2020年高中数学新教材同步必修第一册 第1章 1.1 第1课时 集合的概念
- 格式:pptx
- 大小:1.07 MB
- 文档页数:26
高中数学新教材必修第一册第一章1.1 集合的概念(南开题库)一、选择题(共40小题;共200分)1. 集合的元素个数有A. 个B. 个C. 个D. 无数个2. 设集合,,那么" "是" "的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件3. 若,则的值为A. B. C. D. 或4. 设集合,,定义,则中元素的个数为A. B. C. D.5. 用列举法可以将集合表示为A.B.C.D.6. 下列说法正确的有①与表示同一个集合;②由,,组成的集合可表示为或;③方程的所有解的集合可表示为;④集合是有限集.A. 只有①和④B. 只有②和③C. 只有②D. 以上四种说法都不对7. 下面关于集合的表示正确的个数是①;②;③.A. B. C. D.8. 若集合,,则中元素的个数是A. B. C. D.9. 设集合,,则“且”成立的充要条件是A. B. C. D.10. 设集合,若(为自然对数底数),则A. B.C. D.11. 已知集合,则集合中元素的个数是A. B. C. D.12. 已知集合,,则中所含元素的个数为A. B. C. D.13. 设集合,,,则中的元素个数为A. B. C. D.14. 已知集合,则中元素的个数为A. B. C. D.15. 下列集合中,是空集的是A.B.C.D.16. 设集合,,若,则A. B. C. D.17. 设集合,集合,则集合中元素的个数是A. B. C. D.18. 若正方体的棱长为,则集合中个元素的个数为A. B. C. D.19. 若集合,则集合中的元素个数是A. B. C. D.20. 若集合,则实数的取值集合是A. B.C. D.21. 已知集合,,则中所含元素的个数为A. B. C. D.22. 设,为两个非空实数集合,定义集合,若,,则中元素的个数是A. B. C. D.23. 若集合满足对任意的,有,则称集合为“闭集”,下列集合中不是“闭集”的是A. 自然数集B. 整数集C. 有理数集D. 实数集24. 已知集合,,则中所含元素的个数为A. B. C. D.25. 若集合,则实数的值的集合是A. B.C. D.26. 已知集合,集合中至少有个元素,则A. B. C. D.27. 已知,则集合的子集的个数是A. B. C. D.28. 已知集合,集合,则集合中元素的个数为A. B. C. D.29. 设是实数集的非空子集,如果,,,则称是一个“和谐集”.下面命题中假命题是A. 存在有限集,是一个“和谐集”B. 对任意无理数,集合都是“和谐集”C. 若,且均是“和谐集”,则D. 对任意两个“和谐集”,,若,,则30. 已知集合,,,则A. 或B. 或C. 或D. 或31. 函数的定义域为,图象如图1所示,函数的定义域为,图象如图2所示,若集合,,则中元素的个数为A. B. C. D.32. 已知集合,,定义集合,则中元素的个数为A. B. C. D.33. 已知集合,,定义集合,则中元素的个数为A. B. C. D.34. 设集合,则A. 对任意实数,B. 对任意实数,C. 当且仅当时,D. 当且仅当时,35. 在整数集中,被除所得余数为的所有整数组成一个“类”,记为,即,,,,,,给出如下四个结论:①;②;③若整数,属于同一“类”,则;④若,则整数,属于同一“类”.其中,正确结论的个数是A. B. C. D.36. 用表示非空集合中元素的个数,定义若,,且,设实数的所有可能取值构成集合,则A. B. C. D.37. 已知集合,,,且,,.设,则A. B. C. D. 以上都不对38. 设是实数集的非空子集,如果,有,,则称是一个“和谐集”.下面命题为假命题的是A. 存在有限集,是一个“和谐集”B. 对任意无理数,集合都是“和谐集”C. 若,且,均是“和谐集”,则D. 对任意两个“和谐集”,,若,,则39. 设是整数集的非空子集,如果对任意的,,有,则称关于数的乘法是封闭的.若,是的两个不相交的非空子集,,且对任意的,,,有,对任意的,,有,则下列结论恒成立的是A. ,中至少有一个关于数的乘法是封闭的B. ,中至多有一个关于数的乘法是封闭的C. ,中有且只有一个关于数的乘法是封闭的D. ,关于数的乘法都是封闭的40. 若集合且,且,用表示集合中元素个数,则A. B. C. D.二、填空题(共40小题;共200分)41. 集合,当时,若,则称为的一个“孤立元素”,则中孤立元素的个数为.42. 设集合,则.43. 集合中的最小整数为.44. 元素与集合的概念(1)把统称为元素,通常用表示.(2)把叫做集合(简称为集),通常用表示.45. 定义集合运算,设集合,,则集合.46. 集合的元素个数有个.47. 含有三个实数的集合既可表示成,又可表示成,则.48. 已知关于的不等式的解集为,,则实数的取值范围是.49. 已知,,则.50. 下列各组对象不能形成集合的是.(填序号)①大于的所有整数;②高中数学的所有难题;③被除余的所有整数;④函数图象上所有的点.51. 已知,若集合中恰有个元素,则的取值范围为.52. 已知集合,若,则实数的值为 .53. 已知集合,若中元素至多有个,则的取值范围是.54. 集合与集合的元素个数相同,则的取值集合为.55. 已知集合,若,则的值为.56. 设,,,则集合中元素的个数为个.57. 将,,,,这个正整数分别写在三张卡片上,要求每一张卡片上的任意两数之差都不在这张卡片上.现在第一张卡片上已经写有和,第二张卡片上写有,第三张卡片上写有,则应该写在第张卡片上;第三张卡片上的所有数组成的集合是.58. 已知集合,则集合中元素的个数是.59. 已知集合,且,那么实数的取值范围是.60. 从集合中随机取一个点,若的概率为,则的最大值是.61. 已知是集合的非空子集,且当时,有,记满足条件的集合的个数为,则,.62. 若集合中只有一个元素,则.63. 