差分信号线的原理和优缺点分析
- 格式:doc
- 大小:24.00 KB
- 文档页数:7
差分信号线的定义和优点一个差分信号是用一个数值来表示两个物理量之间的差异。
从严格意义上来讲,所有电压信号都是差分的,因为一个电压只能是相对于另一个电压而言的。
在某些系统里,系统'地'被用作电压基准点。
当'地'当作电压测量基准时,这种信号规划被称之为单端的。
我们使用该术语是因为一个差分信号是用一个数值来表示两个物理量之间的差异。
从严格意义上来讲,所有电压信号都是差分的,因为一个电压只能是相对于另一个电压而言的。
在某些系统里,系统'地'被用作电压基准点。
当'地'当作电压测量基准时,这种信号规划被称之为单端的。
我们使用该术语是因为信号是用单个导体上的电压来表示的。
另一方面,一个差分信号作用在两个导体上。
信号值是两个导体间的电压差。
尽管不是非常必要,这两个电压的平均值还是会经常保持一致。
我们用一个方法对差分信号做一下比喻,差分信号就好比是跷跷板上的两个人,当一个人被跷上去的时候,另一个人被跷下来了 - 但是他们的平均位置是不变的。
继续跷跷板的类推,正值可以表示左边的人比右边的人高,而负值表示右边的人比左边的人高。
0 表示两个人都是同一水平。
图1 用跷跷板表示的差分信号应用到电学上,这两个跷跷板用一对标识为V+和V-的导线来表示。
当V+>V-时,信号定义成正极信号,当V+<V-时,信号定义成负极信号。
图2 差分信号波形和单端等价图2 差分对围绕摆动的平均电压设置成 2.5V。
当该对的每个信号都限制成0-5V 振幅时,偏移该差分对会提供一个信号摆动的最大范围。
当用单一 5V 电源操作时,经常就会出现这种情况。
当不采用单端信号而采取差分信号方案时,我们用一对导线来替代单根导线,增加了任何相关接口电路的复杂性。
那么差分信号提供了什么样的有形益处,才能证明复杂性和成本的增加是值得的呢?差分信号的第一个好处是,因为你在控制'基准'电压,所以能够很容易地识别小信号。
差分信号(Differential Signal)(转自EDN,对差分信号理解得比较的文章,供大家参考)差分信号(Differential Signal)在高速电路设计中的应用越来越广泛,电路中最关键的信号往往都要采用差分结构设计,什么另它这么倍受青睐呢?在PCB 设计中又如何能保证其良好的性能呢?带着这两个问题,我们进行下一部分的讨论。
何为差分信号?通俗地说,就是驱动端发送两个等值、反相的信号,接收端通过比较这两个电压的差值来判断逻辑状态“0”还是“1”。
而承载差分信号的那一对走线就称为差分走线。
差分信号和普通的单端信号走线相比,最明显的优势体现在以下三个方面:a.抗干扰能力强,因为两根差分走线之间的耦合很好,当外界存在噪声干扰时,几乎是同时被耦合到两条线上,而接收端关心的只是两信号的差值,所以外界的共模噪声可以被完全抵消。
b.能有效抑制EMI,同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场可以相互抵消,耦合的越紧密,泄放到外界的电磁能量越少。
c.时序定位精确,由于差分信号的开关变化是位于两个信号的交点,而不像普通单端信号依靠高低两个阈值电压判断,因而受工艺,温度的影响小,能降低时序上的误差,同时也更适合于低幅度信号的电路。
目前流行的LVDS(low voltage differential signaling)就是指这种小振幅差分信号技术。
对于PCB 工程师来说,最关注的还是如何确保在实际走线中能完全发挥差分走线的这些优势。
也许只要是接触过Layout 的人都会了解差分走线的一般要求,那就是“等长、等距”。
等长是为了保证两个差分信号时刻保持相反极性,减少共模分量;等距则主要是为了保证两者差分阻抗一致,减少反射。
“尽量靠近原则”有时候也是差分走线的要求之一。
