S S PQ x PQ x ∆∆=+=⋅-+⋅- 2222188288221414B A k k k k PQ x x k k --+-=⋅-=-++ 21614k k=+ 由于12k >,故 216161144kS k k k ==++.当12k >时,144k k +>,即110144k k<<+,即04S <<. (此处另解:设t k =,讨论函数1()4f t t t =+在1,2t ⎛⎫∈+∞ ⎪⎝⎭时的取值范围. 222141()4t f t t t-'=-=,则当12t >时,()0f t '>,()f t 单调递增. 则当12t >时,()(4,)f t ∈+∞,即S ∈()0,4.) 所以四边形APBQ 面积S 的取值范围是()0,4. ………14分。
北京市朝阳区2014-2015学年度高三年级第一学期期末统一考试数学试卷(理工类) 2015.1(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.设i 为虚数单位,则复数1iiz +=在复平面内对应的点所在的象限是 A .第一象限 B .第二象限 C .第三象限 D .第四象限2. 过抛物线24y x =的焦点F 的直线l 交抛物线于,A B 两点.若AB 中点M 到抛物线准线的距离为6,则线段AB 的长为A .6B .9C .12D .无法确定 3.设函数()sin(2)3f x x π=-的图象为C ,下面结论中正确的是 A .函数()f x 的最小正周期是2πB .图象C 关于点(,0)6π对称C .图象C 可由函数()sin 2g x x =的图象向右平移3π个单位得到 D .函数()f x 在区间(,)2ππ-12上是增函数4.某三棱锥的三视图如图所示,则该三棱锥的全面积是A . 4+B .8C . 4+D .5.αβ,表示不重合的两个平面,m ,l 表示不重合的两条直线.若m αβ=,l α⊄,l β⊄,则“l ∥m ”是“l ∥α且l ∥β”的A .充分且不必要条件B .必要且不充分条件C .充要条件D .既不充分也不必要条件 6.在ABC ∆中,π4B =,则sin sin A C ⋅的最大值是A .14 B .34 C .2D .24+7.点O 在ABC ∆的内部,且满足24OA OB OC ++=0,则ABC ∆的面积与AOC ∆的面积之比是A .72 B . 3 C .52D .2 8.设连续正整数的集合{}1,2,3,...,238I =,若T 是I 的子集且满足条件:当x T ∈时,7x T ∉,则集合T 中元素的个数最多是( )A.204B. 207C. 208D.209第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点(1,2)P ,则sin(π)α-的值是 .10.双曲线22:C x y λ-=(0λ>)的离心率是 ;渐近线方程是 .11.设不等式组240,0,0x y x y +-≤⎧⎪≥⎨⎪≥⎩表示平面区域为D ,在区域D 内随机取一点P ,则点P 落在圆221x y +=内的概率为 .12.有一口大钟每到整点就自动以响铃的方式报时,1点响1声,2点响2声,3点响3声,……,12点响12声(12时制),且每次报时时相邻两次响铃之间的间隔均为1秒.在一次大钟报时时,某人从第一声铃响开始计时,如果此次是12点的报时,则此人至少需等待 秒才能确定时间;如果此次是11点的报时,则此人至少需等待 秒才能确定时间.13.在锐角AOB 的边OA 上有异于顶点O 的6个点,边OB 上有异于顶点O 的4个点,加上点O ,以这11个点为顶点共可以组成 个三角形(用数字作答).14.已知函数1sin π()()ππx xxf x x -=∈+R .下列命题: ①函数()f x 既有最大值又有最小值; ②函数()f x 的图象是轴对称图形;③函数()f x 在区间[π,π]-上共有7个零点; ④函数()f x 在区间(0,1)上单调递增.其中真命题是 .(填写出所有真命题的序号)三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)退休年龄延迟是平均预期寿命延长和人口老龄化背景下的一种趋势.某机构为了解某城市市民的年龄构成,从该城市市民中随机抽取年龄段在20~80岁(含20岁和80岁)之间的600人进行调查,并按年龄层次[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]绘制频率分布直方图,如图所示.若规定年龄分布在[20,40)岁的人为“青年人”,[40,60)为“中年人”, [60,80]为“老年人”.(Ⅰ)若每一组数据的平均值用该区间中点值来代替,试估算所调查的600人的平均年龄;(Ⅱ)将上述人口分布的频率视为该城市在20-80年龄段的人口分布的概率.从该城市20-80年龄段市民中随机抽取3人,记抽到“老年人”的人数为X ,求随机变量X 的分布列和数学期望.1 6.(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAB ⊥底面ABCD , PA AB =,点E 是PB 的中点,点F 在边BC 上移动.(Ⅰ)若F 为BC 中点,求证:EF //平面PAC ; (Ⅱ)求证:AE PF ⊥;(Ⅲ)若PB =,二面角E AF B --,试判断点F 在边BC 上的位置,并说明理由.DPCBFAE0.0217.(本小题满分13分)若有穷数列1a ,2a ,3,,m a a (m 是正整数)满足条件:1(1,2,3,,)i m i a a i m -+==,则称其为“对称数列”.例如,1,2,3,2,1和1,2,3,3,2,1都是“对称数列”. (Ⅰ)若}{n b 是25项的“对称数列”,且,13b ,14b 15,b ,25b 是首项为1,公比为2的等比数列.求}{n b 的所有项和S ;(Ⅱ)若}{n c 是50项的“对称数列”,且,26c ,27c 28,c ,50c 是首项为1,公差为2的等差数列.求}{n c 的前n 项和n S ,150,n n *≤≤∈N .18.(本小题满分13分)设函数2e (),1axf x a x =∈+R . (Ⅰ)当35a =时,求函数)(x f 的单调区间; (Ⅱ)设()g x 为()f x 的导函数,当1[,2e]ex ∈时,函数()f x 的图象总在()g x 的图象的上方,求a 的取值范围.19.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b +=>>过点.过椭圆右顶点A 的两条斜率乘积为14-的直线分别交椭圆C 于,M N 两点. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)直线MN 是否过定点D ?若过定点D ,求出点D 的坐标;若不过,请说明理由.20.(本小题满分13分)已知函数123()()()()f x x x x x x x =---,1x ,2x ,3x ∈R ,且123x x x <<.(Ⅰ)当10x =,21x =,32x =时,若方程()f x mx =恰存在两个相等的实数根,求实数m 的值; (Ⅱ)求证:方程()0f x '=有两个不相等的实数根; (Ⅲ)若方程()0f x '=的两个实数根是,αβ()αβ<,试比较122x x +与,αβ的大小并说明理由.北京市朝阳区2014-2015学年度高三年级第一学期期末统一考试数学答案(理工类) 2015.1一、选择题(满分40分)三、解答题(满分80分) 15.(本小题满分13分)解:(Ⅰ)由题意估算,所调查的600人的平均年龄为:250.1350.2450.3550.2650.1750.148⨯+⨯+⨯+⨯+⨯+⨯=(岁)….…..4分(Ⅱ)由频率分布直方图可知,“老年人”所占的频率为15. 所以从该城市20~80年龄段市民中随机抽取1人,抽到“老年人”的概率为15. 依题意,X 的可能取值为0,1,2,3.00331464(0)()()55125P X C === 1231448(1)()()55125P X C ===2231412(2)()()55125P X C ===3303141(3)()()55125P X C === 所以,随机变量X 的分布列如下表:因此,随机变量X 的数学期望64481213()01231251251251255E X =⨯+⨯+⨯+⨯=. ……………..13分 16. (本小题满分14分) (Ⅰ)证明:在PBC ∆中,因为点E 是PB 中点,点F 是BC 中点,所以EF //PC .又因为EF ⊄平面PAC ,PC ⊂平面PAC , 所以EF //平面PAC .………..4分 (Ⅱ)证明:因为底面ABCD 是正方形,所以BC AB ⊥. 又因为侧面PAB ⊥底面ABCD ,平面PAB平面ABCD =AB ,且BC ⊂平面ABCD ,所以BC ⊥平面PAB .由于AE ⊂平面PAB ,所以BC AE ⊥. 由已知PA AB =,点E 是PB 的中点,所以AE PB ⊥. 又因为=PBBC B ,所以AE ⊥平面PBC .因为PF ⊂平面PBC ,所以AE PF ⊥.……………..9分 (Ⅲ)点F 为边BC 上靠近B 点的三等分点.因为PA AB =,PB =,所以PA AB ⊥.由(Ⅱ)可知,BC ⊥平面PAB .又BC //AD ,所以AD ⊥平面PAB ,即AD PA ⊥,AD AB ⊥ . 所以AD ,AB ,AP 两两垂直.分别以AD ,AB ,AP 为x 轴,y 轴,z 轴建立空间直角坐标系(如图). 不妨设2AB =,BF m =,则(0,0,0)A ,(0,2,0)B ,(0,0,2)P ,(0,1,1)E ,(,2,0)F m .于是(0,1,1)AE =,(,2,0)AF m =. 设平面AEF 的一个法向量为(,,)p q r =n ,由0,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 得0, 20.q r mp q +=⎧⎨+=⎩ 取2p =,则q m =-,r m =,得 (2,,)m m =-n .由于AP AB ⊥,AP AD ⊥,AB AD A =,所以AP ⊥平面ABCD .即平面ABF 的一个法向量为(0,0,2)AP =.根据题意,||||4AP AP ⋅==⋅n n ,解得23m =.由于2BC AB ==,所以13BF BC =. 即点F 为边BC 上靠近B 点的三等分点.………..14分 17.(本小题满分13分)(Ⅰ)依题意,131,b =142b =,…,1212251322b b =⋅=. 则121252b b ==,112242b b ==,…,12142b b ==.则()12121212121()22 (121112)S b b b ⎡⎤-⎢⎥⎣⎦=++++=⨯+-1423=- ……………..6分 (Ⅱ)依题意,502624249c c =+⨯=,因为}{n c 是50项的“对称数列”,所以15049,c c ==24947,c c ==…, 2526 1.c c == 所以当125n ≤≤时,250n S n n =-+;当2650n ≤≤时,251(25)(25)(26)22n S S n n n =+-+⨯--⨯, n S =1250502+-n n . 综上,22501255012502650,.n n nn n S n n n n **⎧-+≤≤∈⎪=⎨-+≤≤∈⎪⎩N N ,, ……………..13分18. (本小题满分13分)(Ⅰ)解:当35a =时,32522e (3103)()5(1)xx x f x x -+'=+. 由()0f x '>得231030x x -+>,解得13x <或3x >;由()0f x '<得231030x x -+<,解得133x <<. 所以函数)(x f 的单调增区间为1(,)3-∞,(3,)+∞,单调减区间为1(,3)3.……..5分(Ⅱ)因为222e (2)()()(1)ax ax x a g x f x x -+'==+,又因为函数()f x 的图象总在()g x 的图象的上方, 所以()()f x g x >,即2222e e (2)1(1)ax ax ax x a x x -+>++在1[,2e]e x ∈恒成立. 