已知集合,若集合中至多有一个元素,则实数的取值范围是.64. 设集合,对于,如果且,那么是的一个“孤立元”,给定,由的个元素构成的所有集合中,不含“孤立元”的集合共有个.65. 已知集合,若存在,使得集合中所有整数的元素的和为,则的取值范围是.66. 若集合,且下列四个关系中有且只有一个是正确的:①;②;③;④.则符合条件的有序数组的个数是.67. 已知集合,存在,使得集合中所有为整数的元素和为,则的取值范围是.68. 已知集合,若对于任意,都存在,使得成立,则称集合是“垂直对点集”.给出下列四个集合:①;②;③;④.其中是“垂直对点集”的序号是.69. 已知集合,集合,定义集合,之间的运算“”:,则集合中最大的元素是,集合所有子集的个数为.70. 已知集合,若表示集合中元素的个数,则.71. 以下关于命题的说法正确的有(填写所有正确命题的序号).①“若,则函数(,且)在其定义域内是减函数”是真命题;②命题“若,则”的否命题是“若,则”;③命题“若,都是偶数,则也是偶数”的逆命题为真命题;④命题“若,则”与命题“若,则”等价.72. 若集合,则实数的取值范围是.73. 设,,均为非零实数,则的所有值为元素组成的集合是.74. 对于任意实数,表示不超过的最大整数,如,.定义在上的函数,若,则中所有元素之和为.75. 设全集,,,,则集合,.76. 设表示不超过的最大整数,集合中的元素个数为个.77. 若自然数使得加法运算均不产生进位现象,则称为"给力数",例如:是"给力数",因为不产生进位现象;不是"给力数",因产生进位现象.设小于的所有"给力数"的各个数位上的数字组成集合,则集合中的数字和为.78. 已知数集()具有性质对任意,其中,均有,若,则.79. 在边长为的正方形中,以为起点,其余顶点为终点的向量分别为,,;以为起点,其余顶点为终点的向量分别为,,.若为的最小值,其中,,则.80. 已知集合,对于元素和,有,(填“”或“”) .三、解答题(共20小题;共260分)81. 已知集合.(1)若中有两个元素,求实数的取值范围;(2)若中至多有一个元素,求实数的取值范围.82. 若数集具有以下性质:对任意的,,与两数中至少有一个属于,则称数集具有性质.分别判断数集与是否具有性质,并说明理由.83. 已知集合中至多有一个元素,求实数的取值范围.84. 已知,若,求实数的值.85. 已知集合,试用列举法表示集合.86. (1)已知,非空集合.若是的必要条件,求的取值范围.(2)本例条件不变,问是否存在实数,使是的充要条件.(3)本例条件不变,若是的必要不充分条件,求实数的取值范围.87. 已知集合各元素之和等于,求实数的值.88. 集合中的元素为正整数,且满足“若,则”.(1)试写出只有一个元素的集合;(2)试写出全部的有两个元素的集合;(3)满足上述条件的集合总共有多少个?89. 数集满足条件:若,则.(1)若,试求中必须含有的其它所有元素;(2)自己设计一个数属于,然后求出中必须含有的其它所有元素;(3)从上面的解答过程中你能悟出什么道理,并大胆证明你发现的"道理".90. 设数集满足条件:①;②且;③若,则.(1)若,则中至少有几个元素?(2)证明:中不可能只有一个元素.91. 已知集合,其中,由的元素构成两个相应的集合:,,其中是有序数对.若对于任意的,总有,则称集合具有性质.检验集合与是否具有性质,并对其中具有性质的集合,写出相应的集合和.92. (1)设集合,,,求集合中的元素个数;(2)设,集合,求的值.93. 已知集合,集合.(1)当时,求;(2)若,求实数的取值范围;(3)若,求实数的取值范围.94. 已知数集满足条件:,若,则.(1)若,则集合中还有哪些元素?(2)请你任意设集合中的一个元素(实数),再探讨该集合中其他元素;(3)从上面两题的解答过程中,你领悟到什么结论?并加以证明.95. 已知集合,,用列举法表示集合.96. 用适当的方法表示下列集合:(1)的正约数组成的集合;(2)大于且小于的实数组成的集合;(3)图中阴影部分的点(不包括边界)组成的集合.97. 已知集合.在下列条件下分别求实数的取值范围:(1);(2)恰有两个子集;(3).98. 已知数集且有性质:对任意的,,与两数中至少有一个属于.(1)分别判断数集与是否具有性质,并说明理由;(2)证明:,且;(3)当时,证明:,,,,成等差数列.99. 已知集合.对于,,定义;;与之间的距离为.(1)当时,设,,求;(2)证明:若,,,且,使,则;(3)记.若,,且,求的最大值.100. 已知集合,其中,,称为的第个坐标分量,若,且满足如下两条性质:中元素个数不少于个;,,,存在,使得,,的第个坐标分量是;则称为的一个好子集.(1)为的一个好子集,且,,写出,;(2)若为的一个好子集,求证:中元素个数不超过;(3)若为的一个好子集,且中恰有个元素,求证:一定存在唯一一个,使得中所有元素的第个坐标分量都是.答案第一部分1. B2. B3. C 【解析】提示:由两个集合相等可知,或,当时,无意义,所以.4. D5. C【解析】集合中的元素是点,故A,B不对.又,分别可以取或,故选C.6. C 【解析】①错;表示元素不是集合;②对;考查集合中元素的无序性;③错;考查集合中元素的互异性;④错;为无限集.7. B 【解析】因为集合的元素具有无序性,•故①不正确;中的元素为,表示直线上的点组成的集合,中的元素是,表示函数的值域,故②不正确;和均表示大于的数组成的集合,故③正确.所以正确的说法只有③.8. B 【解析】由已知,得.由,得的取值只可能是和,从而,所以中含有个元素.9. D10. C11. C 【解析】集合的元素来源于集合,且是集合中两元素的差值,因为集合中不同任意两元素的差分别是,,,,当两元素相同时,差为,所以集合.12. B13. B 【解析】因为集合中的元素,,,所以当,时,.当,时,.由集合元素的互异性,可知.