3.理解一元二次方程的根就是二次函数与x轴交点的横坐标.
新课导入
新课导入
情境引入
1.一元二次方程ax2+bx+c=0 的求根公式是什么? 当b2-4ac≥0时,
x b b2 4ac 2a
当b2-4ac<0时,方程无实数根.
新课导入
新课导入
2 . 求出下列一元二次方程的根: (1)x2+2x=0 (2)x2-2x+1=0 (3)x2-2x+2=0 . 解:(1)x1=0, x2=-2.
平移后的解析式为y=-(x+2)2+2=-x2-4x-2.
新课导入
新知探究
(3)由
y=2x+n, y=-x2-4x-2,
消去y得到x2+6x+n+2=0,
由题意Δ≥0,
∴36-4n-8≥0,∴n≤7,
∵n≥m,m=1,
∴1≤n≤7,
令y′=n2-4n=(n-2)2-4,
∴当n=2时,y′的值最小,最小值为-4,
新课导入
课堂小测
3.已知二次函数y=x2+bx-c的图象与x轴两交点的坐标分别为(m,0), (-3m,0)(m≠0). (1)证明:4c=3b2. (2)若该函数图象的对称轴为直线x=1,试求二次函数的最小值.
新课导入
课堂小测
解 :(1)证明:依题意知m,-3m是一元二次方程x2+bx-c=0的两个根. 根据一元二次方程根与系数的关系, 得m+(-3m)=-b , m·(-3m)=-c , b=2m , c=3m2 , ∴4c=12m2=3b2 .
新课导入
新知探究
【跟踪训练】 1.若抛物线y=ax2+bx+c,当 a>0,c<0时,图象与x轴的交点情况是( C )