又因为2e 01axx >+,所以22(1)2(1)a x x x +-<+,所以2(1)(1)2a x x -+<. 又210x +>,所以2211x a x -<+. 设22()1x h x x =+,则min1()a h x -<1([,2e])ex ∈即可. 又2222(1)()(1)x h x x -'=+.由2222(1)()0(1)x h x x -'=>+,注意到1[,2e]e x ∈,解得11e x ≤<; 由2222(1)()0(1)x h x x -'=<+,注意到1[,2e]e x ∈,解得12e x <≤. 所以()h x 在区间1,1e ⎡⎫⎪⎢⎣⎭单调递增,在区间(]1,2e 单调递减.所以()h x 的最小值为1()eh 或(2e)h . 因为212e ()e e 1h =+,24e (2e)4e 1h =+,作差可知224e 2e 4e 1e 1<++,所以24e14e 1a -<+. 所以a 的取值范围是224e 4e+1(,)4e 1+-∞+. ……………..13分 19.(本小题满分14分)解:(Ⅰ)由已知得221314c a a b ⎧=⎪⎪⎨⎪+=⎪⎩, 解得2241a b ⎧=⎨=⎩. 所以椭圆的标准方程为2214x y +=.………..4分(Ⅱ)直线MN 过定点(0,0)D .说明如下:由(Ⅰ)可知椭圆右顶点(2,0)A . 由题意可知,直线AM 和直线AN 的斜率存在且不为0.设直线AM 的方程为(2)y k x =-.由2244(2)x y y k x ⎧+=⎨=-⎩得2222(14)161640k x k x k +-+-=.42225616(14)(41)160k k k ∆=-+-=>成立,所以22164214M k x k -⋅=+.所以228214M k x k -=+. 所以222824(2)(2)1414M M k k y k x k k k --=-=-=++.于是,点222824(,)1414k kM k k--++. 因为直线AM 和直线AN 的斜率乘积为14-,故可设直线AN 的方程为1(2)4y x k=--. 同理,易得222218()228411414()4N k k x k k---==++-.所以点222284(,)1414k k N k k -++. 所以,当M N x x ≠时,即12k ≠±时,2214MN kk k=-. 直线MN 的方程为22224228()141414k k k y x k k k--=-+-+. 整理得2214ky x k =-.显然直线MN 过定点(0,0)D .(点,M N 关于原点对称)当M N x x =,即12k =±时,直线MN 显然过定点(0,0)D . 综上所述,直线MN 过定点(0,0)D . ……………..14分20.(本小题满分13分)(Ⅰ)当10x =,21x =,32x =时,()(1)(2)f x x x x =--.当(1)(2)x x x mx --=时,即()2320x x x m -+-=.依题意,若方程()f x mx =恰存在两个相等的实数根,包括两种情况: (1)若0x =是一元二次方程2320x x m -+-=的一个实数根,则2m =时,方程()2320x x x m -+-=可化为2(3)0x x -=,恰存在两个相等的实数根0(另一根为3).(2)若一元二次方程2320x x m -+-=有两个相等的实数根,则方程2320x x m -+-=的根的判别式94(2)0m ∆=--=,解得14m =-.此时方程()f x mx =恰存在 两个相等的实数根32(另一根为0). 所以当14m =-或2m =时,方程()f x mx =恰存在两个相等的实数根. ………4分(Ⅱ)证明:由123()()()()f x x x x x x x =---,可得,()()32123121323123()f x x x x x x x x x x x x x x x x =-+++++-, 所以()2123121323()320f x x x x x x x x x x x x '=-+++++=.此一元二次方程的判别式21231213234)12()x x x x x x x x x ∆=++-++(,则()()()2221223312x x x x x x ⎡⎤∆=-+-+-⎣⎦.由123x x x <<可得,0∆>恒成立.所以方程()0f x '=有两个不等的实数根. ………8分 (Ⅲ)122x x αβ+<<.说明如下: 由()2123121323()320f x x x x x x x x x x x x '=-+++++=,得12()2x x f +'=()()212123123()+4x x x x x x x +-+++121323x x x x x x ++.()()22121212=044x x x x x x +--=-<.即12()2x x f +'=12123()()022x x x xαβ++--<, 由αβ<,得122x x αβ+<<. ………13分。
绝密★启用前2015-2016学年北京市西城区高一上学期期末考试数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:70分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、关于函数,给出下列三个结论:①函数的最小值是; ②函数的最大值是;③函数在区间上单调递增.其中全部正确结论的序号是( )A .②B .②③C .①③D .①②③2、函数的图象与直线的交点个数为( )A .3B .4C .7D .83、已知非零向量a,b 夹角为,且,. 则等于( )4、若直线是函数图象的一条对称轴,则的值可以是()A. B. C. D.5、是()A.最小正周期为的偶函数B.最小正周期为的奇函数C.最小正周期为的偶函数D.最小正周期为的奇函数6、函数的一个单调递增区间是()A. B. C. D.7、若向量共线,则实数的值是()A. B. C. D.8、化简等于()A. B. C. D.9、如果,且,则是()A.第一象限的角 B.第二象限的角C.第三象限的角 D.第四象限的角10、为了得到函数的图象,可以将函数的图象()D.向右平移个单位长度第II 卷(非选择题)二、填空题(题型注释)11、 通过实验数据可知,某液体的蒸发速度(单位:升/小时)与液体所处环境的温度(单位:℃)近似地满足函数关系(为自然对数的底数,为常数). 若该液体在℃的蒸发速度是升/小时,在℃的蒸发速度为升/小时,则该液体在℃的蒸发速度为_____升/小时.12、已知函数是定义在上的减函数,如果在上恒成立,那么实数的取值范围是_____.13、已知函数 且,则实数_____.14、_____,_____.15、设,,,则_____.16、已知函数(其中)图象过点,且在区间上单调递增,则的值为_______.17、已知,且,则_____.18、 设向量,则的夹角等于_____.19、 角终边上一点的坐标为,则_____.20、如图所示,为中边的中点,设,,则_____.(用,表示)21、_____.参考答案1、D2、C3、A4、A5、D6、C7、B8、B9、C10、D11、12、; .13、;14、;15、;16、17、18、19、20、21、【解析】1、试题分析:由题,去绝对值得:结合图像易得正确的为:①②③考点:绝对值的性质及三角恒等变形和分类思想.2、试题分析:由题可画出对应的函数图像,由图可得:有7个交点。
某某省某某第一中学2015-2016学年高一上学期期末考试数学一、选择题:共10题1.下列说法中,正确的是A.幂函数的图象都经过点(1,1)和点(0,0)B.当a=0时,函数y=xα的图象是一条直线C.若幂函数y=xα的图象关于原点对称,则y=xα在定义域内y随x的增大而增大D.幂函数y=xα,当a<0时,在第一象限内函数值随x值的增大而减小【答案】D【解析】本题主要考查幂函数的图象与性质.由幂函数的图象与性质可知,A错误;当x=0时,y=0,故B错误;令a=-1,则y=x-1,显然C错误;故D正确.2.如图所示,则这个几何体的体积等于A.4B.6C.8D.12【答案】A【解析】由三视图可知所求几何体为四棱锥,如图所示,其中SA⊥平面ABCD,SA=2,AB=2,AD=2,CD=4,且四边形ABCD为直角梯形,∠DAB=90°,∴V=SA×(AB+CD)×AD=×2××(2+4)×2=4,故选A.3.下列关于函数y=f(x),x∈[a,b]的叙述中,正确的个数为①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;③函数f(x)的零点是方程f(x)=0的根,f(x)=0的根也一定是函数f(x)的零点;④用二分法求方程的根时,得到的都是根的近似值.A.0B.1C.3D.4【答案】B【解析】本题主要考查方程与根、二分法.由零点的定义知,零点是曲线与x轴交点的横坐标,故①错误;当f(a)=0时,无法用二分法求解,故②错误;显然,③正确;若f(x)=2x-x-1,在区间(-1,1)上的零点,用二分法,可得f(0)=0,显然,④错误.4.如图,在三棱锥S-ABC中,E为棱SC的中点,若AC=,SA=SB=SC=AB=BC=2,则异面直线AC与BE所成的角为A.30°B.45°C.60°D.90°【答案】C【解析】本题主要考查异面直线所成的角.取SA的中点D,连接BD、DE,则,是异面直线AC与BE所成的角或补角,由题意可得BD=BE=,DE=,即三角形BDE是等边三角形,所以5.如图,正方体ABCDA1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是A.AC⊥BEB.EF∥平面ABCDC.直线AB与平面BEF所成的角为定值D.异面直线AE、BF所成的角为定值【答案】D【解析】本题主要考查线面平行与垂直的判定定理、线面所成的角、异面直线所成的角,考查了空间想象能力.易证AC⊥平面BDD1B1,则AC⊥BE,A正确,不选;易知平面A1B1C1D1∥平面ABCD,则EF∥平面ABCD,B正确,不选;因为平面BEF即是平面BDD1B1,所以直线AB 与平面BEF所成的角为定值,故C正确,不选;故选D.6.若函数且)有两个零点,则实数a的取值X围是A. B. C. D.【答案】B【解析】本题主要考查函数的性质与零点.当时,函数是减函数,最多只有1个零点,不符合题意,故排除A、D;令,易判断函数在区间上分别有一个零点,故排除C,所以B正确.7.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则A.α∥β且l∥α B.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l【答案】D【解析】本题涉及直线与平面的基本知识,意在考查考生的空间想象能力、分析思考能力,难度中等偏下.由于m,n为异面直线,m⊥平面α,n⊥平面β,则平面α与平面β必相交,但未必垂直,且交线垂直于直线m,n,又直线l满足l⊥m,l⊥n,则交线平行于l ,故选D.8.已知直线(1+k)x+y-k-2=0过定点P,则点P关于直线x-y-2=0的对称点的坐标是A.(3,﹣2)B.(2,﹣3)C.(3,﹣1)D.(1,﹣3)【答案】C【解析】本题主要考查直线方程、两条直线的位置关系.将(1+k)x+y-k-2=0整理为:k(x-1)+x+y-2=0,则x-1=0且x+y-2=0,可得P(1,1),设点P的对称点坐标为(a,b),则,则x=3,y=-1,故答案:C.9.如图,平面⊥平面与两平面所成的角分别为和.过分别作两平面交线的垂线,垂足为,则=A. B. C. D.【答案】A【解析】本题主要考查线面与面面垂直的判定与性质、直线与平面所成的角,考查了空间想象能力.根据题意,由面面垂直的性质定理可得,,则,则AB=2,则10.经过点P(1,4)的直线在两坐标轴上的截距都是正值,若截距之和最小,则直线的方程为A.x+2y-6=0 B.2x+y-6=0 C.x-2y+7=0 D.x-2y-7=0【答案】B【解析】本题主要考查直线方程、基本不等式.由直线的斜率为k(k<0),则y-4=k(x-1),分别令x=0、y=0求出直线在两坐标轴上的截距为:4-k,1-,则4-k+1-,当且仅当-k=-,即k=-2时,等号成立,则直线的方程为2x+y-6=0二、填空题:共5题11.