第3章 三角函数,解三角形 第6节
- 格式:ppt
- 大小:3.17 MB
- 文档页数:44
正弦定理和余弦定理及其应用【选题明细表】知识点、方法题号利用正、余弦定理解三角形1,2,7与三角形面积有关的计算6,8三角形形状的判断3几何计算问题12,13实际问题与综合问题4,5,9,10,11,14基础巩固(时间:30分钟)1.△ABC的内角A,B,C的对边分别为a,b,c.已知a=,c=2,cos A=,则b等于( D )(A)(B)(C)2(D)3解析:由余弦定理得5=b2+4-2×b×2×,解得b=3(b=-舍去),选D.2.在△ABC中,B=,BC边上的高等于BC,则sin A等于( D )(A)(B)(C)(D)解析: 如图,设BC边上的高为AD,因为B=,所以∠BAD=.所以BD=AD,又AD=BC,所以DC=2AD,所以sin∠BAC=sin(∠BAD+∠DAC)=sin 45°cos∠DAC+cos45°sin∠DAC=×+×=.故选D.3.(2018·杭州模拟)在△ABC中,cos =,则△ABC一定是( A )(A)等腰三角形 (B)直角三角形(C)等腰直角三角形(D)无法确定解析:由cos =得2cos2-1=cos A=cos B,所以A=B,故选A.4.(2018·通辽模拟)海面上有A,B,C三个灯塔,AB=10n mile,从A望C和B成60°视角,从B望C和A成75°视角,则BC等于( D )(A)10n mile(B)n mile(C)5n mile (D)5n mile解析:由题意可知,∠CAB=60°,∠CBA=75°,所以∠C=45°,由正弦定理得=,所以BC=5.5.(2018·南宁模拟)在△ABC中,若sin2A≤sin2B+sin2C-sin Bsin C,则A的取值范围是( C )(A)(0,](B)[,π)(C)(0,](D)[,π)解析:由正弦定理角化边,得a2≤b2+c2-bc.所以b2+c2-a2≥bc,所以cos A=≥,所以0<A≤.6.(2018·淄博一模)南宋时期的数学家秦九韶独立发现的计算三角形面积的“三斜求积术”,与著名的海伦公式等价,其求法是“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减小,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即S=.现有周长为2+的△ABC满足:sin A∶sin B∶sin C=(-1)∶∶(+1).试用“三斜求积术”求得△ABC 的面积为( A )(A)(B)(C)(D)解析:因为sin A∶sin B∶sin C=(-1)∶∶(+1),由正弦定理得a∶b∶c=(-1)∶∶(+1).因为a+b+c=2+,所以a=-1,b=,c=+1.所以ac=2-1=1.c2+a2-b2=1.所以S==.故选A.7.(2017·全国Ⅲ卷)△ABC的内角A,B,C的对边分别为a,b,c.已知C=60°,b=,c=3,则A= .解析:由正弦定理=得=,所以sin B=,又b<c,所以B<C,所以B=45°,A=180°-60°-45°=75°.答案:75°8.(2017·浙江卷)已知△ABC,AB=AC=4,BC=2.点D为AB延长线上一点,BD=2,连接CD,则△BDC的面积是 ,cos∠BDC= . 解析:依题意作出图形,如图所示.则sin∠DBC=sin∠ABC.由题意知AB=AC=4,BC=BD=2,则cos∠ABC=,sin∠ABC=.所以S△BDC=BC·BD·sin∠DBC=×2×2×=.因为cos∠DBC=-cos∠ABC=-==,所以CD=.由余弦定理,得cos∠BDC==.答案: 能力提升(时间:15分钟)9.(2018·宁波模拟)在△ABC中,a,b,c分别是内角A,B,C所对的边,且cos 2B+3cos (A+C)+2=0,b=,则c∶sin C等于( D )(A)3∶1(B)∶1(C)∶1(D)2∶1解析:由cos 2B+3cos (A+C)+2=0,得2cos2B-3cos B+1=0,解得cosB=1(舍去)或cos B=,所以sin B=,所以由正弦定理知c∶sin C=b∶sin B=2∶1.10.(2018·石家庄一模)在△ABC中,AB=2,C=,则AC+BC的最大值为( D )(A)(B)2(C)3(D)4解析:由正弦定理可得,====4.因为A+B=.所以AC+BC=4sin B+4sin A=4sin B+4sin(-B)=4sin B+4(cos B+sin B)=2cos B+10sin B=4sin(B+θ)(tan θ=),因为0<B<,故AC+BC的最大值为4.11. (2018·内蒙古赤峰模拟)如图,航空测量组的飞机航线和山顶在同一铅直平面内,已知飞机的飞行高度为10 000 m,速度为50 m/s.某一时刻飞机看山顶的俯角为15°,经过420 s后看山顶的俯角为45°,则山顶的海拔高度为 m.(取≈1.4,≈1.7)解析: 如图,作CD垂直于AB的延长线于点D,由题意知∠A=15°,∠DBC=45°,所以∠ACB=30°,AB=50×420=21 000(m).又在△ABC中,=,所以BC=×sin 15°=10 500(-)(m).因为CD⊥AD,所以CD=BC·sin ∠DBC=10 500(-)×=10 500(-1)≈7 350(m).故山顶的海拔高度h=10 000-7 350=2 650(m).答案:2 65012. (2018·四川泸州二珍)如图,在△ABC中,角A,B,C的对边分别为a,b,c.a=b(sin C+cos C).若A=,D为△ABC外一点,DB=2,DC=1,则四边形ABDC面积的最大值为 .解析:因为a=b(sin C+cos C),所以由正弦定理得sin A=sin∠ABC(sin C+cos C).