电磁场2静电场
- 格式:ppt
- 大小:7.08 MB
- 文档页数:56
l 2 + 4l 25 a 2 ⎭ ⎭ 2l α 0 ⎝ 0 0 2x0 r 0r 0l 0 第二章 静电场(注意:以下各题中凡是未标明电介质和导体的空间,按真空考虑) 2-1 在边长为a 的正方形四角顶点上放置电荷量为q 的点电荷,在正方形几何中心处放置电荷量为Q 的点电荷。
问Q 为何值时四个顶点上的电荷受力均为零。
解 如图建立坐标系,可得q ⎛ 12 1 ⎫ Q 2 1 E x e x = 4πε + 2 ⨯ 2a 2 ⎪e x + 4πε ⨯ 2 ⨯ a 2 / 2 e x q ⎛ 1 2 1 ⎫ Q 2 1 E y e y =+ 4πε 0 ⎝ 2 ⨯ 2a 2 ⎪e y + 4πε ⨯ 2 ⨯ a 2 / 2 e y ⎛ 2 ⎫ ⎛ 2 ⎫据题设条件,令 q 1 + ⎪ + Q 4 ⎪ = 0 ,2 ⎝ 解得 Q = - q(1 + 2 2)4⎭ ⎝ ⎭2- 有一长为2l ,电荷线密度为τ 的直线电荷。
1) 求直线延长线上到线电荷中心距离为2l 处的电场强度和电位; 2) 求线电荷中垂线上到线电荷中心距离为2l 处的电场强度和电位。
解 1)如图(a )建立坐标系,题设线电荷位于 x 轴上l ~ 3l 之间,则 x 处的电荷微元在坐标原点产生的电场强度和电位分别为d E = τd x (-e ), d ϕ = τd x4πε 0 x 4πε 0 x由此可得线电荷在坐标原点产生的电场强度和电位分别为 E (0) = 3l d E3lτd x(- e ) =τ(- e )⎰l⎰l4πε 0xx6πε lxϕ (0) = ⎰3ld ϕ = ⎰3lτd x =τln 3ll4πε 0 x 4πε 02)如图(b )建立坐标系,题设线电荷位于 y 轴上- l ~ l 之间,则 y 处的电荷微元在点(0,2l ) 处产生的电场强度和电位分别为d E = τd y (-e ), d ϕ = τd y4πε 2r 4πε 0 r 式中, d y = 2l d θ cos 2 θ , r = , sin α = l cos θ = 1 ,分别代入上两式,并考虑 对称性,可知电场强度仅为 x 方向,因此可得所求的电场强度和电位分别为 E (2l ,0) = α = 2eα τd ycos θ = τe x cos θd θ = τe x sin α = τe x 2⎰0 d E x ⎰0 4πε 2 4πε ⎰0 4πε 0l 4 5πε 0l ϕ (2l ,0) = α ϕ = τ α d θ = τ ⎡ ⎛ 1 tan -1 1 + π ⎫⎤ = 0.24τ 2⎰0 d 4πε ⎰0co s θ 2πε ln ⎢tan 2 2 4 ⎪⎥ πε 0 0 ⎣ ⎝ 2-3 半径为a 的圆盘,均匀带电,电荷面密度为σ 。
工程电磁场总结笔记
工程电磁场总结笔记
1. 电磁场的概念:电磁场是指由电荷和电流所引起的物理现象,包括静电场和电流场。
2. 静电场:静电场是指电荷之间由于电荷不平衡而产生的电场。
电荷分为正电荷和负电荷,正电荷之间相互排斥,负电荷之间相互排斥,正负电荷之间相互吸引。
静电场的强弱由电荷量和距离的平方倒数决定。
3. 电流场:电流场是指电流通过导体时所产生的电场。
电流流动时会形成环绕导体的电磁场,根据安培定理,电流越大,产生的磁场越强。
电流场的强弱由电流大小和导线距离的关系决定。
4. 电磁场的相互作用:电磁场中的电荷和电流相互作用,电荷和电流受到力的作用。
根据洛伦兹力公式,电荷在电磁场中受到的力等于电荷电场力和磁场力的矢量和。
电磁场的相互作用是电磁感应和电磁辐射的基础。
5. 电磁感应:当导体中的磁通量发生变化时,会在导体中产生感应电动势,从而产生感应电流。
根据法拉第电磁感应定律,感应电动势的大小与磁通量和时间的变化率成正比。
电磁感应是电动机和发电机的基本原理。
6. 电磁辐射:当电荷加速运动时,会产生电磁辐射,即电磁波。
电磁波具有电场和磁场的振荡,可以在真空中传播。
电磁辐射是无线通信和无线电广播的基础。
7. 电磁场的应用:工程电磁场的应用广泛,包括通信、雷达、无线电、电视、计算机等。