已知直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,则经过点A(3,2)且与直线垂直的直线方程为________.【答案】2x-y-4=0【解析】本题主要考查直线方程、两条直线的位置关系.因为直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,所以(m+1)m-2=0,且8-(m-2),则m=1,直线: x+2y-1=0,根据题意,设所求直线方程为2x-y+t=0,将点A(3,2)代入可得t=-4,即:2x-y-4=012.用斜二测画法得到的四边形ABCD是下底角为45°的等腰梯形,其下底长为5,一腰长为,则原四边形的面积是________.【答案】8【解析】本题主要考查平面直观图.根据题意,直观图中,梯形的下底长为5,一腰长为,则易求上底为3,高为1,面积为,所以原四边形的面积是13.已知三棱锥A-BCD的所有棱长都为,则该三棱锥的外接球的表面积为________.【答案】3π【解析】本题主要考查空间几何体的表面积与体积,考查了空间想象能力.将正方体截去四个角可得到一个正四面体,由题意,可将该三棱锥补成一个棱长为1的正方体,所以该三棱锥的外接球的直径即为正方体的对角线,所以2r=,则该三棱锥的外接球的表面积为S=14.已知关于x的方程有两根,其中一根在区间内,另一根在区间内,则m的取值X围是________.【答案】【解析】本题主要考查二次函数的性质与二元一次方程的根.设,由题意可知:,求解可得15.甲、乙、丙、丁四个物体同时以某一点出发向同一个方向运动,其路程关于时间的函数关系式分别为,,,,有以下结论:①当时,甲走在最前面;②当时,乙走在最前面;③当时,丁走在最前面,当时,丁走在最后面;④丙不可能走在最前面,也不可能走在最后面;⑤如果它们一直运动下去,最终走在最前面的是甲.其中,正确结论的序号为_________(把正确结论的序号都填上,多填或少填均不得分).【答案】③④⑤【解析】①错误.因为,,所以,所以时,乙在甲的前面.②错误.因为,,所以,所以时,甲在乙的前面.③正确.当时,,的图象在图象的上方.④正确.当时,丙在甲乙前面,在丁后面,时,丙在丁前面,在甲、乙后面,时,甲、乙、丙、丁四人并驾齐驱.⑤正确.指数函数增长速度越来越快,x充分大时,的图象必定在,,上方,所以最终走在最前面的是甲.三、解答题:共5题16.如图(1)所示,在直角梯形中,BC AP,AB BC,CD AP,又分别为线段的中点,现将△折起,使平面平面(图(2)).(1)求证:平面平面;(2)求三棱锥的体积.【答案】证明:(1)分别是的中点,∵平面,AB平面.∴平面.同理,平面,∵,EF平面平面∴平面平面.(2)=.【解析】本题主要考查面面与线面平行与垂直的判定与性质、空间几何体的表面积与体积,考查了空间想象能力与等价转化.(1)根据题意,证明、,再利用线面与面面平行的判定定理即可证明;(2)由题意易知,则结果易得.17.已知两点,直线,求一点使,且点到直线的距离等于2.【答案】设点的坐标为.∵.∴的中点的坐标为.又的斜率.∴的垂直平分线方程为,即.而在直线上.∴.①又已知点到的距离为2.∴点必在于平行且距离为2的直线上,设直线方程为,由两条平行直线之间的距离公式得:∴或.∴点在直线或上.∴或②∴①②得:或.∴点或为所求的点.【解析】本题主要考查直线方程与斜率、两条直线的位置关系、中点坐标公式.设点的坐标为,求出统一线段AB的垂直平分线,即可求出a、b的一个关系式;由题意知,点必在于平行且距离为2的直线上, 设直线方程为,由两条平行直线之间的距离公式得:,求出m的值,又得到a、b的一个关系式,两个关系式联立求解即可.18.(1)已知圆C经过两点,且被直线y=1截得的线段长为.求圆C的方程;(2)已知点P(1,1)和圆过点P的动直线与圆交于A,B两点,求线段AB的中点M的轨迹方程.【答案】(1)设圆方程为.因为点O,Q在圆上,代入:又由已知,联立:解得:由韦达定理知:.所以:.即即:.即:.则.所以所求圆方程为:.(2)设点M (x ,y ), 圆的圆心坐标为C (0,2). 由题意:,又.所以: 化简:所以M 点的轨迹方程为【解析】本题主要考查圆的方程、直线与圆的位置关系、圆的性质、直线的斜率公式、方程思想.(1)设圆方程为,将y =1代入圆的方程,利用韦达定理,求出D 、E 、F 的一个关系式,再由点O 、Q 在圆上,联立求出D 、E 、F 的值,即可得到圆的方程;(2) 设点M (x ,y ), 圆的圆心坐标为C (0,2),由题意:,又,化简求解即可得到结论.19.如图,在四棱锥P —ABCD 中,PA ⊥底面ABCD , AB ⊥AD , AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.C A PB D E(1)求PB 和平面PAD 所成的角的大小;(2)证明:AE ⊥平面PCD ;(3)求二面角A-PD-C的正弦值.【答案】(1)在四棱锥P—ABCD中,∵PA⊥底面ABCD,AB⊂平面ABCD,∴PA⊥A B.又AB⊥AD,PA∩AD=A,从而AB⊥平面PAD,∴PB在平面PAD内的射影为PA,从而∠APB为PB和平面PAD所成的角.在Rt△PAB中,AB=PA,故∠APB=45°.所以PB和平面PAD所成的角的大小为45°.(2)证明:在四棱锥P—ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,∴CD⊥PA.由条件CD⊥AC,PA∩AC=A∵CD⊥平面PA C.又AE⊂平面PAC,∴AE⊥C D.由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥P C.又PC∩CD=C,综上得AE⊥平面PCD.(3)过点E作EM⊥PD,垂足为M,连接AM,如图所示.由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD.因此∠AME是二面角A—PD—C的平面角.由已知,可得∠CAD=30°.设AC=a,可得PA=a,AD=a,PD=a,AE=在Rt△ADP中,∵AM⊥PD,∴AM·PD=PA·AD,则AM==.在Rt△AEM中,sin∠AME==.所以二面角A—PD—C的正弦值为.【解析】本题主要考查线面垂直的判定定理与性质定理、线面角与二面角,考查了空间想象能力.(1)根据题意,证明AB⊥平面PAD,即可得证∠APB为PB和平面PAD所成的角,则易求结果;(2)由题意,易证CD⊥平面PA C,可得AE⊥C D,由题意易知AC=PA,又因为E是PC 的中点,所以AE⊥P C,则结论易证;(3) 过点E作EM⊥PD,垂足为M,连接AM,如图所示,由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD,因此∠AME是二面角A—PD—C的平面角,则结论易求.20.诺贝尔奖的奖金发放方式为:每年一发,把奖金总额平均分成6份,分别奖励给在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半;另一半利息计入基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r=6.24%.资料显示:1999年诺贝尔发放后基金总额约为19 800万美元.设f(x)表示第x(x∈N*)年诺贝尔奖发放后的基金总额(1999年记为f(1),2000年记为f(2),…,依次类推)(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;(2)试根据f(x)的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.031 29≈1.32)【答案】(1)由题意知:f(2)=f(1)(1+6.24%)-f(1)·6.24%=f(1)×(1+3.12%),f(3)=f(2)×(1+6.24%)-f(2)×6.24%=f(2)×(1+3.12%)=f(1)×(1+3.12%)2,∴f(x)=19800(1+3.12%)x-1(x∈N*).(2)2008年诺贝尔奖发放后基金总额为f(10)=19800(1+3.12%)9=26136,故2009年度诺贝尔奖各项奖金为·f(10)·6.24%≈136(万美元),与150万美元相比少了约14万美元,是假新闻.【解析】本题主要考查指数函数、函数的解析式与求值,考查了分析问题与解决问题的能力、计算能力.(1)由题意知: f(2)=f(1)(1+6.24%)-f(1)·6.24%,f(3)=f(2)×(1+6.24%)-f(2)×6.24%,化简,即可归纳出函数f(x)的解析式;(2)根据题意,求出2008年诺贝尔奖发放后基金总额为f(10),再求出2009年度诺贝尔奖各项奖金为·f(10)·6.24%,即可判断出结论.。
2015-2016学年北京市首师大附中高一(上)期末数学试卷一、选择题(共8小题,每小题4分,满分32分)1.设A={x|﹣1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是()A.a<2 B.a>﹣2 C.a>﹣1 D.﹣1<a≤22.若角α满足条件sin2α<0,cosα﹣sinα<0,则α在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.若log a<1,则a的取值范围是()A.0<a<B.a>C.<a<1 D.0<a<或a>14.已知函数f(x)=2﹣x+x,将f(x)的图象向右平移3个单位,得到函数g(x)的图象,则g(x)的解析式是()A.g(x)=2﹣x+3+x﹣3 B.g(x)=2﹣x﹣3+x﹣3 C.g(x)=2﹣x+3+x+3 D.g(x)=2﹣x﹣3+x+35.在平行四边形ABCD中,若,则必有()A.B.或C.ABCD是矩形 D.ABCD是正方形6.函数y=xcosx+sinx的图象大致为()A.B.C.D.7.已知函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[﹣1,1]时,f(x)=x2,则y=f (x)与y=log5x的图象的交点个数为()A.3 B.4 C.5 D.68.如图,四边形ABCD是正方形,延长CD至E,使得DE=CD.若动点P从点A出发,沿正方形的边按逆时针方向运动一周回到A点,其中,下列判断正确的是()A.满足λ+μ=2的点P必为BC的中点B.满足λ+μ=1的点P有且只有一个C.λ+μ的最大值为3D.λ+μ的最小值不存在二、填空题(共6小题,每小题4分,满分24分)9.cos70°cos335°+sin110°sin25°=______.10.若=(2,3),=(﹣1,1),则在方向上的正射影的数量为______.11.已知三个向量=(k,12),=(4,5),=(10,k),且A、B、C三点共线,则k=______.12.已知α∈(,π),β∈(﹣,0),且sinα=,cosβ=,则α﹣β的值为______.13.已知tanθ=3,则=______.14.使不等式sin2x+acosx+a2≥1+cosx对一切x∈R恒成立的负数a的取值范围是______.三、解答题(共4小题,满分44分)15.已知=(1,2),=(﹣3,2),当k为何值时:(1)k+与﹣3垂直;(2)k+与﹣3平行,平行时它们是同向还是反向?16.已知函数f(x)=sinxcosx﹣cos2x+.(1)求函数f(x)的周期;(2)求函数f(x)在[﹣,]的取值范围.17.已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<).(1)若x∈[2,6]时,f(x)max=f(2)=2,f(x)min=f(6)=﹣2且f(x)在[2,6]上单调递减,求ω,φ的值;(2)若φ=且函数f(x)在[0,]上单调递增,求ω的取值范围;(3)若φ=0且函数f(x)=0在[﹣π,π]上恰有19个根,求ω的取值范围.18.如果f(x)是定义在R上的函数,且对任意的x∈R,均有f(﹣x)≠﹣f(x),则称该函数是“X﹣函数”.(Ⅰ)分别判断下列函数:①y=2x;②y=x+1;③y=x2+2x﹣3是否为“X﹣函数”?