数学建模与数学实验之计算机模拟
- 格式:ppt
- 大小:743.50 KB
- 文档页数:37
数学建模实验报告1.流⽔问题问题描述:⼀如下图所⽰的容器装满⽔,上底⾯半径为r=1m,⾼度为H=5m,在下地⾯有⼀⾯积为B0.001m2的⼩圆孔,现在让⽔从⼩孔流出,问⽔什么时候能流完?解题分析:这个问题我们可以采⽤计算机模拟,⼩孔处的⽔流速度为V=sqrt[2*g*h],单位时间从⼩孔流出的⽔的体积为V*B,再根据⼏何关系,求出⽔⾯的⾼度H,时间按每秒步进,记录点(H,t)并画出过⽔⾯⾼度随时间的变化图,当⽔⾯⾼度⼩于0.001m 时,可以近似认为⽔流完了。
程序代码:Methamatic程序代码:运⾏结果:(5)结果分析:计算机仿真可以很直观的表现出所求量之间的关系,从图中我们可以很⽅便的求出要求的值。
但在实际编写程序中,由于是初次接触methamatic 语⾔,对其并不是很熟悉,加上个⼈能⼒有限,所以结果可能不太精确,还请见谅。
2.库存问题问题描述某企业对于某种材料的⽉需求量为随机变量,具有如下表概率分布:每次订货费为500元,每⽉每吨保管费为50元,每⽉每吨货物缺货费为1500元,每吨材料的购价为1000元。
该企业欲采⽤周期性盘点的),(S s 策略来控制库存量,求最佳的s ,S 值。
(注:),(S s 策略指的是若发现存货量少于s 时⽴即订货,将存货补充到S ,使得经济效益最佳。
)问题分析:⽤10000个⽉进⾏模拟,随机产⽣每个⽉需求量的概率,利⽤计算机编程,将各种S 和s 的取值都遍历⼀遍,把每种S,s的组合对应的每⽉花费保存在数组cost数组⾥,并计算出平均⽉花费average,并⽤类answer来记录,最终求出对应的S和s。
程序代码:C++程序代码:#include#include#include#include#define Monthnumber 10000int Need(float x){int ned = 0;//求每个⽉的需求量if(x < 0.05)ned = 50;else if(x < 0.15)ned = 60;else if(x < 0.30)ned = 70;else if(x < 0.55)ned = 80;else if(x < 0.75)ned = 90;else if(x < 0.85)ned = 100;else if(x < 0.95)ned = 110;else ned = 120;return ned;}class A{public:int pS;int ps;float aver;};int main(){A answer;answer.aver=10000000;//int cost[Monthnumber+1]={0}; float average=0;int i;float x;int store[Monthnumber];//srand((int)time(0));for(int n=6;n<=12;n++){// int n=11;int S=10*n;for(int k=5;k{// int k=5;int s=k*10;average=0;int cost[Monthnumber+1]={0};for(i=1;i<=Monthnumber;i++){store[i-1]=S;srand(time(0));x=(float)rand()/RAND_MAX; //产⽣随机数//cout<<" "<//cout<int need=Need(x);if(need>=store[i-1]){cost[i]= 1000*S + (need - store[i-1])*1500 + 500;store[i]=S;}else if(need>=store[i-1]-s){cost[i]=1000*(need+S-store[i-1]) + 50*(store[i-1]-need) + 500; store[i]=S;}else{cost[i]=(store[i-1]-need)*50;store[i]=store[i-1]-need;}average=cost[i]+average;}average=average/Monthnumber;cout<<"n="<cout<<"花费最少时s应该为:"<cout<<"平均每⽉最少花费为:"<}运⾏结果:结果分析:⽤计算机模拟的结果和⽤数学分析的结果有⼀定的差异,由于计算机模拟时采⽤的是随机模型⽽我⽤time函数和rand函数产⽣真随机数,所以在每次的结果上会有所差异,但对于⼀般的⽣产要求亦可以满。