即,共有个元素.14. A15. D【解析】因为方程的判别式,所以方程无实根,故D选项为空集,A选项中只有一个元素,B选项中有无数个元素,即抛物线上的点,C选项中只有一个元素.16. C 【解析】已知,所以,则,所以,所以,,所以.17. C 【解析】当时,;当时,.所以集合B中的元素个数是.18. A 【解析】因为正方体的棱长为,,,,所以所以集合中元素的个数为.19. A20. D【解析】时,满足条件;时,由题意知且,得,所以.21. D22. B 【解析】当时,;当时,;当时,.由集合中元素的互异性知中有,,,,,,,共个元素.23. A 【解析】取自然数集中两个值,,而.24. D25. D【解析】当时符合题意;当时,相应一元二次方程中的,得.综上得.26. C27. B28. B29. D 【解析】A显然正确;B,对任意无理数,取,,,则,,所以是“和谐集”,正确;C,任意“和谐集”中一定含有,所以,正确;D,取,,但既不属于也不属于,所以,D为假命题.30. B31. C32. C 【解析】当时,,而,此时,,则中元素的个数为.当时,,而,此时,.由于,时,中的元素与前面重复,故此时与前面不重复的元素个数为,则中元素的个数为.33. C 【解析】或或,共个点;,共个点.由,知;同理由,知.当或时,可取;当时,可取.故中共有元素个.34. D35. C【解析】由于,对于①,除以等于余,所以,所以①对;对于②,,被除余,所以②错;对于③,因为,是同一类,可设,,则能被整除,所以,所以③正确;对于④,若,则可设,,即,,不妨令,,,,,,,则,,,所以,属于同一类,所以④正确.故正确的有①③④.36. B 【解析】由,则或,,当时,符合题意;当,,符合题意.综上,.37. B 【解析】要判断与集合之间的关系,只要看能否写成,,,,,的形式即可.,,分别是,,中的元素,分别可以写成,,,,,的形式,对它们进行运算即可.设,,,,,,则由于,所以.38. D 【解析】方法一:显然集合{}是和谐集,选项A为真命题;对任意无理数,,,,,所以集合都是“和谐集”,选项B为真命题;若,且,均是“和谐集”,显然,,则,选项C为真命题.故选D.方法二:显然,均是“和谐集”,且,,而,选项D是假命题,故选D.39. A 【解析】由于,则整数一定在,两个集合中的一个中.不妨设,则,由于,,,则,即,从而对乘法封闭;另一方面,当非负整数,负整数时,关于乘法封闭,关于乘法不封闭,故D不对;当奇数,偶数时,,显然关于乘法都是封闭的,故B和C不对.40. A【解析】对于集合,当时,、、可取、、、,故个数为;当时,、、可取、、,故个数为;当时,、、可取、,故个数为;当时,、、可取,故个数为;所以集合中元素的个数为.对于集合,当时,可取、、、;当时,可取、、;当时,可取、;当时,可取;故、组共可取个,同理,、组也可取个,所以集合中元素的个数为.因此,.第二部分41.【解析】当时,;当时,;当时,;当时,;综上可知,中只有一个孤立元素.42. 143.44. (1)研究对象小写拉丁字母 .(2)一些元素组成的总体大写拉丁字母45.【解析】当,时,;当,时,;当,时,;当,时,.所以.46.【解析】容易解得,于是集合中的元素个数为个.47.48. 由于,即不满足集合,则或,得.49.50. ②【解析】①③④中的对象是确定的,能够形成集合;②中的对象不确定,故不能形成集合的是②.51.【解析】因为中恰有个元素,所以,故的取值范围为.52. 或53. 或54.【解析】由于集合中只有等式这一个元素,所以集合中也只有一个元素.当时,;当时,,.55.【解析】因为,所以或.当,即时,,此时集合中有重复元素,所以不符合题意,舍去;当时,解得或(舍去),此时符合题意.所以.56.57. 二,【解析】显然不在第一张卡片上,也不在第三张卡片上,所以只能在第二张卡片上;因为第一张卡片上已经写有和,所以不在第一张卡片上,又第二张卡片上写有,所以也不在第二张卡片上,故在第三张卡片上;,不在第三张卡片上,不在第二张卡片上,所以在第一张卡片上,在第二张卡片上;在第三张卡片上.58.【解析】当,时,;当,时,;当,时,;当,时,;当,时,;当,时,;当,时,;当,时,;当,时,.根据集合中元素的互异性知,中元素有,,,,,共个.59.【解析】因为,所以不满足集合中的不等式,所以,故.60.【解析】从集合中随机取一个点,共有种情况,即,;,;,,的概率为,即的情况有种,即,,,,,,则的最大值是.61. ,【解析】将,,,分为组,和,和,,和,为一组,每组中的两个数中必须同时属于或同时不属于一个满足条件的集合,每组属于或不属于,有两种情况,的可能性有,排除一个空集,的个数为,故,.62. 或【解析】若,则,符合题意;若,则由题意得,解得.综上,的值为或.63. 或【解析】由题意知或解得或.64.【解析】符合题意的集合是:,,,,,,共个.65.【解析】不等式可化为,当时,集合,此时集合中所有整数的元素的和不可能为,不符合题意;当时,集合,此时集合中所有整数的元素的和为,不符合题意;当时,集合,要使集合中所有整数的元素的和为,则.66.【解析】由于题意是只有一个是正确的,所以①不成立,否则②成立,即可得.若,则或;若,则;若,则或或.所以共有个.67.【解析】不等式可化为.当时,集合,此时集合中所有为整数的元素和不可能为,不符合题意;当时,集合,此时集合中所有整数的元素和为,不符合题意;当时,集合,要使集合中所有为整数的元素和为,则.68. ③④【解析】由题意可得集合是“垂直对点集”等价于对于过曲线上任意一点与原点的直线,都存在过曲线上另一点与原点的直线与之垂直.①,假设集合是“垂直对点集”,则存在两点,,满足,化为,无解,因此假设不成立,即集合不是“垂直对点集”;②,取,则不存在,满足,因此集合不是“垂直对点集”;③,结合图象可知,集合是“垂直对点集”;④,结合图象可知,集合是“垂直对点集”.综上可得,只有③④是“垂直对点集”.69. ,70.【解析】因为,,,,,因为,,,,成首项为、公差为的等差数列,所以易知该等差数列的项数为.