(直接写出结论)(Ⅱ)若函数f(x)=sinx+cosx+a是“X﹣函数”,求实数a的取值范围;(Ⅲ)已知f(x)=是“X﹣函数”,且在R上单调递增,求所有可能的集合A 与B.2015-2016学年北京市首师大附中高一(上)期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题4分,满分32分)1.设A={x|﹣1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是()A.a<2 B.a>﹣2 C.a>﹣1 D.﹣1<a≤2【考点】集合关系中的参数取值问题.【分析】A={x|﹣1≤x<2},B={x|x<a},若A∩B≠∅,两个集合有公共元素,得到两个集合中所包含的元素有公共的元素,得到a与﹣1的关系.【解答】解:∵A={x|﹣1≤x<2},B={x|x<a},若A∩B≠∅,∴两个集合有公共元素,∴a要在﹣1的右边,∴a>﹣1,故选C.2.若角α满足条件sin2α<0,cosα﹣sinα<0,则α在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】象限角、轴线角;二倍角的正弦.【分析】由sin2α<0,确定2α的象限,确定α的象限范围,根据cosα﹣sinα<0,判定α的具体象限.【解答】解:∵sin2α<0,∴2α在第三、四象限或y的负半轴.2kπ+π<2α<2kπ+2π,k∈Z,∴kπ+<α<kπ+π,k∈Z∴α在第二、四象限.又∵cosα﹣sinα<0,∴α在第二象限.故选:B.3.若log a<1,则a的取值范围是()A.0<a<B.a>C.<a<1 D.0<a<或a>1【考点】指、对数不等式的解法.【分析】运用对数函数的单调性,分a>1,0<a<1两种情况,注意先求交集,再求并集即可.【解答】解:log a<1=log a a,当a>1时,不等式即为a>,则有a>1成立;当0<a<1时,不等式即为a<,即有0<a<.综上可得,a的范围为a>1或0<a<.故选D.4.已知函数f(x)=2﹣x+x,将f(x)的图象向右平移3个单位,得到函数g(x)的图象,则g(x)的解析式是()A.g(x)=2﹣x+3+x﹣3 B.g(x)=2﹣x﹣3+x﹣3 C.g(x)=2﹣x+3+x+3 D.g(x)=2﹣x﹣3+x+3【考点】函数的图象与图象变化.【分析】欲求g(x)的解析式,只须根据:“f(x)的图象向右平移3个单位,得到函数g (x)的图象”将x→x﹣3由f(x)的解析式即可得到.【解答】解:∵函数f(x)=2﹣x+x,将f(x)的图象向右平移3个单位,得到函数g(x)的图象,∴x→x﹣3,又∵f(x)=2﹣x+x∴g(x)=f(x﹣3)=2﹣x+3+x﹣3.故选A.5.在平行四边形ABCD中,若,则必有()A.B.或C.ABCD是矩形 D.ABCD是正方形【考点】向量在几何中的应用;向量的模;数量积判断两个平面向量的垂直关系.【分析】先由向量的加法运算法则知知对角线相等,再由矩形定义求解.【解答】解:在平行四边形ABCD中,∵∴平行四边形的对角线相等由矩形的定义知:平行四边形ABCD是矩形.故选C6.函数y=xcosx+sinx的图象大致为()A.B.C.D.【考点】函数的图象.【分析】给出的函数是奇函数,奇函数图象关于原点中心对称,由此排除B,然后利用区特值排除A和C,则答案可求.【解答】解:由于函数y=xcosx+sinx为奇函数,故它的图象关于原点对称,所以排除选项B,由当x=时,y=1>0,当x=π时,y=π×cosπ+sinπ=﹣π<0.由此可排除选项A和选项C.故正确的选项为D.故选:D.7.已知函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[﹣1,1]时,f(x)=x2,则y=f (x)与y=log5x的图象的交点个数为()A.3 B.4 C.5 D.6【考点】根的存在性及根的个数判断.【分析】由题意可得函数y=f(x)是周期为2的偶函数,数形结合可得函数y=f(x)与y=log5x 的图象的交点个数.【解答】解:由题意可得函数y=f(x)是周期为2的偶函数,再根据x∈[﹣1,1]时,f(x)=x2,可得函数y=f(x)的图象,数形结合可得函数y=f(x)与y=log5x的图象的交点个数为4,故选B.8.如图,四边形ABCD是正方形,延长CD至E,使得DE=CD.若动点P从点A出发,沿正方形的边按逆时针方向运动一周回到A点,其中,下列判断正确的是()A.满足λ+μ=2的点P必为BC的中点B.满足λ+μ=1的点P有且只有一个C.λ+μ的最大值为3D.λ+μ的最小值不存在【考点】向量的加法及其几何意义.【分析】建立坐标系可得=(λ﹣μ,μ),A,B选项可举反例说明,通过P 的位置的讨论,结合不等式的性质可得0≤λ+μ≤3,进而可判C,D的正误,进而可得答案.【解答】解:由题意,不妨设正方形的边长为1,建立如图所示的坐标系,则B(1,0),E(﹣1,1),故=(1,0),=(﹣1,1),所以=(λ﹣μ,μ),当λ=μ=1时,=(0,1),此时点P与D重合,满足λ+μ=2,但P不是BC的中点,故A 错误;当λ=1,μ=0时,=(1,0),此时点P与B重合,满足λ+μ=1,当λ=,μ=时,=(0,),此时点P为AD的中点,满足λ+μ=1,故满足λ+μ=1的点不唯一,故B错误;当P∈AB时,有0≤λ﹣μ≤1,μ=0,可得0≤λ≤1,故有0≤λ+μ≤1,当P∈BC时,有λ﹣μ=1,0≤μ≤1,所以0≤λ﹣1≤1,故1≤λ≤2,故1≤λ+μ≤3,当P∈CD时,有0≤λ﹣μ≤1,μ=1,所以0≤λ﹣1≤1,故1≤λ≤2,故2≤λ+μ≤3,当P∈AD时,有λ﹣μ=0,0≤μ≤1,所以0≤λ≤1,故0≤λ+μ≤2,综上可得0≤λ+μ≤3,故C正确,D错误.故选C二、填空题(共6小题,每小题4分,满分24分)9.cos70°cos335°+sin110°sin25°=.【考点】两角和与差的正弦函数;两角和与差的余弦函数.【分析】根据诱导公式和两角差的余弦公式计算即可.【解答】解:cos70°cos335°+sin110°sin25°=cos70°cos25°+sin70°sin25°=cos(70°﹣25°)=cos45°=,10.若=(2,3),=(﹣1,1),则在方向上的正射影的数量为.【考点】平面向量数量积的运算.【分析】根据向量数量积的关系进行化简,结合向量投影的定义进行求解即可.【解答】解:∵=(2,3),=(﹣1,1),∴在方向上的正射影的数量||cos<,>===,故答案为:11.已知三个向量=(k,12),=(4,5),=(10,k),且A、B、C三点共线,则k=﹣2或11.【考点】平面向量共线(平行)的坐标表示.【分析】先求出和的坐标,利用和共线的性质x1y2﹣x2y1=0,解方程求出k的值.【解答】解:由题意可得=(4﹣k,﹣7),=(6,k﹣5),由于和共线,故有(4﹣k)(k﹣5)+42=0,解得k=11或k=﹣2.故答案为:﹣2或11.12.已知α∈(,π),β∈(﹣,0),且sinα=,cosβ=,则α﹣β的值为.【考点】两角和与差的余弦函数.【分析】根据αβ的取值范围,利用同角三角函数的基本关系分别求得cosα和sinβ,由两角差的和正弦公式求得sin(α﹣β),根据α﹣β∈(,),即可求得α﹣β的值.【解答】解:由α∈(,π),β∈(﹣,0),sinα=,cosβ=,∴α﹣β∈(,),cosα<0,sinβ<0,cosα=﹣=﹣=﹣,sinβ=﹣=﹣=﹣,sin(α﹣β)=sinαcosβ﹣cosαsinβ,=×﹣(﹣)(﹣),=﹣,∴α﹣β=.13.已知tan θ=3,则= .【考点】三角函数的化简求值.【分析】利用二倍角公式以及平方关系式化简表达式为正切函数的形式,代入求解即可.【解答】解:tan θ=3,则====.故答案为:.14.使不等式sin 2x +acosx +a 2≥1+cosx 对一切x ∈R 恒成立的负数a 的取值范围是 a ≤﹣2 . 【考点】其他不等式的解法.【分析】利用公式1=cos 2x +sin 2x ,进行代换,可得cos 2x +(1﹣a )cosx ﹣a 2≤0,然后利用换元法和二次函数的性质列出性质进行求解.【解答】解:1﹣cos 2x +acosx +a 2≥1+cosx ⇒cos 2x +(1﹣a )cosx ﹣a 2≤0, 令t=cosx , ∵x ∈R ,∴t ∈[﹣1,1],t 2+(1﹣a )t ﹣a 2≤0,由题意知a <0∴.故答案为a ≤﹣2.三、解答题(共4小题,满分44分)15.已知=(1,2),=(﹣3,2),当k 为何值时:(1)k +与﹣3垂直;(2)k +与﹣3平行,平行时它们是同向还是反向? 【考点】平面向量数量积的运算;平行向量与共线向量.【分析】(1)由题意可得 k + 和﹣3 的坐标,由 k + 与﹣3 垂直可得它们的数量积等于 0,由此解得k 的值.(2)由 k + 与﹣3 平行的性质,可得(k ﹣3)(﹣4)﹣(2k +2)×10=0,解得k 的值.再根据 k + 和﹣3 的坐标,可得k + 与﹣3 方向相反.【解答】解:(1)由题意可得 k +=(k ﹣3,2k +2),﹣3=(10,﹣4),由 k + 与﹣3 垂直可得 (k ﹣3,2k +2)•(10,﹣4)=10(k ﹣3)+(2k +2)(﹣4)=0,解得k=19.(2)由 k + 与﹣3 平行,可得(k ﹣3)(﹣4)﹣(2k +2)×10=0,解得k=﹣,此时,k+=﹣+=(﹣,),﹣3=(10,﹣4),显然k+与﹣3方向相反.16.已知函数f(x)=sinxcosx﹣cos2x+.(1)求函数f(x)的周期;(2)求函数f(x)在[﹣,]的取值范围.【考点】三角函数中的恒等变换应用;三角函数的周期性及其求法.【分析】(1)化简函数f(x)为Asin(ωx+φ)的形式,求出最小正周期;(2)由x∈[﹣,]求出相位的取值范围,再计算f(x)的取值范围即可.【解答】解:(1)函数f(x)=sinxcosx﹣cos2x+=sin2x﹣+=sin2x﹣cos2x=sin(2x﹣),…由T=得,最小正周期T=π;…(2)∵x∈[﹣,],∴﹣≤2x﹣≤π,…∴﹣1≤sin(2x﹣)≤1,…函数f(x)在[﹣,]的取值范围:[﹣1,1].17.已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<).(1)若x∈[2,6]时,f(x)max=f(2)=2,f(x)min=f(6)=﹣2且f(x)在[2,6]上单调递减,求ω,φ的值;(2)若φ=且函数f(x)在[0,]上单调递增,求ω的取值范围;(3)若φ=0且函数f(x)=0在[﹣π,π]上恰有19个根,求ω的取值范围.【考点】正弦函数的单调性;三角函数的最值.【分析】(1)根据正弦型函数f(x)的图象与性质,结合题意求出周期T,即可得出ω的值,再根据f(x)的最值求出φ的值;(2)根据φ=时函数f(x)在[0,]上单调递增,列出不等式求出ω的取值范围;(3)根据φ=0时f(x)为奇函数,结合正弦函数的图象与性质即可求出满足条件的ω的取值范围.【解答】解:(1)函数f(x)=2sin(ωx+φ)(ω>0,|φ|<),当x∈[2,6]时,f(x)max=f(2)=2,f(x)min=f(6)=﹣2,∴T=2(6﹣2)=8=,∴ω=,∴f(x)=2sin(x+φ);把(2,2)代入f(x)得2=2sin(+φ),∴cosφ=1;∵|φ|<,∴φ=0;(2)当φ=时,函数f(x)=2sin(ωx+)在[0,]上单调递增,∴≤ωx+≤ω+,∴ω+≤,解得ω≤1;又ω>0,∴ω的取值范围是(0,1];(3)当φ=0时,f(x)=2sinωx,∵f(x)为奇函数,要使f(x)=0在[﹣π,π]上恰有19个根,只需f(x)=0在(0,π]上恰有9个根,∴T≤π<5T,即•≤π<5•,解得9≤ω<10,即ω的取值范围是[9,10).18.如果f(x)是定义在R上的函数,且对任意的x∈R,均有f(﹣x)≠﹣f(x),则称该函数是“X﹣函数”.(Ⅰ)分别判断下列函数:①y=2x;②y=x+1;③y=x2+2x﹣3是否为“X﹣函数”?(直接写出结论)(Ⅱ)若函数f(x)=sinx+cosx+a是“X﹣函数”,求实数a的取值范围;(Ⅲ)已知f(x)=是“X﹣函数”,且在R上单调递增,求所有可能的集合A与B.