数学建模的实验类型
数学建模的实验类型可以分为以下几种:
1. 理论验证实验:通过实验验证建模过程中的假设、推导以及模型中的数学公式是否正确。
例如,通过实验验证牛顿力学中的运动定律是否成立。
2. 数据收集实验:通过实际观测或者采集数据来支持数学模型的构建和验证。
例如,利用实验仪器收集实验数据,用于构建统计模型或者回归模型。
3. 数值模拟实验:利用计算机技术和数值方法对数学模型进行求解和模拟。
例如,使用有限元方法对结构力学模型进行数值分析,得到结构的应力分布和变形情况。
4. 实物模型实验:通过制作物理或者机械模型来验证数学模型的预测结果。
例如,使用比例缩小的航天器模型进行飞行实验,验证飞行力学模型的准确性。
5. 实际应用实验:将数学模型应用到实际问题中,通过实验对模型效果进行评估和优化。
例如,在工业过程中应用控制理论模型对系统进行控制,通过实验验证控制效果是否满足需求。
这些实验类型可以根据具体的研究目的和实验条件来选择和设计。
不同类型的实验可以相互组合和补充,最终得到对数学模型的全面理解和验证。
·数学建模实习报告:'姓名:;学号:院系:数学与信息科学专业:数学与应用数学|1.鱼在游动的时候通常不是作直线运动,而且也不是作水平游动,而是在不断锯齿状地向上游动和向下滑行,如下图所示,为什么鱼儿要这样游动呢可否从能量的角度建立数学模型加以分析呢%鱼的能量消耗是由生理活动和外界物理活动共同引起的,我们分析鱼的运动路线与能量消耗大小的关系,故不考虑鱼生理活动消耗的能量,只单独认为鱼能量的消耗与运动路线有关。
本文根据鱼在水中呈锯齿状游动方式,建立了鱼在水中游动的路线模型,并通过受力分析,建立了鱼的受力模型,解决了鱼在水中沿不同路线游动时能量消耗的问题。
首先,我们根据鱼在水中的游动方式建立了A-C-B的运动路线模型及鱼的受力模型。
其中,A-C为鱼向上游动过程,C-B为鱼向下滑动路线;然后我们假设鱼是以常速v运动的,分别对鱼向上游动及向下滑动两个过程进行受力分析,鱼在水中受到重力及水的浮力,合力为w,方向向下,鱼运动还受到沿运动方向相反的水的阻力f1,f2;接下来我们对鱼的受力进行分解,将鱼在水中的净重w沿鱼的运动方向分解,分析由于假设鱼是以常速v运动,所以鱼在向上游动的过程需要自身提供动力F1,鱼在向下滑动的过程不消耗能量,由此得到水的阻力f1与w的关系。
对于问题(1),根据受力平衡及题中给定力之间的关系,分别在建立的物理模型中标出了这些力;对于题(2)问,先假设鱼向上运动的垂直高度因鱼向下滑动过程不做功h,根据几何关系及夹角之间的关系,分别计算出AC,CB及AB 长度大小,然后根据物理做工公式W=F*S计算鱼运动所的做功,分别得出鱼在A-C-B运动过程和A-B过程所做的功W1,W2,由此证明了鱼沿在A-C-B运动过程和A-B过程消耗能量之比;对于题(3),因为鱼做锯齿状游动时,消耗能量的大小受k值及夹角α,β的大小共同影响。
故令Q=w1/w2,因为A,B一定时,鱼水平运动所消耗的能量w2恒定不变,利用matlab求对Q关于β的偏导,并令偏导值为零,得出α与β的关系,因为tanα≈,所以对于不同的k值(,2,3),求出消耗能量最小时的β,分别为β≈37,β≈49,β≈59。
数学中的数学实践数学是一门充满理论和实践的学科,数学实践是指将数学理论应用于实际问题的过程。
数学实践是数学知识的应用和发展的重要环节,它既有助于巩固数学知识,又能够培养学生的实际应用能力和解决问题的能力。
一、数学建模数学建模是指利用数学方法对实际问题进行分析、描述和求解的过程。
数学建模的流程一般包括问题的理解与描述、模型的建立、模型的求解与验证等几个阶段。
在数学建模中,利用数学工具和方法对实际问题进行分析和建模,可以更好地理解问题的本质,并提出可行的解决方案。
同时,数学建模也通过解决实际问题,验证了数学理论的可行性和适用性。
二、统计与概率统计与概率是数学中的实践性较强的分支,它研究的是随机现象和不确定性问题。
统计学通过收集和分析实际数据,揭示数据之间的规律和关系。
在现实生活中,统计与概率的应用非常广泛。
比如,在市场调查中,统计学可以用来分析消费者的偏好和购买行为,从而帮助企业做出决策;在医学领域,统计学可以用来研究疾病的流行趋势和治疗效果;在金融领域,统计学可以用来分析股市的波动和风险等等。
三、最优化问题最优化问题是数学中的一个重要研究领域,它研究的是如何寻找最优解的方法和技巧。