但所有这些规则都不是用来生搬硬套的,不少工程师似乎还不了解高速差分信号传输的本质。
下面重点讨论一下PCB 差分信号设计中几个常见的误区。
差分信号线的技术原理及设计要求10差分信号线的技术原理及设计要求电讯工程差分信号线的技术原理及设计要求景芳俞茂超(陕西黄河集团有限公司设计所西安710043)摘要:近几年由于消费市场对带宽的不断提高,传统的总线协议已经不能够满足要求了.新的总线协议则定义了更高的速率.串行总线中应用最多的差分信号由于其良好的抗干扰性,易于布局及更高的速率获得了广泛的应用.这篇文章中介绍了有关差分信号线的基本概念及原理,并以LVDS为例,对其系统设计提出了一些建议.最后简单的说明了差分系统中测量方面的一些常见的概念.关键词:差分信号LVDS测量1差分信号技术原理1.1什么是差分信号一个差分信号(DifferentialSig—na1)是用一个数值来表示两个物理量之间的差异.从严格意义上来讲,所C有电压信号都是差分的,因为一个电图1差分方程式:C=A一B压只能是相对于另一个电压而言的.在某些系统里,系统"地"被用作电压基准点.当"地"当作电压测量基准时,这种信号规划被称之为单端的.我们使用该术语是因为信号是用单个导体上的电压来表示的.其驱动器一般为电流驱动器,在接收一侧则一般是简单的100欧姆无源端接器,如图 1.在正引线上,电流正向流动,负引线构成电流的返回通路.接收器仅仅给出A和B线上的信号差.A和B线共有的噪声或者信号将被抑制掉.另一方面,一个差分信号作用在两个导体上.信号值是两个导体间的电压差.尽管不是非常必要,这两个电压的平均值还是会经常保持一致.差分信号用一对标识为V+和V一的导线来表示.当V+>V一时,信号定义成正极信号,当V+<V一时,信号定义成负极信号.当不采用单端信号而采取差分信号方案时,我们用一对导线来替代单根导线,增加了任何相关接口电路的复杂性.那么差分信号提供了什么样的有形益处,才能证明复杂性和成本的增加是值得的呢?1.2为什么使用差分信号(差分和LVDS信号的优势)▲高速率速度一信号的转换时间就是你能达到的速度的极限.更高的信号摆幅将需要花更长的时间才能完成转换.一个提高速度的办法就是缩短转换时间,但由于噪声,串扰和功率方面的原因,那是不现实的.为了提高速度,LVDS通过降低信号摆幅来加快转换过程.更短的转换时间,并不会增加串扰,EMI和功耗,因为信号摆幅大大减小了.一般来说,这减小了噪声裕度,电讯工程差分信号线的技术原理及设计要求但LVDS可以利用其差分传输方式来解决这个问题,在该方案中,信一噪比得以大大提高.图2表示出了信号摆幅变小以及向差分信号转移的趋势.一般,当信号摆幅减小时,噪声裕度也相应降低.然而,LVDS就不是这种情况,即使它的信号摆幅小于BTL或者GTL.它可以实现更大的信号裕度.这就是差分信号所带来的好处.TI'L/CMOS逻辑或者摆幅更小的技术(BTL和GTL)在底板中的使用,是当前设计工程师们一个共同的选择,但是它们提供的对噪声的抗扰性都达不到LVDS信号所具备的水平,消耗的功率过大,端接复杂,而且不易升级.CMOSTTLBTLGTL+LVDSLVCMOS图2各种信号电压幅度对比图▲低功耗LVDS的一个重要目标是实现低功耗.这是通过CMOS工艺的采用来实现的,该工艺的静态电流消耗极小.驱动器设计采用电流模式,因此开关的尖峰大为降低.这可以降低EMI,简化电源分配和退耦方面的要求.另外,工作电流一工作频率曲线也非常平坦.另一方面,对于电压模式驱动器而言,电源电流Ice随着频率增加会急剧增大.采用差分的数据传输方案后,负载电压得以下降,而同时提供±1V的噪声抑制能力(共模情况).这样,V od(对于422标准来说是2Vmin,对于PECL来说的800mV)可以降低到330mV(LVDS).