【考点】函数单调性的判断与证明.【分析】(Ⅰ)根据“X﹣函数”的定义即可判断所给的3个函数是否为“X﹣函数”;(Ⅱ)由题意,对任意x∈R,f(﹣x)≠﹣f(x),利用不等式求出a的取值范围;(Ⅲ)(1)根据题意,判断对任意的x≠0,x与﹣x恰有一个属于A,另一个属于B;(2)用反证法说明(﹣∞,0)⊆B,(0,+∞)⊆A;(3)用反证法说明0∈A,即得A、B.【解答】解:(Ⅰ)①、②是“X﹣函数”,③不是“X﹣函数”;﹣﹣﹣﹣(说明:判断正确一个或两个函数给1分)(Ⅱ)由题意,对任意的x ∈R ,f (﹣x )≠﹣f (x ),即f (﹣x )+f (x )≠0; 因为f (x )=sinx +cosx +a ,所以f (﹣x )=﹣sinx +cosx +a ,故f (x )+f (﹣x )=2cosx +2a ;由题意,对任意的x ∈R ,2cosx +2a ≠0,即a ≠﹣cosx ;﹣﹣﹣又cosx ∈[﹣1,1],所以实数a 的取值范围为(﹣∞,﹣1)∪(1,+∞);﹣﹣﹣(Ⅲ)(1)对任意的x ≠0,(i )若x ∈A 且﹣x ∈A ,则﹣x ≠x ,f (﹣x )=f (x ),这与y=f (x )在R 上单调递增矛盾,(舍去),(ii )若x ∈B 且﹣x ∈B ,则f (﹣x )=﹣x=﹣f (x ),这与y=f (x )是“X ﹣函数”矛盾,(舍去);此时,由y=f (x )的定义域为R ,故对任意的x ≠0,x 与﹣x 恰有一个属于A ,另一个属于B ;(2)假设存在x 0<0,使得x 0∈A ,则由x 0<,故f (x 0)<f ();(i )若∈A ,则f ()=+1<+1=f (x 0),矛盾,(ii )若∈B ,则f ()=<0<+1=f (x 0),矛盾; 综上,对任意的x <0,x ∉A ,故x ∈B ,即(﹣∞,0)⊆B ,则(0,+∞)⊆A ; (3)假设0∈B ,则f (﹣0)=﹣f (0)=0,矛盾,故0∈A ;故A=[0,+∞),B=(﹣∞,0];经检验A=[0,+∞),B=(﹣∞,0),符合题意.﹣﹣﹣2016年9月28日。
2015-2016学年北京市朝阳区高二(上)期末数学试卷(文科)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,选出符合题目要求的一项)1.(5分)设a,b为实数,则“a>b>0是<”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件2.(5分)下列选项中,满足焦点在y轴上且离心率为的双曲线的标准方程为()A.B.C.D.3.(5分)若函数f(x)=x3﹣ax在x=2处取得极小值,则a=()A.6B.12C.2D.﹣24.(5分)圆x2+y2﹣2x+4y=0的圆心到直线x﹣y=0的距离为()A.B.1C.D.5.(5分)已知圆O1:x2+y2﹣4x+4y﹣41=0,圆O2:(x+1)2+(y﹣2)2=4,则两圆的位置关系为()A.外离B.外切C.相交D.内切6.(5分)已知顶点为原点,对称轴为坐标轴的抛物线的焦点在直线x﹣2y﹣2=0上,则此抛物线的标准方程是()A.y2=8x B.x2=4yC.y2=8x或x2=﹣4y D.y2=8x或x2=4y7.(5分)设F1、F2是椭圆C:(a>b>0)的左、右焦点,P为直线上一点,△F1PF2是底角为30°的等腰三角形,则此椭圆C的离心率为()A.B.C.D.8.(5分)某几何体的三视图如图所示,则其体积为()A.B.C.D.9.(5分)若f(x)=x﹣elnx,0<a<e<b,则下列说法一定正确的是()A.f(a)<f(b)B.f(a)>f(b)C.f(a)>f(e)D.f(e)>f(b)10.(5分)如图,正方体ABCD﹣A1B1C1D1中,N为CD1中点,M为线段BC1上的动点(M不与B,C1重合),以下四个命题:(1)CD1⊥平面BMN;(2)MN∥平面AB1D1;(3)△D1MN的面积与△CMN的面积相等;(4)三棱锥D﹣MNC的体积有最大值其中真命题的个数为()A.1B.2C.3D.4二、填空题(本大题共6小题,每小题5分,共30分,请把正确答案填在答题卡上)11.(5分)命题“∀x∈R,x2+2x+2>0”的否定为.12.(5分)从点(2,0)引圆x2+y2=1的切线,则切线长为.13.(5分)将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热.如果第xh时,原油的温度(单位℃)为y=f(x)=x2﹣7x+15(0≤x≤8),则第4h时原油温度的瞬时变化率是℃/h;在第4h时附近,原油的温度在.(此空填上升或下降)14.(5分)一个三棱锥的三视图如图所示,则其体积是;此三棱锥的最长棱的长度为.15.(5分)已知m,n是两条不同的直线,α,β是两个不同平面,则以下命题不成立的是(1)若α∥β,m⊂α,n⊂β,则m∥n(2)若m∥β,β⊥α,则m⊥α(3)若m⊥α,m⊂β,则α⊥β(4)若m∥α,n∥β,m∥n,则α∥β16.(5分)已知圆C:x2+y2﹣4x=0与直线y=x+b相交于M,N两点,且满足CM ⊥CN(C为圆心),则实数b的值为.三、解答题(本大题共3小题,共40分.解答应写出文字说明,证明过程或演算步骤.请写在答题卡上)17.(12分)已知函数f(x)=xlnx.(Ⅰ)求这个函数的图象在点x=1处的切线方程;(Ⅱ)讨论函数f(x)在区间(0,t](t>0)上的单调性.18.(14分)如图,四棱锥P﹣ABCD中,AP⊥平面PBC,AB∥DC,AP=AD=DC=AB=1,∠ADC=120°,E,F分别为线段AB,PC的中点.(Ⅰ)求证:AP∥平面EFD;(Ⅱ)求证:平面EFD⊥平面APC;(Ⅲ)求锥体P﹣ADC的体积.19.(14分)椭圆W的中心在坐标原点O,以坐标轴为对称轴,且过点,其右焦点为F(1,0).过原点O作直线l1交椭圆W于A,B两点,过F作直线l2交椭圆W于C,D两点,且∥.(Ⅰ)求椭圆W的标准方程;(Ⅱ)求证:|AB|2=4|CD|.2015-2016学年北京市朝阳区高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,选出符合题目要求的一项)1.(5分)设a,b为实数,则“a>b>0是<”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【解答】解:若a>b>0,则﹣=<0,即<出成立.若<则﹣=<0,a>b>0或0>a>b所以“a>b>0是<”的充分不必要条件.故选:A.2.(5分)下列选项中,满足焦点在y轴上且离心率为的双曲线的标准方程为()A.B.C.D.【解答】解:焦点在y轴上的双曲线,可知选项A,C,不满足题意.对于选项B,可知a=1,b=,可得c=,离心率为:,满足题意.选项D的离心率为:.故选:B.3.(5分)若函数f(x)=x3﹣ax在x=2处取得极小值,则a=()A.6B.12C.2D.﹣2【解答】解:∵f(x)=x3﹣ax,∴f′(x)=3x2﹣a,∵f(x)=x3﹣ax在x=2处取得极小值,∴f′(2)=3×4﹣a=0,解得a=12,经验证a=12符合在x=2处取得极小值,故选:B.4.(5分)圆x2+y2﹣2x+4y=0的圆心到直线x﹣y=0的距离为()A.B.1C.D.【解答】解:圆心(1,﹣2)到直线x﹣y=0距离为=.故选:D.5.(5分)已知圆O1:x2+y2﹣4x+4y﹣41=0,圆O2:(x+1)2+(y﹣2)2=4,则两圆的位置关系为()A.外离B.外切C.相交D.内切【解答】解:由于圆O1:x2+y2﹣4x+4y﹣41=0,即(x﹣2)2+(y+2)2=49,表示以C1(2,﹣2)为圆心,半径等于7的圆.圆O2:(x+1)2+(y﹣2)2=4,表示以C2(﹣1,2)为圆心,半径等于2的圆.由于两圆的圆心距等于=5=7﹣2.故两个圆相内切.故选:D.6.(5分)已知顶点为原点,对称轴为坐标轴的抛物线的焦点在直线x﹣2y﹣2=0上,则此抛物线的标准方程是()A.y2=8x B.x2=4yC.y2=8x或x2=﹣4y D.y2=8x或x2=4y【解答】解:∵焦点在直线x﹣2y﹣2=0上,且抛物线的顶点在原点,对称轴是坐标轴,焦点的坐标为A(0,﹣1),或(2,0),若抛物线以y轴对称式,设方程为x2=﹣2py,=1,求得p=2,∴此抛物线方程为x2=﹣4y;若抛物线以x轴对称式,设方程为y2=2px,=2,求得p=4,∴此抛物线方程为y2=8x;故选:C.7.(5分)设F1、F2是椭圆C:(a>b>0)的左、右焦点,P为直线上一点,△F1PF2是底角为30°的等腰三角形,则此椭圆C的离心率为()A.B.C.D.【解答】解:设直线交x轴于点M,∵△F1PF2是底角为30°的等腰三角形,∴∠PF1F2=120°,|PF1|=|F1F2|,且|PF1|=2|F1M|.∵P为直线x=上一点,∴,解得3c=2a,∴椭圆C的离心率e==.故选:A.8.(5分)某几何体的三视图如图所示,则其体积为()A.B.C.D.【解答】解:由三视图可知几何体为圆锥的一半,圆锥的底面半径为为2,高为4.∴几何体的体积V==.故选:B.9.(5分)若f(x)=x﹣elnx,0<a<e<b,则下列说法一定正确的是()A.f(a)<f(b)B.f(a)>f(b)C.f(a)>f(e)D.f(e)>f(b)【解答】解:f(x)的定义域为(0,+∞),f′(x)=1﹣,∴当0<x<e时,f′(x)<0,当x>e时,f′(x)>0,∴f(x)在(0,e)上单调递减,在(e,+∞)上单调递增,∵0<a<e<b,∴f(a)>f(e),f(b)>f(e),f(a)与f(b)无法比较大小.故选:C.10.(5分)如图,正方体ABCD﹣A1B1C1D1中,N为CD1中点,M为线段BC1上的动点(M不与B,C1重合),以下四个命题:(1)CD1⊥平面BMN;(2)MN∥平面AB1D1;(3)△D1MN的面积与△CMN的面积相等;(4)三棱锥D﹣MNC的体积有最大值其中真命题的个数为()A.1B.2C.3D.4【解答】解:(1)CD1与BM不垂直,所以CD1⊥平面BMN,不正确;(2)平面BMN∥平面AB1D1,所以MN∥平面AB1D1,正确;(3)两个三角形等底等高,△D1MN的面积与△CMN的面积相等,正确;(4)M与B重合,三棱锥D﹣MNC的体积最大,不正确.故选:B.二、填空题(本大题共6小题,每小题5分,共30分,请把正确答案填在答题卡上)11.(5分)命题“∀x∈R,x2+2x+2>0”的否定为∃x∈R,x2+2x+2≤0.【解答】解:因为全称命题的否定是特称命题,所以,命题“∀x∈R,x2+2x+2>0”的否定为:命题“∃x∈R,x2+2x+2≤0”.故答案为:∃x∈R,x2+2x+2≤0.12.(5分)从点(2,0)引圆x2+y2=1的切线,则切线长为.【解答】解:圆心坐标为O(0,0),半径r=1,P(2,0)则OP=2,则切线长为=,故答案为:.13.(5分)将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热.如果第xh时,原油的温度(单位℃)为y=f(x)=x2﹣7x+15(0≤x≤8),则第4h时原油温度的瞬时变化率是1℃/h;在第4h时附近,原油的温度在上升.(此空填上升或下降)【解答】解:∵y=f(x)=x2﹣7x+15(0≤x≤8),∴f′(x)=2x﹣7(0≤x≤8),∴当x=4时f′(4)=2×4﹣7=1,即第4h时原油温度的瞬时变化率是1°C/h;又f′(4)=1>0,∴在第4h时附近原油的温度在上升.故答案为:1,上升.14.(5分)一个三棱锥的三视图如图所示,则其体积是;此三棱锥的最长棱的长度为3.【解答】解:作出三棱锥P﹣ABC的直观图如图所示,由三视图可知P在底面的投影D为AB的中点,AB⊥BC,AB=AC=PD=2,∴三棱锥的体积V==.由勾股定理可得:BC=2,PA=PB=,CD=,∴PC==3.∴三棱锥的棱中PC最长.故答案为,3.15.