矢量的波动方程,称为亥姆霍兹方程。 瞬时矢量
理想介质
t
t
Hale Waihona Puke 复矢量2 2 E k E 0 2 2 H k H 0
2 2 E E 2 0 t 2 2 H H 0 2t
(k )
E0 H 0 cos 2 t (r )
使用二次式时需要注意的问题
二次式只有实数的形式,没有复数形式
场量是实数式时,直接代入二次式即可 场量是复数式时,应先取实部再代入,即“ 先取实后相
乘”
如复数形式的场量中没有时间因子,取实前先补充时间因子
瞬时电磁场能流密度
S(r,t) E(r, t ) H (r, t )
故电场的复矢量为
E ( z) ex [0.03e j / 2 0.04e j / 3 ]e jkz
E ( z) ex [0.03e
H ( z) 1 j 0 E ( z) ey
j / 2
0.04e
j / 3
]e
jkz
(2)由复数形式的麦克斯韦方程,得到磁场的复矢量
例 将下列场矢量的瞬时值形式写为复数形式
E ( z, t ) ex Exm cos(t kz x ) ey E ym sin(t kz y )
解:由于
E ( z, t ) ex Exm cos( t kz x ) ey E ym cos(t kz y ) 2
H J jD E jB D B 0
~ t
j
略去“.”和下标m