即使转换时间为300ps,转换速率也维持在约1V/ns的水平上.100欧姆负载两端的330mV对应的负载电流仅为3.3mA,而422的负载电流大于20mA.LVDS解决了静态和动态电流问题,实现了功耗最低的接口,由于无需在封装中内藏散热条,集成度可以大为提高.▲对外部电磁干扰(EMI)高度免疫一个干扰源几乎相同程度地影响差分信号对的每一端.既然电压差异决定信号值,这样将忽视在两个导体上出现的任何同样干扰.除了对干扰不大灵敏外,差分信号比单端信号生成的EMI还要少.1.3差分信号的一个实例:LVDSLVDS(LowV oltageDifferentialSignaling)是一种低摆幅的电流型差分信号技术,它使得信号能在差分PCB线对或平衡电缆上以几百Mbps的速率传输,其低压幅和低电流驱动输出实现了低噪声和低功耗.LVDS驱动器由一个驱动差分线对的电流源组成?通常电流为3.5mA,LVDS接收器具有很高的输人阻抗,因此驱动器输出的电流大部分都流过100f~的匹配电阻,并在接收器的输入端产生大约350mA的电压,如图3.当驱动器翻转时,它改变流经电阻的电流方向,因此产生有效的逻辑"1"和逻辑"0"状态.低摆幅驱动信号实现了高速操作并减小了功率消耗,差分信号提供了适当噪声边缘和功率消耗大幅减少的低压摆幅.功率的大幅降低允许在单个集成电路上集成多个接口驱动器和接收器.这提高了PCB板的效能,减少了成本. LVDS驱动器一般为电流驱动器,在接收一侧则一般是简单的100Q无源端接器.在正12差分信号线的技术原理及设计要求电讯工程图3LVDS基本电路示意图引线上,电流正向流动,负引线构成电流的返回通路.接收器仅仅给出A和B线上A和B线共有的噪声或者信号将被抑制掉.2LVDS系统设计下面分七部分说明差分布线的设计要求.LVDS系统的设计要求设计者应具备超高速单板设计的经验并了解差分信号的理论.设计高速差分板并不很困难,下面将简要介绍一下各注意点.2.1PCB板(A)至少使用4层PCB板(从顶层到底层):LVDS信号层,地层,电源层,,丌L信号层;(B)使TTL信号和LYDS信号相互隔离,否则TTL可能会耦合到LVDS线上,最好将1-rL和LVDS信号放在由电源/地层隔离的不同层上;(C)使LVDS驱动器和接收器尽可能地靠近连接器的LVDS端;(D)使用分布式的多个电容来旁路LVDS设备,表面贴电容靠近电源/地层管脚放置;(E)电源层和地层应使用粗线,不要使用5OQ布线规则;(F)保持PCB地线层返回路径宽而短;(G)应该使用利用地层返回铜线的电缆连接两个系统的地层;(H)使用多过孔(至少两个)连接到电源层(线)和地层(线),表面贴电容可以直接焊接到过孑L焊盘以减少线头.2.2板上导线(A)微波传输线(microstrip)和带状线(stripline)都有较好性能;(B)微波传输线的优点:一般有更高的差分阻抗,不需要额外的过孑L;(C)带状线在信号间提供了更好的屏蔽.2.3差分线(A)使用与传输媒质的差分阻抗和终端电阻相匹配的受控阻抗线,并且使差分线对离开集成芯片后的间距为某一定值.这样能减少反射并能确保耦合到的噪声为共模噪需要的差分阻抗(differentialimpedance)决定;(B)使差分线对的长度相互匹配以减少信号扭曲,是为了保证两个差分信号时刻保持相反极性,减少共模分量;(C)不要仅仅依赖自动布线功能,而应仔细修改以实现差分阻抗匹配并实现差分线的隔离;(D)尽量减少过孔和其它会引起线路不连续性的因素;(E)避免将导致阻值不连续性的9O.走线,使用圆弧或45.折线来代替;(F)在差分线对内,两条线之间的距离应尽可能短,以保持接收器的共模抑制能力.在印制板上,两条差分线之间的距离应尽可能保持一致,以避免差分阻抗的不连续性.