所以.71. ②④【解析】对于①,若,则,所以函数在其定义域内是增函数,故①不正确;对于②,依据一个命题的否命题的定义可知,该说法正确;对于③,原命题的逆命题是“若是偶数,则,都是偶数”,是假命题,如是偶数,但和均为奇数,故③不正确;对于④,不难看出命题“若,则”与命题“若,则”互为逆否命题,因此二者等价,所以④正确.综上可知正确的说法有②④.72.【解析】因为,所以,所以或解得.73.【解析】,,均为正数时,;,,均为负数时,;,,两正一负或两负一正时,.74.75.【解析】,由知,所以,即.所以,,故,所以,.76.【解析】设.当时,;当时,;当时,;当时,;当时,;当时,.所以在时,,由上知可以取,若,则只取个值,故集合中共有个不同元素.77.【解析】"给力数"的个位取值有,,三种情况,"给力数"的其他数位取值有,,,四种情况,所以,故集合中的数字和为.78.【解析】当有,即,又因为,所以,故,由已知,又,,所以,即.又,且,故或,若,则,与已知矛盾,所以,即.同理可得出,故,故,.79.【解析】正方形如图所示,由题可知,,,;,,;因此,,,;再结合,当,时,如上图,,可算得为的最大值,则相应的,时,最大,且此时与夹角为,所以.80. ,【解析】因为,所以与均为整数,且.令,即,所以解得即二元方程有解,所以 .对于,即,令无整数解;再令亦无整数解.因此,.第三部分81. (1)因为中有两个元素,所以关于的方程有两个不等的实数根,所以,且,即所求的范围是且.(2)当时,方程为,所以集合;当时,若关于的方程有两个不相等的实数根,则也只有一个元素,此时;若关于的方程没有实数根,则没有元素,此时,综合知此时所求的范围是或.82. 由于与均不属于集数,所以该数集不具有性质.由于,,,,,,,,,均属于数集,所以该数集具有性质.83. 或.84. .85. .86. (1)由,得,所以,由是的必要条件,知.则所以,所以当时,是的必要条件,即所求的取值范围是.(2)若是的充要条件,则,所以方程组无解,即不存在实数,使是的充要条件.(3)由例题知,因为是的必要不充分条件,所以且.所以.所以或所以,即的取值范围是.87. 或.忽略集合的互异性,由直接得到,所以.漏解,此时.88. (1),即,则.(2),.(3)共有个,分别为,,,,,,.89. (1),则,即.则,即;则,即;所以中必须含有的其它所有元素为.(2)答案不唯一,如:若,则中必须含有的其它所有元素为.(3)分析以上结果可以得出,中只要含有元素,就至少含有个元素,分别是,且三个数的乘积为.证明如下:若,则有,且,所以又有,且,进而有.又因为(因为,则,而方程无解),同理,所以中至少含有个元素,它们分别是,且三个数的乘积是.90. (1)若,则,所以.所以.所以中至少有,,三个元素.(2)假设中只有一个元素,设这个元素为,由已知,则,即,此方程无解.这与中有一个元素矛盾,所以中不可能只有一个元素.91. 集合不具有性质.集合具有性质,其相应的集合,.92. (1)因为集合中的元素,,,所以当时,,此时;当时,,此时.根据集合中元素的互异性可知,.即,共有个元素.(2)因为,,所以,得,所以,,所以.93. (1)当时,,则.(2)由知解得,即实数的取值范围为.(3)当,即时,满足;当,即时,要满足,需有或,解得或,所以.综上,实数的取值范围是.94. (1)由已知,得,即,,即,,即,所以,.所以集合中还有,.(2)不妨设,则,即,,即,,即,所以,.(3)由( 1)( 2)猜测中仅有三个元素,即,,.下面证明这三个数在集合中且互不相等.先证存在.因为,所以存在且不等于,所以.由,可知.而,即时,有意义.再证互不相等.若,则,又,故无实数解,即,同理,.综上所述,集合中必有这三个互不相等的元素,而,因此中有且仅有这三个元素.95. 因为,,,,,,,所以.96. (1)的正约数有,,,,是个有限集,因此采用列举法表示为.(2)采用描述法表示为.(3)采用描述法表示为且.97. (1)若,则关于的方程没有实数解,则解得;(2)若恰有两个子集,则为单元素集,则关于的方程恰有一个实数解.①当时,,满足题意;②当时,解得.综上,的取值集合为.(3)若,则关于的方程在区间内有解.因为所以.98. (1)因为与均不属于集合,所以数集不具有性质.因为,,,,,,,,,均属于集合,所以数集是具有性质.(2)因为对任意的,与两数中至少有一个属于,所以与中至少有一个是数列中的项,因为数列是递增有限数列,且,所以,故.从而.所以,因为,所以,故.所以.又因为,所以,所以,,,,,即.所以.(3)由知,当时,有,,即,因为,所以,所以,所以.由,得,且,所以,即,所以,,,,是首项为,公差为的等差数列.99. (1)当时,由,得所以.(2)设,,.由,使,即得所以,使得,其中.由此与同为非负数或同为负数.从而(3)首先证明如下引理:设,则有.证明如下:因为,,所以即成立.结合上述引理,得上式等号成立的条件为,或,所以.对于,,有,且综上,的最大值为.100. (1);(2)对于,考虑元素,显然,,,,对于任意的,,,不可能都为,可得,不可能都在好子集中,又因为取定,则一定存在且唯一,而且,且由的定义知道,,,,这样,集合中元素的个数一定小于或等于集合中元素个数的一半,而集合中元素个数为,所以中元素个数不超过.(3),定义元素,的乘积为:,显然 .我们证明:“对任意的,,都有.”假设存在,使得,则由知,此时,对于任意的,不可能同时为,矛盾,所以.因为中只有个元素,我们记为中所有元素的乘积,根据上面的结论,我们知道,显然这个元素的坐标分量不能都为,不妨设,根据的定义,可以知道中所有元素的坐标分量都为.下面再证明的唯一性:若还有,即中所有元素的坐标分量都为,所以此时集合中元素个数至多为个,矛盾.所以结论成立.。