(5分)已知m,n是两条不同的直线,α,β是两个不同平面,则以下命题不成立的是(1)(2)(4)(1)若α∥β,m⊂α,n⊂β,则m∥n(2)若m∥β,β⊥α,则m⊥α(3)若m⊥α,m⊂β,则α⊥β(4)若m∥α,n∥β,m∥n,则α∥β【解答】解:由m,n是两条不同的直线,α,β是两个不同平面,知:在(1)中,若α∥β,m⊂α,n⊂β,则m与n平面或异面,故(1)错误;在(2)中,若m∥β,β⊥α,则m与α相交、平行或m⊂α,故(2)错误;在(3)中,若m⊥α,m⊂β,则由面面垂直的判定定理得α⊥β,故(3)正确;在(4)中,若m∥α,n∥β,m∥n,则α与β相交或平行,故(4)错误.故答案为:(1)(2)(4).16.(5分)已知圆C:x2+y2﹣4x=0与直线y=x+b相交于M,N两点,且满足CM ⊥CN(C为圆心),则实数b的值为0或﹣4.【解答】解:圆C:x2+y2﹣4x=0可化为圆(x﹣2)2+y2=4,圆心坐标为(2,0),半径为2∵CM⊥CN,∴圆心到直线的距离d=∴b=0或﹣4.故答案为:0或﹣4.三、解答题(本大题共3小题,共40分.解答应写出文字说明,证明过程或演算步骤.请写在答题卡上)17.(12分)已知函数f(x)=xlnx.(Ⅰ)求这个函数的图象在点x=1处的切线方程;(Ⅱ)讨论函数f(x)在区间(0,t](t>0)上的单调性.【解答】(本题满分12分)解:(Ⅰ)f(x)的定义域为(0,+∞),f′(x)=1+lnx.这个函数的图象在x=1处的切线的斜率为k=f′(1)=1.把x=1代入f(x)=xlnx中得f(1)=0,即切点坐标为(1,0).则这个函数的图象在x=1处的切线方程为y=x﹣1.…(5分)(Ⅱ)令f′(x)=1+lnx=0,得.(1)当时,在区间(0,t]上,f′(x)≤0成立,所以函数f(x)为减函数.(2)当时,在区间上,f′(x)<0,f(x)为减函数;在区间上,f′(x)>0,f(x)为增函数.…(12分)18.(14分)如图,四棱锥P﹣ABCD中,AP⊥平面PBC,AB∥DC,AP=AD=DC=AB=1,∠ADC=120°,E,F分别为线段AB,PC的中点.(Ⅰ)求证:AP∥平面EFD;(Ⅱ)求证:平面EFD⊥平面APC;(Ⅲ)求锥体P﹣ADC的体积.【解答】(本题满分14分)解:(Ⅰ)设AC∩DE=O,连接OF,EC,由于E为线段AB的中点,且AB∥DC,所以AE∥DC,AE=DC.所以四边形ADCE为菱形,故O为AC中点,又F为PC中点,因此,在△APC中,AP∥OF又OF⊂平面EFD,AP⊄平面EFD,所以AP∥平面EFD…(5分)(Ⅱ)由题意,BE∥CD,BE=CD,所以四边形BCDE为平行四边形所以BC∥ED.而AP⊥平面PBC,所以AP⊥BC,故AP⊥ED.因为四边形ADCE为菱形,所以AC⊥ED,又AP∩AC=A,AP,AC⊂平面PAC,所以ED⊥平面PAC,又ED⊂平面EFD,所以平面EFD⊥平面APC.…(10分)(III)在△ADC中,AD=CD=1,∠ADC=120°,所以.因为AP⊥平面PBC,所以AP⊥PC,又AP=1,所以.所以.又ED⊥平面PAC,所以D点到平面APC的距离为.V P﹣ADC=V D﹣APC=×DC×S△APC==…(14分)19.(14分)椭圆W的中心在坐标原点O,以坐标轴为对称轴,且过点,其右焦点为F(1,0).过原点O作直线l1交椭圆W于A,B两点,过F作直线l2交椭圆W于C,D两点,且∥.(Ⅰ)求椭圆W的标准方程;(Ⅱ)求证:|AB|2=4|CD|.【解答】(本题满分14分)解:(Ⅰ)因为已知焦点在x轴上,设椭圆W的标准方程为:,a>b >0.由题意:,则a2=4.所求椭圆W的标准方程为:.…(4分)(Ⅱ)当直线l1垂直于x轴时,则直线l2也垂直于x轴,把x=1代入椭圆W的方程,得,即此时|CD|=3,而,所以|AB|2=4|CD|.当直线l1不垂直于x轴时,设直线l1的斜率为k,则依题意l2的斜率也为k,其方程为y=k(x﹣1).设点A(x0,y0),B(﹣x0,﹣y0),C(x1,y1),D(x2,y2).则.把y=k(x﹣1)代入椭圆方程中,整理得,(4k2+3)x2﹣8k2x+4k2﹣12=0.显然△>0,,.则=.即|CD|==.由,且A(x0,y0)在椭圆上,得.则|AB|2(4k2+3)=.因为直线l1过原点,所以y0=kx0,则|AB|2(4k2+3)=.因为A(x0,y0)在椭圆上,所以,所以|AB|2(4k2+3)=48(k2+1).所以|AB|2(4k2+3)=4×12(k2+1),即|AB|2=4|CD|.…(14分)。
绝密★启用前2015-2016学年北京市东城区高一上学期期末考试数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:128分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、已知函数,若存在实数a ,使得,则的取值范围为()A .B .C .D .2、若角与角的终边关于y 轴对称,则()A .B .C .D .3、2003年至2015年北京市电影放映场次(单位:万次)的情况如图所示,下列函数模型中,最不适合近似描述这13年间电影放映场次逐年变化规律的是()A .B .C .D .4、函数的大致图象是()5、下列函数中,既是偶函数又存在零点的是() A . B .C .D .6、正弦函数图象的一条对称轴是()A .B .C .D .7、若角的终边经过点,则的值为()A .B .C .D .8、已知集合,则集合=()A .B .C .D .第II卷(非选择题)二、填空题(题型注释)9、设S,T是R的两个非空子集,如果存在一个从S到T的函数满足:(1);(2)对任意,当时,恒有。
那么称这两个集合“保序同构”,现给出以下4对集合:①;②;③;④。
其中,“保序同构”的集合对的序号是_______(写出所有“保序同构”的集合对的序号)。
10、已知函数的定义域和值域都是,则=__________。
11、若,则=____________。
12、已知函数,则的最大值为_________。
13、sin80°cos20°-cos80°sin20°的值为___________。
14、函数的定义域是____________。
三、解答题(题型注释)15、若实数满足,则称x 比y 远离m 。
绝密★启用前2015届北京市朝阳区高三上学期期末考试文科数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:132分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、如图,在正方体中,为的中点,点在四边形及其内部运动.若,则点的轨迹为A .线段B .圆的一部分C .椭圆的一部分D .双曲线的一部分2、已知定义在上的函数若直线与函数的图象A .B .C .D .3、如图,塔底部为点,若两点相距为100并且与点在同一水平线上,现从两点测得塔顶的仰角分别为和,则塔的高约为( )(精确到0.1,,)A .36.5B .115.6C .120.5D .136.54、若是两个非零的平面向量,则 “”是“”的A .充分且不必要条件B .必要且不充分条件C .充要条件D .既不充分也不必要条件5、执行如图所示的程序框图,则输出的的值是6、一个四棱锥的三视图如图所示,则该四棱锥的侧面中,直角三角形的个数为A .B .C .D .7、已知全集,若集合,则A .,或 B .,或C .D .8、设为虚数单位,则复数的模= A .1 B .C .D .第II卷(非选择题)二、填空题(题型注释)9、设(),若无论为何值,函数的图象总是一条直线,则的值是______.10、在平面直角坐标系中,若关于的不等式组表示一个三角形区域,则实数的取值范围是______.11、某单位有职工共60人,为了开展社团活动,对全体职工进行问卷调查,其中喜欢体育运动的共28人,喜欢文艺活动的共26人,还有12人对体育运动和文艺活动都不喜欢,则喜欢体育运动但不喜欢文艺活动的人共有人.12、已知圆的圆心位于第二象限且在直线上,若圆与两个坐标轴都相切,则圆的标准方程是______.13、为了解某厂职工家庭人均月收入情况,调查了该厂80户居民月收入,列出频率分布表如下:则这80户居民中, 家庭人均月收入在元之间的有户(用数字作答);假设家庭人均月收入在第一组和第二组的为中低收入家庭,现从该厂全体职工家庭中随机抽取一个家庭,估计该家庭为中低收入家庭的概率是 .14、双曲线的离心率是 ;渐近线方程是 .三、解答题(题型注释)15、(本小题满分14分)已知离心率为的椭圆与直线相交于两点(点在轴上方),且.点是椭圆上位于直线两侧的两个动点,且.(Ⅰ)求椭圆的标准方程;(Ⅱ)求四边形面积的取值范围.16、(本小题满分13分)已知函数.(Ⅰ)若x=1是的极值点,求a 的值:(Ⅱ)当时,求证:.17、(本小题满分14分)如图,在四棱锥中,底面是正方形,平面.点是线段的中点,点是线段上的动点.(Ⅰ)若是的中点,求证://平面;(Ⅱ)求证:;(Ⅲ)若,,当三棱锥的体积等于时,试判断点在边上的位置,并说明理由.18、(本小题满分13分)已知平面向量,,,,函数.(Ⅰ)求函数的单调递减区间;(Ⅱ)若,求的值.19、(本小题满分13分)某幼儿园有教师人,对他们进行年龄状况和受教育程度的调查,其结果如下:(Ⅰ)从该幼儿园教师中随机抽取一人,求具有研究生学历的概率;(Ⅱ)从幼儿园所有具有研究生学历的教师中随机抽取2人,求有35岁以下的研究生或50岁以上的研究生的概率.20、(本小题满分13分) 已知公比为的等比数列中,,前三项的和为.(Ⅰ)求数列的通项公式; (Ⅱ)若,设数列满足,,求使的的最小值.参考答案1、A2、B3、D4、C5、B6、D7、A8、B9、410、11、2212、13、14、15、,(0,4)16、e17、点F为边PD上靠近D点的三等分点18、,当时,;当时,19、,20、或,6【解析】1、试题分析:分别以DA,DC,DD1为x,y,z轴建立空间直角坐标系,则,,所以N的轨迹是线段考点:本题考查轨迹方程的求法2、试题分析:画出分段函数图像,当x<1时,函数单调,值域为,当时,单调递增,值域为,直线与函数的图象恰有两个公共点,则考点:本题考查分段函数的图像点评:带绝对值的函数画图像时要分段,画出分段函数图像,注意分界点处的函数值3、试题分析:在中,在,考点:本题考查解三角形点评:分别在不同的三角形中用正弦定理,注意的计算4、试题分析:即,反之也成立考点:本题考查向量的数量积的运算点评:向量的数量积的运算与四则混合运算法则相似,5、试题分析:i=1,s=0,s=0+=2<15i=i+1=2,s=2+=6<15,i=3,s=6+=14<15i=4,s=14+=30>15,所以i=4考点:本题考查程序框图点评:考查框图中的循环体,注意循环条件6、试题分析:由图可知,几何体为四棱锥,其中底面为矩形,有一条侧棱垂直于底面,所以共有4个直角三角形,四个侧面都是直角三角形考点:本题考查三视图点评:考查学生的空间想象能力,有三视图知道直观图是四棱锥,会证侧面为直角三角形7、试题分析:,所以考点:本题考查一元二次不等式的解法和补集点评:注意补集的概念,别丢等号8、试题分析:考点:本题考查复数交运算点评:复数的模等于实部的平方加上虚部的平方再开方9、试题分析:要使函数表示一条直线,只有是水平直线,所以,此时函数表示一条直线,所以考点:本题考查同角三角函数基本关系式点评:原函数是三角函数,要想让它变成直线,只能让x消失,所以将他们化简成常数即可10、试题分析:画的公共区域,表示过(1,-1)的直线系,当k=2画直线,旋转该直线观察当直线旋转至x=1,右侧不构成三角形,旋转(0,0),即时,也不构成三角形,只有在x=1,之间可以,所以考点:本题考查线性规划点评:画出平面区域,画直线时,注意过定点,让直线旋转即可看出范围11、试题分析:由已知可画出图26+28+12-60=6,所以既喜欢体育又喜欢文艺的是6人,喜欢体育但不喜欢文艺的为28-6=22人考点:本题考查集合的关系点评:画出韦氏图,将各集合的关系一目了然表现出来,根据数据求结果12、试题分析:设圆心坐标为(a,2a+1),圆与两坐标轴相切,所以a=-(2a+1),,所以圆心为,半径,所以圆的标准方程为,考点:本题考查圆的标准方程点评:圆心在直线上,设圆心坐标为一个未知数,又因为圆与两坐标轴相切,所以圆心互为相反数,半径为圆心坐标的绝对值13、试题分析:,所以有户,第一组与第二组的人数为, 所以概率为考点:本题考查统计概率点评:由分布表得到频率,频率近似概率去算人数14、试题分析:,所以离心率e=,渐近线方程为,考点:本题考查双曲线的标准方程,离心率,渐近线点评:有双曲线的标准方程得到,a,b,c求出离心率,渐近线方程15、试题分析:(Ⅰ)由已知得,则,设椭圆方程为由题意可知点在椭圆上,所以.