电讯工程差分信号线的技术原理及设计要求132.4终端(A)使用终端电阻实现对差分传输线的最大匹配,阻值一般在90~130n之间,系统也需要此终端电阻来产生正常工作的差分电压;(B)最好使用精度1~2%的表面贴电阻跨接在差分线上,必要时也可使用两个阻值各为50n的电阻,并在中间通过一个电容接地,以滤去共模噪声.2.5未使用的管脚所有未使用的LVDS接收器输入管脚悬空,所有未使用的LVDS和TTL输出管脚悬空,将未使用的rITI发送/驱动器输入和控制/使能管脚接电源或地.2.6媒质(电缆和连接器)选择(A)使用受控阻抗媒质,差分阻抗约为loon,不会引入较大的阻抗不连续性;(B)仅就减少噪声和提高信号质量而言,平衡电缆(如双绞线对)通常比非平衡电缆好;(C)电缆长度小于0.5m时,大部分电缆都能有效工作,距离在0.5m~lOm之间时,CA T3(Categiory3)双绞线对电缆效果好,便宜并且容易买到,距离大于10m并且要求高速率时,建议使用CA T5双绞线对..2.7在噪声环境中提高可靠性设计LVDS接收器在内部提供了可靠性线路,用以保护在接收器输入悬空,接收器输入短路以及接收器输入匹配等情况下输出可靠.但是,当驱动器三态或者接收器上的电缆没有连接到驱动器上时,它并没有提供在噪声环境中的可靠性保证.在此情况下,电缆就变成了浮动的天线,如果电缆感应到的噪声超过LVDS内部可靠性线路的容限时,接收器就会开关或振荡.如果此种情况发生,建议使用平衡或屏蔽电缆.另外,也可以外加电阻来提高噪声容限.当然,如果使用内嵌在芯片中的LVDS收发器,由于一般都有控制收发器是否工作的机制,因而这种悬置不会影响系统.3差分信号的测量对输入连接来说,差分放大器或探头与信号源的互连是产生误差的最大来源.为了维持输入的匹配,两个通道应尽可能一样.两个输入端的任何接线的都应长度相同.如果使用探头,其型号与长度也应相同.在测量高共模电压的低频信号时,应避免使用带衰减的探头.在高增益时则完全不能使用这种探头,因为差分信号的分析和LAYOUT不可能精地平衡它们的衰减量.当高电压或高频率的应用需要衰减时,应使用为差分放大器专门设计的专用无源探头.这种探头具有能精密调整直流衰减和交流补偿的装置.为获得最佳的性能,每一个特定的放大器都应专用一套探头,而且要根据这套探头附带的程序针对该放大器进行校准.一种常用的方法是将+和一输入缆线成对绞扭在一起.这样可减少拾取线路频率干扰和其他噪声的可能.4小结差分信号凭着它的高速,低功耗,对外部电磁干扰(EMI)高度的免疫已经被很多设计工程师接受,并广泛的推广采用,尤其是高速的通信领域中.参考文献《数据传输通信接口的区分》——NationalSemiconductor.。
差分线最在高速PCB设计中的应用差分线是高速PCB设计中常用的一种设计技术,可以有效地减少信号传输中的串扰和损耗,提高信号质量和系统性能。
差分线广泛应用于高速总线、存储器、CPU、高频信号传输等领域。
本文将从差分线的概念、原理、设计要点以及在高速PCB设计中的应用等方面进行介绍。
一、差分线的概念和原理差分线是指两根位于同一层或不同层的线对,其中一根为正线(P 线),另一根为负线(N线)。
正线和负线的波形是对称的,当正线上有电流流过时,负线也有相等大小的电流流过,但电流的方向相反。
差分线之间采用微分方式传输信号,将信号的变化转换为电流的变化,通过差分放大电路来恢复和解码。
差分线的原理在于利用两根线间的串扰来抵消外界噪声和抗干扰能力更强。
差分线信号传输时,P线和N线之间的距离应尽可能相等,长度匹配要求较高,以避免由于不匹配引起的时延不一致。
同时,还需要保证差分线之间的差异阻抗匹配,以降低末端反射和信号失真。
二、差分线设计的要点1.差分线宽度:影响差分线的传输特性和阻抗值,一般差分线宽度要比单端线宽度更宽,以确保达到所需的阻抗匹配。
2.差分线间距:差分线间距要尽可能大,以避免相互串扰,一般要求至少为线宽的3倍。
3.差分线的层间穿越方式:如果P线和N线在同一层布线,需要采用复合线的形式,在布线时注意交替覆盖,避免交叉。