第一章集合与常用逻辑用语1.1 集合的概念1.1.2集合的表示〖目标〗 1.掌握集合的两种表示方法(列举法和描述法);2.能够运用集合的两种表示方法表示一些简单集合.〖重点〗集合的两种表示方法及其运用.〖难点〗对描述法表示集合的理解.知识点一列举法〖填一填〗把集合的所有元素出来,并用花括号“”括起来表示集合的方法叫做列举法.{ }表示“所有”的含义,不能省略,元素之间用“,”隔开,而不能用“、”;书写时不需要考虑元素的顺序.〖答一答〗1.实数集也可以写成{实数},那么能写成{实数集}或{全体实数}吗?提示:不能,因为花括号“{}”表示“所有、全部”的意思.2.列举法能表示元素个数很少的有限集,那么可以用列举法表示无限集吗?提示:对于所含元素有规律的无限集也可以用列举法表示,如正自然数集可以用列举法表示为{1,2,3,4,5,…}.3.集合{(1,2)}与{(2,1)}是否为相等集合?提示:不是.知识点二描述法〖填一填〗1.一般地,设A是一个集合,我们把集合A中所有具有共同特征 P(x)的元素x所组成的集合表示为{x∈A|P(x)},这种表示集合的方法称为描述法.2.具体方法在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.〖答一答〗3.集合{x|x>3}与集合{t|t>3}表示同一个集合吗?提示:是同一个集合.虽然两个集合的代表元素的符号(字母)不同,但实质上它们均表示大于3的所有实数,故表示同一个集合.类型一 用列举法表示集合〖例1〗 (1)若集合A ={(1,2),(3,4)},则集合A 中元素的个数是(B ) A .1 B .2 C .3D .4(2)用列举法表示下列集合. ①不大于10的非负偶数组成的集合; ②方程x 2=x 的所有实数解组成的集合; ③直线y =2x +1与y 轴的交点所组成的集合;④方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1的解.〖解析〗 (1)集合A ={(1,2),(3,4)}中有两个元素(1,2)和(3,4).(2)解:①因为不大于10是指小于或等于10,非负是大于或等于0的意思,所以不大于10的非负偶数集是{0,2,4,6,8,10}.②方程x 2=x 的解是x =0或x =1,所以方程的解组成的集合为{0,1}.③将x =0代入y =2x +1,得y =1,即交点是(0,1),故两直线的交点组成的集合是{(0,1)}.④解方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1,得⎩⎪⎨⎪⎧x =0,y =1.∴用列举法表示方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1的解集为{(0,1)}.用列举法表示集合应注意的三点:(1)应先弄清集合中的元素是什么,是数还是点,还是其他元素; (2)集合中的元素一定要写全,但不能重复;(3)若集合中的元素是点时,则应将有序实数对用小括号括起来表示一个元素. 〖变式训练1〗用列举法表示下列集合: (1)15的正约数组成的集合; (2)所有正整数组成的集合;(3)直线y =x 与y =2x -1的交点组成的集合. 解:(1){1,3,5,15}.(2)正整数有1,2,3,…,所求集合用列举法表示为{1,2,3,…}.(3)方程组⎩⎪⎨⎪⎧y =x ,y =2x -1的解是⎩⎪⎨⎪⎧x =1,y =1,所求集合用列举法表示为{(1,1)}.类型二 用描述法表示集合〖例2〗 用描述法表示下列集合: (1)不等式2x -7<3的解集A ;(2)二次函数y =x 2+1的函数值组成的集合B ; (3)被3除余2的正整数的集合C ;(4)平面直角坐标系内坐标轴上的点组成的集合D .〖分析〗 先确定集合元素的符号,再把元素的共同特征通过提炼加工后写在竖线后面. 〖解〗 (1)解2x -7<3得x <5,所以A ={x |x <5}.(2)函数值组成的集合就是y 的取值集合,所以B ={y |y =x 2+1,x ∈R }.(3)被3除余2的正整数可以表示为3n +2(n ∈N ),所以集合C ={x |x =3n +2,n ∈N }. (4)平面直角坐标系中坐标轴上的点的共同特征是至少有一个坐标为0, 所以D ={(x ,y )|x ·y =0,x ∈R ,y ∈R }.(1)用描述法表示集合,应先弄清集合的属性,是数集、点集还是其他的类型.一般地,数集用一个字母代表其元素,而点集则用一个有序实数对来代表其元素.(2)若描述部分出现元素记号以外的字母时,要对新字母说明其含义或指出其取值范围. 〖变式训练2〗 用描述法表示下列集合: (1)函数y =-x 的图象上所有点组成的集合; (2)方程x 2+22x +121=0的解集;(3)数轴上离原点的距离大于3的点组成的集合;(4)⎩⎨⎧⎭⎬⎫13,12,35,23,57,…. 解:(1){(x ,y )|y =-x ,x ∈R ,y ∈R }. (2){x |x =-11}.(3)数轴上离原点的距离大于3的点组成的集合等于绝对值大于3的实数组成的集合,则数轴上离原点的距离大于3的点组成的集合可表示为{x ∈R ||x |>3}.(4)先统一形式13,24,35,46,57,…,找出规律,集合表示为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =n n +2,n ∈N *. 类型三 两种方法的灵活应用〖例3〗 用适当的方法表示下列集合:(1)方程组⎩⎪⎨⎪⎧2x -3y =14,3x +2y =8的解组成的集合;(2)1 000以内被3除余2的正整数组成的集合;(3)所有的正方形组成的集合;(4)抛物线y =x 2上的所有点组成的集合.〖分析〗 (1)中的元素个数很少,用列举法表示;(2)是有限集,但个数较多,用描述法;(3)(4)是无限集,用描述法表示.〖解〗 (1)解方程组⎩⎪⎨⎪⎧2x -3y =14,3x +2y =8,得⎩⎪⎨⎪⎧x =4,y =-2,故该集合用列举法可表示为{(4,-2)}.(2)设集合的代表元素是x ,则该集合用描述法可表示为{x |x =3k +2,k ∈N ,且k ≤332}. (3)集合用描述法表示为{x |x 是正方形}或{正方形}. (4)集合用描述法表示为{(x ,y )|y =x 2}.