最优化问题的应用非常广泛,比如在工程领域中,可以用来寻找材料的最佳组合,设计出满足某些要求的工程结构;在交通规划领域中,可以用来确定交通路径,使得整体的交通效率最大化等等。
四、计算机模拟计算机模拟是数学实践中的一种重要手段,它可以通过数字计算和模拟来研究复杂的现象和问题。
计算机模拟可以帮助研究者更好地理解问题的本质和发展趋势,并通过模拟实验得到一些预测性的结果。
在物理领域中,计算机模拟可以用来研究天体运动、气象变化等现象;在经济学领域中,计算机模拟可以用来分析市场行为和经济政策的效果;在生物医学领域中,计算机模拟可以用来研究新药的作用机制和药效等等。
综上所述,数学实践是数学的一种重要应用形式,它通过数学的工具和方法解决实际问题,提高学生的实际应用能力和解决问题的能力。
数学专业的数学建模与计算机应用数学建模和计算机应用是当今数学专业的重要组成部分。
它们不仅是数学知识的应用和发展,而且也是解决实际问题的有力工具。
本文将介绍数学建模和计算机应用在数学专业中的重要性,以及它们对于现代社会的影响。
一、数学建模数学建模是通过技术手段将现实问题转化为数学问题,并利用数学方法来解决这些问题的过程。
它要求数学专业的学生具备扎实的数学基础知识,并具备将数学知识应用于实际问题的能力。
数学建模的过程包括对问题的分析、建立模型、求解模型和对结果的解释。
数学建模在数学专业中的重要性不言而喻。
通过数学建模,学生不仅可以将抽象的数学概念应用于实际问题,而且可以培养学生的创新意识和动手能力。
同时,数学建模也为数学专业的学生提供了一个实践和锻炼的平台,使他们能够更好地理解和掌握数学知识。
二、计算机应用计算机应用是指利用计算机技术和软件工具来解决实际问题的过程。
在数学专业中,计算机应用主要包括数值计算、数据处理和图像处理等方面。
通过计算机的强大计算和处理能力,数学专业的学生可以更加高效地求解数学问题,并且能够处理大量的数据和图像信息。
计算机应用在数学专业中的重要性不可忽视。
它不仅提高了学生的工作效率,而且也拓展了数学的研究领域。
借助计算机工具,数学专业的学生可以更加深入地研究和探索数学的各个领域,并且可以对数学模型进行仿真和实验。
三、数学建模与计算机应用的结合数学建模和计算机应用是相互关联和相互促进的。
数学建模需要计算机应用来进行数学模型的求解和仿真,而计算机应用也需要数学建模来提供数学基础和方法支持。
二者的结合使学生能够更加全面地理解和应用数学知识,同时也提高了问题的解决效率和准确性。
借助数学建模和计算机应用的结合,数学专业的学生可以解决更加复杂和实际的问题,并且可以开展更加深入和广泛的研究。
他们可以利用数学建模和计算机应用来研究和分析各种现象,探索数学的新理论和应用,为现代社会的发展做出更大的贡献。
计算机仿真与建模数学建模和仿真技术计算机仿真与建模是一种基于数学模型和仿真技术的研究方法,通过使用计算机模拟和实验来预测和分析现实世界的各种现象和系统行为。
该技术在科学研究、工程设计、决策支持等领域具有广泛的应用。
一、数学建模数学建模是计算机仿真与建模的基础,它利用数学模型来描述和解决现实世界中的问题。
数学建模是一种将实际问题转化为数学形式进行描述和求解的方法,通过对问题进行抽象和简化,建立起数学模型,从而得到问题的解析解或数值解。
数学建模通常包括问题的描述、模型的建立、求解方法的选择和模型验证等步骤。
在建立模型时,需要考虑问题的物理背景、相互关系和约束条件,合理选择数学方法和工具,以及对模型进行检验和优化。
二、仿真技术仿真技术是计算机仿真与建模的关键工具,它通过创建虚拟的仿真环境,模拟实际系统的行为和演化过程。
仿真技术可以提供对系统运行状态、特征和性能等方面的详细和准确的信息。
仿真技术通常包括模型构建、参数设置、仿真运行和结果分析等步骤。
在模型构建中,需要根据实际系统的特点和需求,定义系统的组成部分和它们之间的关系;在参数设置中,需要确定各个参数的取值范围和初值;在仿真运行中,需要选择适当的仿真算法和计算机资源,进行模拟计算和结果记录;在结果分析中,需要对仿真结果进行统计分析和可视化展示,以便于对系统的行为和性能进行评估和改进。
三、应用领域计算机仿真与建模数学建模和仿真技术在各个领域都有广泛的应用。
在自然科学领域,如物理学、化学和生物学等,可以利用仿真技术模拟和预测物理过程、化学反应和生物系统的行为;在工程设计领域,如航空航天、汽车制造和建筑结构等,可以使用仿真技术验证和优化设计方案,提高产品性能和可靠性;在社会科学领域,如经济学、管理学和社会学等,可以运用仿真技术模拟和分析人类行为和社会系统的运行规律,为决策提供科学依据。