如果P线和N线在不同层布线,则需要通过仿真和分析来确定层间穿越方式,以保证信号完整性。
4.差分线的末端匹配:差分线的末端需要进行匹配,一般可以通过串联电阻或者电流源来实现。
1.高速总线:在高速总线设计中,差分线广泛应用于处理器和存储器之间的数据传输。
如DDR、PCI Express等。
差分线能够提高传输速率、降低功耗、减少串扰和噪声干扰,提高总线的稳定性和可靠性。
2.CPU设计:差分线在CPU的布局中也有重要的应用,主要用于处理器和芯片组之间的高速数据传输。
差分线可以提供更高的数据传输速率和抗干扰能力,从而提高CPU的性能和稳定性。
差分定位的原理及优缺点
差分定位(Differential Positioning)是一种利用接收由多个卫星发送的信号并进行差分计算的定位方法。
它的主要原理是在一个基准接收器(Reference Receiver)和若干移动接收器(Roving Receivers)之间进行信号差分计算,从而消除由卫星和大气传播引起的误差,提高定位的精度。
差分定位的具体原理如下:
1. 基准接收器接收来自多个卫星的信号,并进行精确的位置计算,得到一个准确的定位结果。
2. 移动接收器也接收同样来自相同卫星的信号,并记录各个测量参数。
3. 移动接收器的测量结果与基准接收器的结果进行差分计算,通过相互之间的差异,得到移动接收器相对于基准接收器的位置偏差。
4. 利用差分计算的结果,对移动接收器进行位置校正,得到精确的移动接收器定位结果。
差分定位的优点包括:
1. 可以提高定位的精度,通常可以达到亚米甚至亚米级的精度。
2. 可以消除大气传播、钟差等误差,使定位结果更加准确可靠。
3. 可以实现实时定位或者后处理定位,具有一定的灵活性和适用性。
4. 可以利用已有的基准接收器进行定位,无需自己建立基准站,降低了成本和复杂性。
差分定位的缺点包括:
1. 需要有一个或多个基准接收器作为参考,如果没有可用的基准接收器,则无法实现差分定位。
2. 移动接收器和基准接收器之间的距离较远时,信号传输可能会有一定的延迟,影响差分计算的准确性。
3. 需要对接收到的信号进行复杂的计算和处理,对硬件和软件要求较高。
总的来说,差分定位是一种有效的提高定位精度的方法,适用于需要高精度定位的应用场景,如航空、航海、地质勘探等领域。
差分信号原理差分信号原理是指在信号处理中,利用差分信号来进行数据处理和分析的一种原理。
差分信号是指通过对信号进行差分运算得到的新信号,其可以用来观察信号的变化趋势、提取信号中的特征信息等。
在实际应用中,差分信号原理被广泛应用于各种领域,如通信、控制、图像处理等。
本文将介绍差分信号原理的基本概念、应用场景以及相关算法。
差分信号原理的基本概念。
差分信号是指通过对信号进行差分运算得到的新信号。
其数学表达式可以用下式表示:Δx[n] = x[n] x[n-1]其中,Δx[n]表示差分信号,x[n]表示原始信号。
差分信号可以反映信号在相邻采样点之间的变化情况,可以用来观察信号的变化趋势、提取信号中的特征信息等。
差分信号原理的应用场景。
差分信号原理在实际应用中具有广泛的应用场景。
其中,最常见的应用场景之一是在通信系统中。
在数字通信系统中,差分编码调制(Differential Coding)就是一种利用差分信号原理来进行信号调制的技术。
通过对信号进行差分编码,可以有效地抵抗传输过程中的噪声干扰,提高信号的可靠性和抗干扰能力。
此外,差分信号原理还被广泛应用于控制系统中。
在控制系统中,差分信号可以用来观察系统的动态响应,判断系统的稳定性和动态特性,从而实现对系统的有效控制。
在图像处理领域,差分信号原理也被广泛应用。
通过对图像进行差分运算,可以提取图像中的边缘信息,实现图像的边缘检测和特征提取。
差分信号原理的相关算法。
在实际应用中,为了实现对信号的差分处理,通常会采用一些相关的算法。
其中,最常见的算法之一是差分算法。