当集合的元素个数很少(很容易写出全部元素)时,常用列举法表示集合;当集合的元素个数较多(不易写出全部元素)时,常用描述法表示集合.对一些元素有规律的无限集,也可用列举法表示.如正奇数集也可写为{1,3,5,7,9,…}.但值得注意的是,并不是每一个集合都可以用两种方法表示出来.)〖变式训练3〗 用适当的方法表示下列集合: (1)大于2且小于5的有理数组成的集合; (2)24的所有正因数组成的集合;(3)平面直角坐标系内与坐标轴距离相等的点的集合. 解:(1)用描述法表示为{x |2<x <5,且x ∈Q }. (2)用列举法表示为{1,2,3,4,6,8,12,24}.(3)在平面直角坐标系内,点(x ,y )到x 轴的距离为|y |,到y 轴的距离为|x |,所以该集合用描述法表示为{(x ,y )||y |=|x |}.1.集合{x ∈N |x <5}的另一种表示方法是( A ) A .{0,1,2,3,4} B .{1,2,3,4} C .{0,1,2,3,4,5}D .{1,2,3,4,5}〖解 析〗∵x ∈N ,且x <5,∴x 的值为0,1,2,3,4,用列举法表示为{0,1,2,3,4}.2.方程组⎩⎪⎨⎪⎧x +y =2,x -2y =-1的解集是( C )A .{x =1,y =1}B .{1}C .{(1,1)}D .{(x ,y )|(1,1)}〖解 析〗方程组的解集中元素应是有序数对形式,排除A ,B ,而D 中的条件是点(1,1),不含x ,y ,排除D.3.集合{x |x =a ,a <36,x ∈N },用列举法表示为{0,1,2,3,4,5}.〖解 析〗由a <36,可得a <6,即x <6,又x ∈N ,故x 只能取0,1,2,3,4,5. 4.能被2整除的正整数的集合,用描述法可表示为{x |x =2n ,n ∈N +}. 〖解 析〗正整数中所有的偶数均能被2整除. 5.用适当的方法表示下列集合:(1)已知集合P ={x |x =2n,0≤n ≤2,且n ∈N }; (2)能被3整除且大于4小于15的自然数组成的集合; (3)x 2-4的一次因式组成的集合;(4)由方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1的解所组成的集合.解:(1)用列举法表示为P ={0,2,4}.(2)可用列举法表示为{6,9,12};也可用描述法表示为{x |x =3n,4<x <15,且n ∈N }. (3)用列举法表示为{x +2,x -2}.(4)解方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1得⎩⎪⎨⎪⎧x =1,y =2,故可用列举法表示为{(1,2)},也可用描述法表示为{(x ,y )|x =1,y =2}.——本课须掌握的两大问题1.表示集合的要求:(1)根据要表示的集合元素的特点,选择适当方法表示集合,一般要符合最简原则. (2)一般情况下,元素个数无限的集合不宜用列举法表示,描述法既可以表示元素个数无限的集合,也可以表示元素个数有限的集合.2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合或其他形式.(2)元素具有怎样的属性.当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.第一章 1.1 第2课时A 组·素养自测一、选择题1.用列举法表示集合{x |x 2-3x +2=0}为( C ) A .{(1,2)} B .{(2,1)} C .{1,2}D .{x 2-3x +2=0}〖解析〗 解方程x 2-3x +2=0得x =1或x =2.用列举法表示为{1,2}. 2.直线y =2x +1与y 轴的交点所组成的集合为( B ) A .{0,1}B .{(0,1)}C .⎩⎨⎧⎭⎬⎫-12,0 D .⎩⎨⎧⎭⎬⎫⎝ ⎛⎭⎪⎫-12,0〖解析〗 解方程组⎩⎪⎨⎪⎧y =2x +1,x =0,得⎩⎪⎨⎪⎧x =0,y =1.故该集合为{(0,1)}.3.已知x ∈N ,则方程x 2+x -2=0的解集为( C ) A .{x |x =2}B .{x |x =1或x =-2}C .{x |x =1}D .{1,-2}〖解析〗 方程x 2+x -2=0的解为x =1或x =-2.由于x ∈N ,所以x =-2舍去.故选C .4.若A ={-1,3},则可用列举法将集合{(x ,y )|x ∈A ,y ∈A }表示为( D ) A .{(-1,3)} B .{-1,3}C .{(-1,3),(3,-1)}D .{(-1,3),(3,3),(-1,-1),(3,-1)}〖解析〗 因为集合{(x ,y )|x ∈A ,y ∈A }是点集或数对构成的集合,其中x ,y 均属于集合A ,所以用列举法可表示为{(-1,3),(3,3),(-1,-1),(3,-1)}.5.下列集合中,不同于另外三个集合的是( B ) A .{x |x =1} B .{x |x 2=1} C .{1}D .{y |(y -1)2=0}〖解析〗 因为{x |x =1}={1},{x |x 2=1}={-1,1},{y |(y -1)2=0}={1},所以B 选项的集合不同于另外三个集合.6.下列说法:①集合{x ∈N |x 3=x }用列举法可表示为{-1,0,1};②实数集可以表示为{x |x为所有实数}或{R };③方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1的解集为{x =1,y =2}.其中说法正确的个数为( D )A .3B .2C .1D .0〖解析〗 由x 3=x ,得x (x -1)(x +1)=0,解得x =0或x =1或x =-1.因为-1∉N ,故集合{x ∈N |x 3=x }用列举法可表示为{0,1},故①不正确.