通过电磁场的相互作用,可以实现信息的传输和处理。
工程电磁场学是工程学、物理学和电子学等学科的重要基础。
电磁场实验讲义实验一 二线输电线静电场的造型 一、试验目的:1.学习两维电场模拟的原理与方法。
2.通过测量等位线及绘制电力线,学习电场图形的描绘方法。
二、实验原理(见教材静电模拟一节) 三、实验内容及步骤1、 将方格纸和导电纸的相对位置固定好,定好方格纸的坐标原点及x 轴y 轴。
2、连接线路,调节电源电压为9V ,依次测绘对电源负极电位分别为1V 、2V 、3V 、4V 、4.5V 、5V 、6V 、7V 、8V 时的各等位线。
四 实验原理1. 两导线电轴之间的电场是平行平面场;2. 电力线与等位线正交, 由于两线输电线的等位线方程为22222)12(2)11(-=+-+-K bK y b K K x所以得电力线方程为:2222)(c b c y x +=++3. 利用静电比拟原理, 使用电流线模拟电力线. 五、实验设备1.模拟试验台一套(导电纸半径为90mm ,电极半径为6.5mm ,电极几何中心连线构成的弦对应的圆心角为120)直流稳压电源一台; 数字万用表一只六、总结报告要求1.在实验用的方格纸上描绘等位线。
2.根据实验测得的等位线,描绘电力线,并与理论计算所得的电力线进行比较。
3.根据实验结果,试分析主要是哪些因素影响本实验精度?你认为这些因素是否可以解决。
实验二 接地电阻的研究 一、试验目的:1.学习用模拟实验的方法研究场的问题。
2.研究接地电阻与接地器的形状、大小以及埋入深度的关系。
3.观察接地器周围导电媒质表面上电位的分布。
二、原理与说明1.接地电阻指电流由接地装置流入大地再经大地向远处扩散时所遇到的电阻。
接地电阻主要是接地体到无限远处的大地的电阻,而接地线和接地体本身的电阻一般可以忽略。
对于半球埋地的接地器的电阻,可以用镜像法求解。
对于整个球埋入地下,而地面的影响又不可以忽略时,也可以用镜像法近似求解。
实际工作中,会遇到一些问题,它们既难通过实验获得满意的解答,又不便于实地测量,这类问题可以用“模拟法”研究。
电磁感应与电磁场的知识点总结电磁感应是电磁学中的一个重要概念,指的是导体中的电流会受到磁场的影响而产生感应电动势。
而电磁场则是由电荷和电流所产生的物理现象,可以用来描述电磁力的作用。
本文将对电磁感应与电磁场的相关知识点进行总结,帮助读者更好地理解这一领域。
一、电磁感应1. 法拉第电磁感应定律法拉第电磁感应定律是电磁感应研究的基础,它表明当导体中的磁场发生变化时,会产生感应电动势。
具体表达式为:感应电动势等于磁通量变化率的负值乘以线圈的匝数。
这个定律解释了电磁感应现象的产生原理。
2. 楞次定律楞次定律是法拉第电磁感应定律的补充,它描述了感应电流的方向。
根据楞次定律,感应电流的产生会产生磁场,其磁场的方向使得感应电流所产生的磁场与引发感应电流变化的磁场方向相反。
换言之,楞次定律说明了感应电流的方向与磁场变化的关系。
3. 磁通量与磁感应强度磁通量描述的是磁场通过某一平面的程度,与磁场的面积和磁感应强度有关。
磁感应强度表示单位面积上的磁通量,它的方向垂直于磁场线。
通过改变磁通量和磁感应强度,可以实现对电磁感应的控制。
二、电磁场1. 静电场与静电力静电场是由电荷所产生的一种场,它可以通过电场线来表示。
静电力是静电场作用在电荷上的力,根据库仑定律,静电力与电荷之间的距离和大小成反比。
2. 磁场与磁力磁场是由电流所产生的一种场,它可以通过磁感线来表示。
磁力是磁场对电荷和电流所产生的力,它的方向垂直于磁场线和电荷或电流的方向。
3. 电磁场和电磁力电磁场是由电荷和电流共同产生的场,它是电场和磁场的综合体现。
电磁力是电场和磁场对电荷和电流所产生的综合力,它同时包含了静电力和磁力的作用。
4. 麦克斯韦方程组麦克斯韦方程组是描述电磁场性质的基本方程,它由四个方程组成。
其中包括了法拉第电磁感应定律、库仑定律以及电磁场的高斯定律和安培环路定律。
麦克斯韦方程组的推导和理解有助于深入学习电磁场的原理和性质。
总结:电磁感应和电磁场是电磁学中的两个核心概念,通过磁场对导体产生感应电动势,我们可以利用电磁感应现象实现电磁能量的转换和传输。