该算法可以对信号进行离散差分运算,得到差分信号。
此外,还有一些其他的算法,如差分脉冲编码调制(DPCM)、差分脉冲编码调制(DM)等,它们都是基于差分信号原理来进行信号处理和编码的。
总结。
差分信号原理是一种在信号处理中广泛应用的原理,通过对信号进行差分运算,可以得到新的差分信号,用来观察信号的变化趋势、提取信号中的特征信息等。
差分线规则引言差分线规则是一种在电路设计中广泛使用的方法,用于分析和解决电路中的问题。
通过应用差分线规则,工程师们可以更好地理解信号的传输和噪声干扰的影响,从而优化电路性能。
本文将详细介绍差分线规则的定义、原理和应用,以及与之相关的技术和发展。
什么是差分线规则差分线规则是一种电路设计原则,用于在信号传输线上处理差分信号。
差分信号是由两个相互关联的信号组成的,分别称为正向和反向信号。
差分线规则通过分析和设计差分信号传输线路,以最大程度地减少信号失真和干扰,提高信号的传输质量。
差分线规则广泛应用于高速数据传输、射频电路、模拟电路等领域。
差分线规则的原理差分线规则基于以下原理:1.差分信号的噪声抑制能力更强:正向信号和反向信号同时存在于差分线上,因此可以互相抵消噪声的影响。
相比之下,单端信号只有一个信号线,噪声更容易对其产生干扰。
2.差分线的阻抗匹配:为了确保信号的最佳传输质量,差分线的阻抗应该匹配信号源和负载。
阻抗不匹配会导致信号波形的失真和反射。
3.差分线的长度匹配:为了避免在信号传输过程中引入时延差异,差分线的长度应该保持一致。
长度不匹配会导致信号失真和抖动。
4.差分线的布局和屏蔽:差分信号传输线路的布局应该尽量远离其他干扰源,并通过屏蔽措施来减少外界干扰的影响。
差分线规则的应用差分线规则在电路设计中有广泛的应用,特别是在以下领域:1. 高速数据传输在高速数据传输中,例如PCIe、USB、以太网等接口,差分线规则用于确保信号的高速传输和抗干扰能力。
在PCB布板和电路设计阶段,需要根据差分线规则来设计传输线的路径和长度,以保证信号的完整性和可靠性。
2. 射频电路射频电路要求对信号的幅度和相位进行精确的传输和控制。
差分线规则用于设计射频传输线路、天线等,以实现射频信号的传输质量和功率匹配。
3. 模拟电路差分信号在模拟电路中的应用越来越广泛。
例如,差分运算放大器能够提供更好的抗干扰能力和共模抑制比,用于放大微弱信号和减小共模噪声。
差分信号(Differential Signal)(转自EDN,对差分信号理解得比较的文章,供大家参考)差分信号(Differential Signal)在高速电路设计中的应用越来越广泛,电路中最关键的信号往往都要采用差分结构设计,什么另它这么倍受青睐呢在PCB 设计中又如何能保证其良好的性能呢带着这两个问题,我们进行下一部分的讨论。
何为差分信号通俗地说,就是驱动端发送两个等值、反相的信号,接收端通过比较这两个电压的差值来判断逻辑状态“0”还是“1”。
而承载差分信号的那一对走线就称为差分走线。
差分信号和普通的单端信号走线相比,最明显的优势体现在以下三个方面:a.抗干扰能力强,因为两根差分走线之间的耦合很好,当外界存在噪声干扰时,几乎是同时被耦合到两条线上,而接收端关心的只是两信号的差值,所以外界的共模噪声可以被完全抵消。
b.能有效抑制EMI,同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场可以相互抵消,耦合的越紧密,泄放到外界的电磁能量越少。
c.时序定位精确,由于差分信号的开关变化是位于两个信号的交点,而不像普通单端信号依靠高低两个阈值电压判断,因而受工艺,温度的影响小,能降低时序上的误差,同时也更适合于低幅度信号的电路。
目前流行的LVDS(low voltage differential signaling)就是指这种小振幅差分信号技术。