解得.故椭圆的标准方程为.(Ⅱ)由题意可知,直线PA,直线PB的斜率都存在且不等于0.因为,所以.设直线PA的斜率为k,则直线.由,得……(1).依题意,方程(1)有两个不相等的实数根,即根的判别式成立.即,化简得,解得.因为2是方程(1)的一个解,所以.所以.当方程(1)根的判别式时,,此时直线PA与椭圆相切.由题意,可知直线PB的方程为.同理,易得.由于点A,B是椭圆上位于直线PQ两侧的两个动点,,且能存在四边形APBQ,则直线PA的斜率k需满足.设四边形APBQ面积为S,则由于,故.当时,,即,即.(此处另解:设,讨论函数在时的取值范围.,则当时,,单调递增.则当时,,即.)所以四边形APBQ面积S的取值范围是.考点:本题考查椭圆的标准方程,以及直线与椭圆的位置关系点评:由已知条件可得到,求得椭圆方程,联立直线与椭圆,用弦长来表示四边形APBQ的面积,求最值16、试题分析:(Ⅰ)函数的定义域为.因为,又x=1是的极值点,所以,解得.经检验,x=1是的极值点,所以a的值为e. ………5分(Ⅱ)证明:方法1:当时,.所以.若,则,所以,所以.所以函数在单调递减.若,则,所以,所以.所以函数在单调递增.所以当x=1时,.(时,;时,.)所以.方法2:当时,,所以.设,则,所以在单调递增.又,所以当时,,即,所以在单调递减;当时,,即,所以在单调递增.(接下来表述同解法1相应内容)所以.考点:本题考查导函数求最值求极值点评:导函数得0的点不一定是极值点,所以还要验证,第二问可以直接求的最值,也可以构造新函数求最值17、试题分析:(Ⅰ)证明:在中,因为点E是BD中点,点F是PD中点,所以//.又因为平面,平面,所以//平面.(Ⅱ)证明:因为平面,且平面,所以.又因为底面是正方形,且点E是BD的中点,所以.因为,所以平面,而平面,所以.(Ⅲ)点F为边PD上靠近D点的三等分点.说明如下:由(Ⅱ)可知,平面.又因为平面,平面,所以.设.由AB=2得,所以.由已知,所以x=2.因为,点F为边PD上靠近D点的三等分点.考点:本题考查线线垂直的证明,等体积法求三棱锥的体积点评:要想证线线垂直先证线面垂直,先由体积求得PF的长,可得到F的位置18、试题分析:(Ⅰ)因为,,,所以,=.则=.则当时,即时,函数为减函数,.所以函数的单调递减区间是.(Ⅱ)由(Ⅰ)知,,又,则,.因为,所以..所以当时,;当时,.考点:本题考查二倍角公式,降幂扩角公式,用已知角表示未知角点评:将原函数化成,才能求单调区间,将用表示,再展开求值19、试题分析:(Ⅰ)设:“从该幼儿园教师中随机抽取一人,具有研究生学历”为事件,由题可知幼儿园总共有教师30人,其中“具有研究生学历”的共6人.则.答:从该幼儿园教师中随机抽取一人,具有研究生学历的概率为(Ⅱ)设幼儿园中35岁以下具有研究生学历的教师为,35~50岁(含35岁和50岁)具有研究生学历的教师为,50岁以上具有研究生学历的教师为C,从幼儿园所有具有研究生学历的教师中随机抽取2人,所有可能结果有15个,它们是:(,),(,),(,),(,),(,C),(,),(,),(,),(,C),(,),(,),(,C),(,),(,C),(,C),记“从幼儿园所有具有研究生学历的教师中随机抽取2人,有35岁以下的研究生或50岁以上的研究生”为事件,则中的结果共有12个,它们是:(,),(,),(,),(,),(,C),(,),(,),(,),(,C),(,C),(,C),(,C)故所求概率为.答:从幼儿园所有具有研究生学历的教师中随机抽取2人,有35岁以下的研究生或50岁以上的研究生的概率为.考点:本题考查古典概型点评:将所有的基本事件列出来,从中数出满足题意的基本事件数,两个数值相比20、试题分析:(Ⅰ)由已知得,,解得,或,则数列的通项公式为或(Ⅱ)因为,所以,由,即,即,即即n>5.则使的最小的n的值为6.考点:本题考查求基本量。
北京市朝阳区2015~2016学年度第一学期期末检测 九年级数学试卷(选用) 2016.1一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.下列交通标志中,既是轴对称图形又是中心对称图形的是( ).A B C D【答案】A【解析】A 选项是轴对称图形也是中心对称图形. B 选项是轴对称图形,不是中心对称图形. C 选项是轴对称图形,不是中心对称图形. D 选项既不是轴对称图形,也不是中心对称图形.2.下列事件为必然事件的是( ).A .任意掷一枚均匀的硬币,正面朝上 B . 篮球运动员投篮,投进篮筐 C . 一个星期有七天 D . 打开电视机,正在播放新闻【答案】C【解析】A 选项任意掷一枚均匀的硬币,可能正面朝上也可能反面朝上,是随机事件. B 选项篮球运动员投篮,可能投进篮筐,也可能未投进篮筐,是随机事件. C 选项一个星期有七天是必然事件.D 选项打开电视机,可能正在播放新闻,也可能不在播放新闻,是随机事件.3.在平面直角坐标系中,点B 的坐标为(3,1),则点B 关于原点的对称点的坐标为( ). A . (3,1)- B . (3,1)- C . (1,3)-- D . (3,1)-- 【答案】D【解析】关于原点对称,横纵坐标都变为相反数.4.如图,AC 与BD 相交于点E ,AD BC ∥.若2AE =,3CE =,3AD =,则BC 的长度是( ).A .2 B .3 C . 92D . 6【答案】C 【解析】 ∵AD BC ∥, ∴AE ADEC BC=, ∵2AE =,3CE =,3AD =, ∴92BC =.5.如图,在Rt ABC △中,90C ∠=︒,3BC =,4AC =,则sin A 的值是( ).A .34B .43C .35D .45【答案】C 【解析】∵90C ∠=︒,3BC =,4AC =, ∴5AB =, ∴3sinA 5=.6.如图,反比例函数2y x =-的图象上有一点A ,过点A 作AB x ⊥轴于B ,则AO B S △是( ). A .12B . 1C . 2D . 4【答案】B 【解析】由k 得几何意义,可知12AOB k S ==△.7.如图,在⊙O 中,100BOC ∠=︒,则A ∠等于( ).A . 100︒B . 50︒C . 40︒D . 25︒【答案】B 【解析】 ∵100BOC ∠=︒,8.如图,将AOB △绕点O 按逆时针方向旋转45︒后得到A OB ''△,若15AOB ∠=︒,则AOB '∠的度数是( ).A . 25︒B . 30︒C . 35︒D . 40︒【答案】B 【解析】∵将AOB △绕点O 按逆时针方向旋转45︒, ∴旋转角45BOB '∠=︒, ∵15AOB ∠=︒, ∴30AOB '∠=︒.9.如图,点D ,E 分别在ABC △的AB ,AC 边上,增加下列条件中的一个: ①AED B ∠=∠,②ADE C ∠=∠,③AE DE AB BC =,④AD AEAC AB=,⑤2AC AD AE =⋅, 使ADE △与ACB △一定相似的有( ).A . ①②④B . ②④⑤C . ①②③④D . ①②③⑤【答案】A 【解析】①添加条件AED B ∠=∠,已知A ∠是公共角,可根据两角对应相等判定ADE △与ACB △相似.②添加条件ADE C ∠=∠,已知A ∠是公共角,可根据两角对应相等判定ADE △与ACB △相似. ③添加条件AE DE AB BC =,需再知道夹角AED B ∠=∠才能判定相似,因此只添加AE DEAB BC=不可判定ADE △与ACB △相似. ④添加条件AD AEAC AB=,已知A ∠是公共角,可根据两边成比例且夹角相等判定ADE △与ACB △相似.⑤添加条件2AC AD AE =⋅,无法判定ADE △与ACB △相似.10.小阳在如图①所示的扇形舞台上沿O M N --匀速行走,他从点O 出发,沿箭头所示的方向经过点M 再走到点N ,共用时70秒.有一台摄像机选择了一个固定的位置记录了小阳的走路过程,设小阳走路的时间为t (单位:秒),他与摄像机的距离为y (单位:米),表示y 与t 的函数关系的图象大致如图②,则这个固定位置可能是图①中的( ).A .点Q B . 点P C . 点M D . 点N图①图②【答案】B 【解析】①若固定位置在点M 或点N ,因为小阳会经过点M 和点N ,所以会有一个时刻0y =,所以固定位可能是点M 或点N ;②若固定位置在点Q ,小阳从O M -的过程中,y 的变化趋势为先减小后增大,与题目中的图象不符;③若固定位置在点P 则符合题意.二、填空题(本题共18分,每小题3分)11.在一个不透明的袋子中,装有2个红球和3个白球,它们除颜色外其余均相同.现随机从袋中摸出一个球,颜色是白色的概率是__________.【答案】35【解析】一共5种情况,摸出白球的情况为3种,因此摸出白色的概率是35.12.如图,正六边形ABCDEF 内接于⊙O ,⊙O 的半径为1,则AB 的长为__________.【答案】π3【解析】如图连接OA 和OB ,∵正六边形ABCDEF 内接于⊙O , ∴60AOB ∠=︒, ∵⊙O 的半径为1, ∴π60π1π1801803n r AB ⨯===.13.已知y 是x 的反比例函数,且在每个象限内,y 随x 的增大而减小.请写出一个满足以上条件的函数表达式__________. 【答案】1y x=(答案不唯一) 【解析】∵反比例函数在每个象限内,y 随x 的增大而减小, ∴0k >,∴只要满足0k >的反比例函数即可,如1y x=. 14.如图,矩形ABCD 中,点E 是边AD 的中点,BE 交对角线AC 于点F ,则AFE △与BCF △的面积比等于__________.【答案】14【解析】∵四边形ABCD 是矩形, ∴AD BC =,AD BC ∥, ∴AEF CBF ∽△△, ∵点E 是边AD 的中点, ∴12AE AD =, ∴12AE BC =, ∴AFE △与BCF △的面积比等于14.15.如图,⊙O 的半径为6,OA 与弦AB 的夹角是30︒,则弦AB 的长度是__________.【答案】 【解析】过点O 作OC AB ⊥, 可得12AC BC AB ==, ∵OA 与弦AB 的夹角是30︒,⊙O 的半径为6, ∴30AOC ∠=︒,6OA =, ∴3OC =,由勾股定理可得AC =,∴AB =16.如图,已知反比例函数2y x=的图象上有一组点1B ,2B ,,n B ,它们的横坐标依次增加1,且点1B 横坐标为1.“①,②,③”分别表示如图所示的三角形的面积,记1S =-①②,2S =-②③,,则7S 的值为__________,12n S S S ++⋯+=__________(用含n 的式子表示).【答案】156;1nn +【解析】设点1B 的坐标为11(,)x y ,2B 的坐标为22(,)x y ,,n B 的坐标为(,)n n x y ,∵横坐标依次增加1,且点1B 横坐标为1, ∴以x 轴上的边为底时,三角形的底均为1,∴1121()2S y y =-=-①②,2231()2S y y =-=-②③∴8771()2y S y =-=-⑦⑧∵横坐标依次增加1,且点1B 横坐标为1, ∴77x =,88x =, ∴727y =,814y =, ∴78711()256y S y =-=.1212231111()()()222n n n S S S y y y y y y +++⋯+=-+-++- 122311()2n n y y y y y y +=-+-++-111()2n y y +=- 12(2)21n =-+ 1nn =+.三、解答题(本题共72分,第17-26小题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.计算: 12cos 45tan 60sin 302︒-︒+︒--.【解析】12cos 45tan 60sin 302︒-︒+︒--11222=-=.18.如图,在Rt ABC △中,90C ∠=︒,D 是AC 边上一点,DE AB ⊥于点E .若2DE =,3BC =,6AC =,求AE 的长.【答案】4AE =【解析】∵90C ∠=︒,DE AB ⊥, ∴90AED C ∠=∠=︒. 