集合表示中的“{}”已包含“所有”“全体”等含义,而“R ”表示所有的实数组成的集合,故实数集正确表示应为{x |x 为实数}或R ,故②不正确.方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1的解是有序实数对,其解集应为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ x =1y =2,故③不正确. 二、填空题7.已知A ={(x ,y )|x +y =6,x ∈N ,y ∈N },用列举法表示A 为__{(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}__.〖解析〗 ∵x +y =6,x ∈N ,y ∈N , ∴x =6-y ∈N ,∴⎩⎪⎨⎪⎧x =0,y =6,⎩⎪⎨⎪⎧x =1,y =5,⎩⎪⎨⎪⎧x =2,y =4,⎩⎪⎨⎪⎧x =3,y =3,⎩⎪⎨⎪⎧x =4,y =2,⎩⎪⎨⎪⎧x =5,y =1,⎩⎪⎨⎪⎧x =6,y =0.∴A ={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}.8.集合{1,2,3,2,5,…}用描述法表示为〖解析〗 注意到集合中的元素的特征为n ,且n ∈N *,所以用描述法可表示为{x |x =n ,n ∈N *}.9.已知集合A ={x |2x +a >0},且1∉A ,则实数a 的取值范围是__a ≤-2__. 〖解析〗 因为1∉A ,则应有2×1+a ≤0,所以a ≤-2. 三、解答题10.用列举法表示下列集合: (1)⎩⎨⎧x ⎪⎪⎪⎭⎬⎫62-x ∈Z ,x ∈Z ;(2){(x ,y )|y =3x ,x ∈N 且1≤x <5}.〖解析〗 (1)因为62-x∈Z ,所以|2-x |是6的因数,则|2-x |=1,2,3,6,即x =1,3,4,0,-1,5,-4,8. 所以原集合可用列举法表示为{-4,-1,0,1,3,4,5,8}. (2)因为x ∈N 且1≤x <5,所以x =1,2,3,4, 其对应的y 的值分别为3,6,9,12.所以原集合可用列举法表示为{(1,3),(2,6),(3,9),(4,12)}. 11.用描述法表示下列集合. (1){2,4,6,8,10,12}; (2){13,24,35,46,57};(3)被5除余1的正整数集合;(4)平面直角坐标系中第二、四象限内的点的集合;(5)方程组⎩⎪⎨⎪⎧x +y =2x -y =2的解组成的集合.〖解析〗 (1){x |x =2n ,n ∈N *,n ≤6}. (2){x |x =nn +2,n ∈N *,n ≤5}. (3){x |x =5n +1,n ∈N }. (4){(x ,y )|xy <0}.(5)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪ ⎩⎪⎨⎪⎧ x +y =2x -y =2或⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ x =2y =0. B 组·素养提升一、选择题1.方程组⎩⎪⎨⎪⎧x -y =2,x +2y =-1的解集是( C )A .{x =1,y =-1}B .{1}C .{(1,-1)}D .{(x ,y )|(1,-1)}〖解析〗 方程组的解集中元素应是有序数对形式,排除A ,B ,而D 的集合表示方法有误,排除D .2.用列举法可将集合{(x ,y )|x ∈{1,2},y ∈{1,2}}表示为( D ) A .{1,2} B .{(1,2)} C .{(1,1),(2,2)}D .{(1,1),(1,2),(2,1),(2,2)}〖解析〗 x =1,y =1;x =1,y =2;x =2,y =1;x =2,y =2.∴集合{(x ,y )|x ∈{1,2},y ∈{1,2}}表示为{(1,1),(1,2),(2,1),(2,2)},故选D . 3.(多选题)大于4的所有奇数构成的集合可用描述法表示为( BD ) A .{x |x =2k -1,k ∈N } B .{x |x =2k +1,k ∈N ,k ≥2} C .{x |x =2k +3,k ∈N } D .{x |x =2k +5,k ∈N }〖解析〗 选项A ,C 中,集合内的最小奇数不大于4. 4.(多选题)下列各组中M ,P 表示不同集合的是( ABD ) A .M ={3,-1},P ={(3,-1)} B .M ={(3,1)},P ={(1,3)}C .M ={y |y =x 2+1,x ∈R },P ={x |x =t 2+1,t ∈R } D .M ={y |y =x 2-1,x ∈R },P ={(x ,y )|y =x 2-1,x ∈R }〖解析〗 选项A 中,M 是由3,-1两个元素构成的集合,而集合P 是由点(3,-1)构成的集合;选项B 中,(3,1)与(1,3)表示不同的点,故M ≠P ;选项D 中,M 是二次函数y =x2-1,x ∈R 的所有因变量组成的集合,而集合P 是二次函数y =x 2-1,x ∈R 图象上所有点组成的集合.故选ABD .二、填空题5.若集合A ={x |ax 2+2x +1=0,a ∈R }中只有一个元素,则实数a 的值是__0或1__. 〖解析〗 集合A 中只有一个元素,有两种情况:当a ≠0时,由Δ=0,解得a =1,此时A ={-1},满足题意;当a =0时,x =-12,此时A ={-12},满足题意.故集合A 中只有一个元素时,a 的值是0或1.6.用列举法写出集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫⎪⎪⎪33-x ∈Z x ∈Z =__{-3,-1,1,3}__.〖解析〗 ∵33-x ∈Z ,x ∈Z ,∴3-x 为3的因数. ∴3-x =±1,或3-x =±3. ∴33-x =±3,或33-x=±1. ∴-3,-1,1,3满足题意.7.