对于PCB 工程师来说,最关注的还是如何确保在实际走线中能完全发挥差分走线的这些优势。
也许只要是接触过Layout 的人都会了解差分走线的一般要求,那就是“等长、等距”。
等长是为了保证两个差分信号时刻保持相反极性,减少共模分量;等距则主要是为了保证两者差分阻抗一致,减少反射。
“尽量靠近原则”有时候也是差分走线的要求之一。
但所有这些规则都不是用来生搬硬套的,不少工程师似乎还不了解高速差分信号传输的本质。
下面重点讨论一下PCB 差分信号设计中几个常见的误区。
差分信号原理
差分信号原理是指在信号处理中,通过对信号进行差分运算,
得到两个相邻采样点之间的差值,从而得到一种新的信号。
差分信
号原理在数字信号处理、通信系统、控制系统等领域有着广泛的应用。
首先,差分信号原理在数字信号处理中起着重要作用。
在数字
信号处理中,常常需要对信号进行差分运算,以便进行滤波、边缘
检测、运动检测等操作。
通过对信号进行差分运算,可以得到信号
的变化率,从而更好地理解信号的特性,并进行相应的处理。
其次,差分信号原理在通信系统中也有着重要的应用。
在通信
系统中,信号的传输往往受到噪声和干扰的影响,为了提高信号的
可靠性和抗干扰能力,常常需要对信号进行差分编码或差分调制。
通过差分编码或差分调制,可以使信号在传输过程中更加稳定和可靠。
此外,差分信号原理还在控制系统中发挥着重要作用。
在控制
系统中,常常需要对传感器采集到的信号进行差分运算,以得到系
统的状态变化率,从而实现对系统的精确控制。
通过差分信号原理,
可以更准确地获取系统的状态变化信息,从而提高系统的控制精度和稳定性。
总之,差分信号原理是一种重要的信号处理方法,它在数字信号处理、通信系统、控制系统等领域有着广泛的应用。
通过对信号进行差分运算,可以得到信号的变化率,从而更好地理解和处理信号。
差分信号原理的应用不仅提高了信号处理的效率和精度,也为各种系统的稳定运行提供了重要的支持。
差分信号线的原理和优缺点分析
随着近几年对速率的要求快速提高,新的总线协议不断的提出更高的速率。
传统的总线协议已经不能够满足要求了。
串行总线由于更好的抗干扰性,和更少的信号线,更高的速率获得了众多设计者的青睐。
而串行总线又尤以差分信号的方式为最多。
所以在这篇中整理了些有关差分信号线的设计和大家探讨下。
1.差分信号线的原理和优缺点
差分信号(Differential Signal)在高速电路设计中的应用越来越广泛,电路中最关键的信号往往都要采用差分结构设计,什么另它这么倍受青睐呢?在PCB设计中又如何能保证其良好的性能呢?带着这两个问题,我们进行下一部分的讨论。
何为差分信号?通俗地说,就是驱动端发送两个等值、反相的信号,接收端通过比较这两个电压的差值来判断逻辑状态“0”还是“1”。
而承载差分信号的那一对走线就称为差分走线。
差分信号和普通的单端信号走线相比,最明显的优势体现在以下三个方面:
a.抗干扰能力强,因为两根差分走线之间的耦合很好,当外界存在噪声干扰时,几乎是同时被耦合到两条线上,而接收端关心的只是两信号的差值,所以外界的共模噪声可以被完全抵消。
b. 能有效抑制EMI,同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场可以相互抵消,如图在A-A‘的电流是从右到左,那B-B‘的是从左到右,那么按右手螺旋定则,那他们的磁力线是互相抵消的。
耦合的越紧密,互相抵消的磁力线就越多。
泄放到外界的电磁能量越少。
c.时序定位精确,由于差分信号的开关变化是位于两个信号的交点,而不像普通单端信号依靠高低两个阈值电压判断,因而受工艺,温度的影响小,能降低时序上的误差,同时也更适合于低幅度信号的电路。
目前流行的LVDS(low voltage differenTIal signaling)就是指这种小振幅差分信号技术。
2.差分信号的一个实例:LVDS。