总结:计算机仿真与建模数学建模和仿真技术是一种重要的研究方法和工程技术,通过数学模型和仿真技术的应用,可以更好地理解和解决现实世界中的问题。
数学建模与数学实验第五版代码数学建模与数学实验是一门重要的学科,它将数学方法应用于实际问题的解决过程中。
通过数学建模与数学实验的学习,我们可以培养创新思维、数学分析能力和计算能力等重要的数学技能。
在数学建模与数学实验第五版中,我们将学习到各种数学建模方法和相关的代码实现。
下面我将介绍一些常用的数学建模方法以及对应的代码示例。
第一种数学建模方法是线性规划,它是一种用于求解线性目标函数的优化问题的方法。
代码示例如下:```pythonfrom scipy.optimize import linprogc = [-1, -1] #目标函数的系数A = [[2, 1], [-1, 2], [0, 1]] #约束条件的系数矩阵b = [6, 4, 3] #约束条件的取值res = linprog(c, A_ub=A, b_ub=b)print(res)```第二种数学建模方法是最小二乘法,它是一种用于拟合实验数据的方法。
代码示例如下:```pythonimport numpy as npx = np.array([1, 2, 3, 4, 5]) #自变量y = np.array([2.1, 3.9, 6.1, 8.2, 9.9]) #因变量#拟合多项式函数coefficients = np.polyfit(x, y, 2)print(coefficients)#拟合指数函数coefficients = np.polyfit(x, np.log(y), 1)print(coefficients)```第三种数学建模方法是蒙特卡洛模拟,它是一种通过随机抽样的方法来估计概率分布或函数值的方法。
代码示例如下:```pythonimport numpy as np#生成服从正态分布的随机数mean = 0std = 1samples = np.random.normal(mean, std, 10000)print(samples)#计算样本均值和方差mean = np.mean(samples)variance = np.var(samples)print(mean, variance)```以上是数学建模与数学实验第五版中介绍的一些数学建模方法和对应的代码示例。
数学建模与数学实验数学建模是指利用一定的数学方法和技巧,对实际问题进行描述、分析和解决的过程。
数学建模是将数学与实际问题相结合的一门学科,在理论研究和实际应用中都具有重要的意义。
而数学实验则是通过实际的实验操作,观测数据,验证数学模型的准确性和可靠性。
一、数学建模数学建模是将实际问题抽象化,建立数学模型,通过数学工具求解问题。
数学建模的基本步骤包括:问题描述,建立数学模型,选择方法解决问题,模型分析和结果验证。
数学建模需要综合运用数学分析、概率统计、优化理论等数学学科知识,对问题进行全面深入的研究。
数学建模在科学研究、工程技术、金融经济等领域有着广泛的应用。
例如,在气象预报中,可以利用数学建模对气象系统进行模拟,预测未来的气象变化;在医学领域,可以通过建立数学模型研究疾病的传播规律,提出有效的防控措施。
二、数学实验数学实验是对数学理论进行验证和实际应用的过程,通过实际操作和数据观测,检验数学模型的有效性和可行性。
数学实验可以帮助研究者理解数学问题的本质,加深对数学知识的理解和掌握。
数学实验通常包括设计实验方案、收集数据、进行数据处理和分析等步骤。
通过数学实验,可以验证数学定理和推论的正确性,检验数学模型的准确性和可靠性。
数学实验是数学研究中重要的一环,可以促进数学理论的发展和应用。
三、数学建模与数学实验的关系数学建模和数学实验是相辅相成的。
数学建模是将实际问题转化为数学问题进行求解,而数学实验则是对数学模型进行检验和验证,使得模型更加符合实际情况。
数学建模离不开数学实验的支持,数学实验则需要数学建模的指导和支持。
在现代科学研究和工程实践中,数学建模与数学实验密切结合,共同推动科学技术的发展。
通过数学建模和数学实验,人们可以更好地理解和解决实际问题,促进科学知识的传播和应用。
总之,数学建模与数学实验是数学研究中不可或缺的两个环节,它们相互交融、相互促进,共同推动数学学科的发展和应用。
数学建模和数学实验的重要性在于将数学理论与实际问题相结合,提高数学研究的实用性和应用价值,为人类社会的发展进步做出贡献。