设A ,B 为两个实数集,定义集合A +B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },若A ={1,2,3},B ={2,3},则集合A +B 中元素的个数为__4__.〖解析〗 当x 1=1时,x 1+x 2=1+2=3或x 1+x 2=1+3=4;当x 1=2时,x 1+x 2=2+2=4或x 1+x 2=2+3=5;当x 1=3时,x 1+x 2=3+2=5或x 1+x 2=3+3=6.∴A +B ={3,4,5,6},共4个元素.三、解答题8.集合A ={x |kx 2-8x +16=0},若集合A 只有一个元素,试求实数k 的值,并用列举法表示集合A .〖解析〗 (1)当k =0时,原方程为16-8x =0, 所以x =2,此时A ={2}.(2)当k ≠0时,因为集合A 中只有一个元素, 所以方程kx 2-8x +16=0有两个相等的实根. 则Δ=64-64k =0,即k =1. 从而x 1=x 2=4,所以集合A ={4},综上所述,实数k 的值为0或1.当k =0时,A ={2};当k =1时,A ={4}. 9.已知集合A ={x |ax 2-3x +2=0}. (1)若A 中只有一个元素,求集合A ;(2)若A 中至少有一个元素,求a 的取值范围.〖解析〗 (1)因为集合A 是方程ax 2-3x +2=0的解集,则当a =0时,A ={23},符合题意;当a ≠0时,方程ax 2-3x +2=0应有两个相等的实数根, 则Δ=9-8a =0,解得a =98,此时A ={43},符合题意.综上所述,当a =0时,A ={23},当a =98时,A ={43}.(2)由(1)可知,当a =0时,A ={23}符合题意;当a ≠0时,要使方程ax 2-3x +2=0有实数根, 则Δ=9-8a ≥0,解得a ≤98且a ≠0.综上所述,若集合A 中至少有一个元素,则a ≤98.。
高中数学必修一第一章集合一、集合的概念1、集合的含义:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),构成集合的每个对象叫做这个集合的元素(或成员)。
注意:在集合中,通常用小写字母表示点(元素),用大写字母表示点(元素)的集合,而在几何中,通常用大写字母表示点(元素),用小写字母表示点的集合,应注意区别。
2、空集的含义:不含任何元素的集合叫做空集,记为Ø。
3、集合中元素的三个特性:确定性、互异性、无序性。
(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素,这叫集合元素的确定性。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素,这叫集合元素的互异性。
集合中的元素互不相同。
例如:集合A={1,a},则a不能等于1。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样,这叫集合元素的无序性。
例{0,1,2}有其它{0,2,1}、{1,0,2}、{1,2,0}、{2,0,1}、{2,1,0}等共六种表示方法。
4、元素与集合之间只能用“∈”或“∉”符号连接。
5、集合的分类:(1)有限集:含有有限个元素的集合。
(2)无限集:含有无限个元素的集合。
(3)空集:不含任何元素的集合。
6、常见的特殊集合:;(1)非负整数集(即自然数集)N(包括零);(2)正整数集N*或N+(3)整数集Z(包括负整数、零和正整数);(4)实数集R(包括所有有理数和无理数);(5)有理数集Q(包括整数集Z和分数集→正负有限小数或无限循环小数);(6)复数集C,虚数可以指不实的数字或并非表明具体数量的数字。
在数学中,虚数就是形如a+b*i 的数,其中a,b是任意实数,且b≠0,i²=-1。
二、集合的表示方式1、列举法:把集合中的元素一一列举出来,元素之间用逗号隔开,然后用一个花括号全部括上。
集合概念、关系、运算知识点一:集合:由一些确定对象组成的整体。
常见数集:R、Q、Z、N。
很重要,要牢记重点剖析:如何判断一些对象是否组成一个集合:判断一组对象能否组成集合,主要是要看这组对象是否是确定的,即对任何一个对象,要么在这组之中,要么不在,二者必居其一,如果这组对象是确定的,那么,这组对象就能够组成一个集合。
例:看下面几个例子,判断每个例子中的对象能否组成一个集合。
(1)大于等于1,且小于等于100的所有整数;(2)方程x2=4的实数根;(3)平面内所有的直角三角形;(4)正方形的全体;(5)∏的近似值的全体;(6)平面集合中所有的难证明的题;(7)著名的数学家;(8)平面直角坐标系中x轴上方的所有点。
课堂练习:考察下列各组对象能否组成一个集合,若能组成集合,请指出集合中的元素,若不能,请说明理由:(1)平面直角坐标系内x轴上方的一些点;(2)平面直角坐标系内以原点为圆心,以1为半径的园内的所有的点;(3)一元二次方程x2+bx-1=0的根;(4)平面内两边之和小于第三边的三角形(5)x2,x2+1,x2+2;(6)y=x,y=x+1,y=ax2+bx+c(a≠0);(7)2x2+3x-8=0,x2-4=0,x2-9=0;(8)新华书店中有意思的小说全体。
知识点二.有关元素与集合的关系的问题:确定元素与集合之间的关系,即元素是否在集合中,还要看元素的属性是否与集合中元素的属性相同。
例:集合A={y|y=x2+1},集合B={(x,y)| y=x2+1},(A、B中x∈R,y∈R)选项中元素与集合之间的关系都正确的是()A、2∈A,且2∈BB、(1,2)∈A,且(1,2)∈BC、2∈A,且(3,10)∈BD、(3,10)∈A,且2∈B解:C课堂练习:3.1415 Q;∏ Q; 0 R+; 1 {(x,y)|y=2x-3}; -8 Z;知识点三、集合中的元素有三个性质:①确定性,本质属性,在或不在,非常明确。