又∵A A ∠=∠, ∴AED ACB ∽△△.∴EA EDCA CB=. 又∵2DE =,3BC =,6AC =, ∴263EA =. ∴4AE =.19.如图,点A 的坐标为(3,2),点B 的坐标为(3,0).作如下操作: ①以点A 为旋转中心,将ABO △顺时针方向旋转90︒,得到11AB O △;②以点O 为位似中心,将ABO △放大,得到22A B O △,使相似比为1:2,且点2A 在第三象限.(1)在图中画出11AB O △和22A B O △. (2)请直接写出点2A 的坐标:__________.【答案】(1)答案见解析. (2)(6,4)-- 【解析】 (1)(2)点2A 的坐标为(6,4)--20.党的十八大提出,倡导富强、民主、文明、和谐,倡导自由、平等、公正、法治,倡导爱国、敬业、诚信、友善,积极培育和践行社会主义核心价值观,这24个字是社会主义核心价值观的基本内容.其中:“富强、民主、文明、和谐”是国家..层面的价值目标; “自由、平等、公正、法治”是社会..层面的价值取向; “爱国、敬业、诚信、友善”是公民个人....层面的价值准则. 小光同学将其中的文明”、“和谐”、“自由”、“平等”的文字分别贴在4张硬纸板上,制成如右图所示的卡片.将这4张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,不放回...,再随机抽取一张卡片.A B C D(1)小光第一次抽取的卡片上的文字是国家..层面价值目标的概率是__________. (2)请你用列表法或画树状图法,帮助小光求出两次抽取卡片上的文字一次是国家..层面价值目标、一次是社会..层面价值取向的概率(卡片名称可用字母表示). 【答案】(1)12 (2)23【解析】(12种,. (2) ABCDB ACDC ABDDABC第一次第二次共有12种情况,其中符合题意的有8种,∴23P =21.如图,在平面直角坐标系xOy 中,正比例函数2y x =与反比例函数ky x=的图象交于A ,B 两点,点A 的横坐标为2,AC x ⊥轴于点C ,连接BC . (1)求反比例函数的表达式;(2)若点P 是反比例函数ky x=图象上的一点,且满足OPC △的面积是ABC △面积的一半,请直接写出点P 的坐标.【答案】(1)8y x=(2)(2,4)P 或(2,4)--. 【解析】(1)将2x =代入2y x =中,得224y =⨯=. ∴点A 坐标为(2,4). ∵点A 在反比例函数ky x=的图象上, ∴248k =⨯=.∴反比例函数的表达式为8y x=. (2)(2,4)P 或(2,4)--. 22.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.《九章算术》中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图①)阅读完这段文字后,小智画出了一个圆柱截面示意图(如图②),其中BO CD ⊥于点A ,求间径就是要求⊙O 的直径.再次阅读后,发现AB =__________寸,CD =__________寸(一尺等于十寸),通过运用有关知识即可解决这个问题.请你补全题目条件,并帮助小智求出⊙O 的直径.图①图②【答案】 【解析】(1)1;10(2)连接CO ,∵BO CD ⊥,∴152CA CD ==.设CO x =,则1AO x =-, 在Rt CAO △中,90CAO ∠=︒, ∴222AO CA CO +=. ∴()22215x x -+=.解得13x =,∴⊙O 的直径为26寸.23. 如图,在一次户外研学活动中,老师带领学生去测一条东西流向的河流的宽度(把河两岸看做平行线,河宽即两岸之间的垂线段的长度).某同学在河南岸A 处观测到河对岸水边有一棵树P ,测得P 在A 北偏东60︒方向上,沿河岸向东前行20米到达B 处,测得P 在B 北偏东45︒ 1.414,1.732≈).【答案】272274.~.均正确 【解析】过P 作PC AB ⊥于点C ,∴90ACP ∠=︒.由题意可知,30PAC ∠=︒,45PBC ∠=︒. ∴45BPC ∠=︒.∴BC PC =.∵20AB =,27.227.4~均正确)答:河流宽度约为27.3米.24. 如图,已知ABC △是等边三角形,以AB 为直径作⊙O ,交BC 边于点D ,交AC 边于点F ,作DE AC ⊥于点E . (1)求证:DE 是⊙O 的切线;(2)若ABC △的边长为4,求EF 的长度.【答案】(1)证明见解析. (2)1EF =【解析】(1)证明:连接OD ,∵ABC △是等边三角形, ∴60B C ∠=∠=︒. ∵OB OD =,∴60ODB B ∠=∠=︒. ∵DE AC ⊥, ∴90DEC ∠=︒. ∴30EDC ∠=︒. ∴90ODE ∠=︒. ∴DE OD ⊥于点D . ∵点D 在⊙O 上,∴DE 是⊙O 的切线. (2)连接AD ,BF , ∵AB 为⊙O 直径,∴90AFB ADB ∠=∠=︒. ∴AF BF ⊥,AD BD ⊥. ∵ABC △是等边三角形,∴122DC BC ==,122FC AC ==.∵30EDC ∠=︒,∴112EC DC ==.∴1FE FC EC =-=.25.如图①,在Rt ABC △中,90C ∠=︒.将ABC △绕点C 逆时针旋转得到A B C ''△,旋转角为α,且0180α︒<<︒.在旋转过程中,点B '可以恰好落在AB 的中点处,如图②.(1)求A∠的度数.(2)当点C到AA'的距离等于AC的一半时,求α的度数.图①图②备用图【答案】(1)30A∠=︒(2)120α=︒【解析】(1)将ABC△绕点C逆时针旋转得到A B C''△,旋转角为α,∴CB CB'=.∵点B'可以恰好落在AB的中点处,∴点B'是AB的中点.∵90ACB∠=︒,∴12CB AB BB''==.∴CB CB BB''==.即CBB'△是等边三角形.∴60B∠=︒.∵90ACB∠=︒,∴30A∠=︒.(2)点C到'AA的距离等于AC的一半,即12CD AC=.在Rt ADC△中,90ADC∠=︒,1sin2CDCADAC∠==,∴30CAD∠=︒.∵CA CA'=,∴30A CAD '∠=∠=︒.∴120ACA '∠=︒,即120α=︒.26. 有这样一个问题:探究函数262x y x -=-的图象与性质. 小慧根据学习函数的经验,对函数262x y x -=-的图象与性质进行了探究. 下面是小慧的探究过程,请补充完成:(1)函数262x y x -=-的自变量x 的取值范围是___________. (2)列出y 与x 的几组对应值.请直接写出m 的值,m = __________.(3)请在平面直角坐标系xOy 中,描出以上表中各对对应值为坐标的点,并画出该函数的图象.(4)结合函数的图象,写出该函数的两条性质:①;② .y【答案】 (1)2x ≠ (2)3m =(3)答案见解析. (4)答案见解析. 【解析】 (1)2x ≠ (2)3m = (3)如图所示:(4)可以从对称性、增减性、渐近性、最值、连续性、与坐标轴交点、图象所在象限等方面作答. 27. 我们将能完全覆盖某平面图形的最小圆...称为该平面图形的最小覆盖圆......例如线段AB 的最小覆盖圆就是以线段AB 为直径的圆.(1)请分别作出图①中两个三角形的最小覆盖圆(要求用尺规作图,保留作图痕迹,不写作法);BB图①(2)三角形的最小覆盖圆有何规律?请直接写出你所得到的结论(不要求证明); (3)某城市有四个小区E ,F ,G ,H (其位置如图②所示),现拟建一个手机信号基站,为了使这四个小区居民的手机都能有信号,且使基站所需发射功率最小(距离越小,所需功率越小),此基站应建在何处?请写出你的结论..并说明研究思路.【答案】(1)答案见解析. (2)答案见解析. (3)答案见解析. 【解析】 (1)如图所示:(2)锐角三角形的最小覆盖圆是其外接圆,钝角三角形的最小覆盖圆是以其最长边为直径的圆,直角三角形的最小覆盖圆二者均可.(说明:写出三角形的最小覆盖圆是其外接圆,或是以其最长边为直径的圆,各给1分) (3)结论:HEF △的外接圆的圆心为手机信号基站所在位置. 研究思路:a .手机信号基站应建在四边形EFGH 的最小覆盖圆的圆心处;所以先考虑四边形EFGH 的外接圆,因为对角不互补,所以该四边形没有外接圆;b .作四边形对角线,将四边形分割成两个三角形,考虑其中一个三角形的最小覆盖圆能否覆盖另一个三角形,从而将四边形最小覆盖圆问题转化为三角形最小覆盖圆问题来研究;c .若沿GE 分割,因为180GHE GFE ∠+∠<︒,所以这两个三角形的最小覆盖圆均不能完全覆盖另一个三角形;d .若沿HF 分割,因为180HEF HGF ∠+∠>︒,所以存在一个三角形的最小覆盖圆能完全覆盖另一个三角形的情况,又因为90HEF ∠<︒,所以HEF △的最小覆盖圆,即其外接圆能完全覆盖HGF △,因此HEF △的外接圆的圆心为手机信号基站所在位置.B28.如图①,在平面直角坐标系中,直径为的⊙A 经过坐标系原点(0,0)O ,与x 轴交于点B ,与y轴交于点(0C . (1)求点B 的坐标;(2)如图②,过点B 作⊙A 的切线交直线OA 于点P ,求点P 的坐标; (3)过点P 作⊙A 的另一条切线PE ,请直接写出切点E 的坐标.图①图②【答案】 (1)(3,0)B(2)9(2P (3)3(,2E .【解析】(1)如图①,连接BC .∵90BOC ∠=︒,∴BC 是⊙A 的直径.∴BC =,∵(0C ,∴OC =∴3OB =. ∴(3,0)B .(2)如图②,过点P 作PD x ⊥轴于点D . ∵PB 为⊙A 的切线, ∴90PBC ∠=︒.在Rt BOC △中,(3,0)B,(0,C ,图②图①∴tan OC OBC OB ∠==. ∴30OBC ∠=︒. ∴30AOB ∠=︒.∴18030OPB POB ABO ABP ∠=︒-∠-∠-∠=︒.∴3OB BP ==.在Rt PBD △中,90PDB ∠=︒,60PBD ∠=︒,3BP =,∴32BD =,PD =. ∵3OB =, ∴92OD OB BD =+=.∴9(,2P . (3)3(,2E .29.在数学活动课上,老师提出了一个问题,希望同学们进行探究.在平面直角坐标系中,若一次函数6y kx =+的图象与x 轴交于点A ,与y 轴交于点B ,与反比例函数6y x=的图象交于C 、D 两点,则AD 和BC 有怎样的数量关系?同学们通过合作讨论,逐渐完成了对问题的探究.小勇说:我们可以从特殊入手,取1k =-进行研究(如图①),此时我发现AD BC =. 小攀说:在图①中,分别从点C 、D 两点向两条坐标轴作垂线,根据所学知识可以知道有两个图形的面积是相等的,并能求出确定的值,而且在图②中,此时1k ≠- ,这一结论仍然成立,即__________的面积=__________的面积,此面积的值为__________.(1)请完成以上填空;(2)请结合以上三位同学的讨论,对图②所示的情况下,证AD BC =; 小峰突然提出一个问题:通过刚才的证明,我们可以知道当直线与双曲线的两个交点都在第一象限时,AD BC =总是成立的,但我发现当k 的取值不同时,这两个交点有可能在不同象限,结论还成立吗?(3)请你结合小峰提出的问题,在图③中画出示意图,并判断结论是否成立.若成立,请写出证明过程;若不成立,请说明理由. 【答案】(1)四边形OHCF ,四边形OIDG ,6,GH (2)证明见解析. (3)证明见解析. 【解析】(1)四边形OHCF ,四边形OIDG ,6, (2)成立,证明如下:如图①,连接GH ,GC ,DH , ∵点C ,D∴FCHO GDIO S S =矩形矩形.∴1122FCHO GDIO S S =矩形矩形∴CGH GHD S S =△△.∴点C ,D 到GH ∴CD GH ∥.∴四边形BCHG ∴BC GH =,GH DA =即AD BC =.(3)画出图形,得到∵点C ,D ∴FCHO GDIO S S =矩形矩形.图∴1122FCHO GDIO S S =矩形矩形. ∴CGH GHD S S =△△.∴点C ,D 到GH 的距离相等. ∴CD GH ∥∴四边形BCHG 和四边形GHAD 都是平行四边形. ∴BC GH =,GH DA =. 即AD BC =.。