即sin(∠ABC+C)=sin∠ABC(sin C+cos C),所以cos∠ABCsin C=sin∠ABCsin C.因为C∈(0,π),所以sin C≠0,所以tan∠ABC=1.又∠ABC∈(0,π),所以∠ABC=.在△BCD中,因为DB=2,DC=1,所以BC2=12+22-2×2×1·cos D=5-4cos D.又因为A=,∠ABC=,所以△ABC为等腰直角三角形.所以S△ABC=BC2=-cos D.又因为S△BCD=·BD·CD·sin D=sin D.所以S四边形ABDC=-cos D+sin D=+sin(D-).所以当D=时,S四边形ABDC最大.最大值为+.答案:+13. (2018·福建宁德一检)如图,△ABC中,D为AB边上一点,BC=1, B=.(1)若△BCD的面积为,求CD的长;(2)若A=,=,求的值.解:(1)BC=1,B=,S△BCD=BC·BD·sin B=×1×BD×=,BD=.在△BCD中,由余弦定理得CD2=BC2+BD2-2BC·BD·cos B=1+2-2×1××=1,所以CD=1.(2)在△ACD中,由正弦定理得=,所以sin ∠ACD===,在△BCD中,由正弦定理得=,所以sin ∠DCB===,所以==×=.14.(2018·江西联考)已知函数f(x)=2sin 2x-2sin 2(x-),x∈R. (1)求函数y=f(x)的对称中心;(2)已知在△ABC中,角A,B,C所对的边分别为a,b,c,且f(+)=,△ABC的外接圆半径为,求△ABC周长的最大值.解:由f(x)=1-cos 2x-(1-cos[2(x-)]=cos(2x-)-cos 2x=cos2x+sin 2x-cos 2x=sin 2x-cos 2x=sin(2x-).(1)令2x-=kπ(k∈Z),则x=+(k∈Z),所以函数y=f(x)的对称中心为(+,0),k∈Z.(2)由f(+)=得sin(B+)=⇒sin B+cos B=⇒asin B+acos B=b+c,由正弦定理得sin Asin B+sin Acos B=sin B+sin C⇒sin AsinB=sin B+cos Asin B,又因为sin B≠0,所以sin A-cos A=1⇒sin(A-)=.由0<A<π得-<A-<,所以A-=,即A=.又△ABC的外接圆的半径为,所以a=2sin A=3.由余弦定理得a2=b2+c2-2bccos A=b2+c2-bc=(b+c)2-3bc≥(b+c)2-(b+c)2=.即b+c≤6,当且仅当b=c时取等号,所以△ABC周长的最大值为9.。
[练案25]第六讲 正弦定理、余弦定理A 组基础巩固一、单择题1.在△ABC 中,AB =5,AC =3,BC =7,则∠BAC =( C ) A .π6B .π3C .2π3D .5π6[解析] 因为在△ABC 中,设AB =c =5,AC =b =3,BC =a =7,所以由余弦定理得cos ∠BAC =b 2+c 2-a 22bc =9+25-4930=-12,因为∠BAC 为△ABC 的内角,所以∠BAC =2π3.故选C.2.已知△ABC 中,A =π6,B =π4,a =1,则b 等于( D )A .2B .1C . 3D . 2[解析] 由正弦定理a sin A =bsin B,得1sin π6=b sinπ4,所以112=b 22,所以b = 2. 3.已知△ABC 中,A ︰B ︰C =1︰1︰4,则a ︰b ︰c =( A ) A .1︰1︰ 3 B .2︰2︰ 3 C .1︰1︰2D .1︰1︰4[解析] △ABC 中,A ︰B ︰C =1︰1︰4,所以A =π6,B =π6,C =23π,a ︰b ︰c =sin A︰sin B ︰sin C =12︰12︰32=1︰1︰ 3.4.(2018·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C =( C )A .π2B .π3C .π4D .π6[解析] 由题可知S △ABC =12ab sin C =a 2+b 2-c 24,所以a 2+b 2-c 2=2ab sin C ,由余弦定理a 2+b 2-c 2=2ab cos C ,所以sin C =cos C .因为C ∈(0,π),所以C =π4.故选C.5.(2020·某某武邑中学调研)黑板上有一道有解的解三角形的习题,一位同学不小心把其中一部分擦去了,现在只能看到:在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知a =2,…,解得b =6,根据以上信息,你认为下面哪个选项可以作为这个习题的其余已知条件( B )A .A =30°,B =45° B .C =75°,A =45° C .B =60°,c =3D .c =1,cos C =13[解析] 由C =75°,A =45°可知B =60°,又asin A =b sin B ,∴b =a sin B sin A =2sin 60°sin 45°=322=6,符合题意,故选B.6.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状是( C )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形[解析] ∵sin A sin B =a c ,∴a b =ac,∴b =c .又(b +c +a )(b +c -a )=3bc ,∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =bc 2bc =12.∵A ∈(0,π),∴A =π3.∴△ABC 是等边三角形,故选C.二、多选题7.在△ABC 中,a =4,b =8,A =30°,则此三角形的边角情况可能是( ACD ) A .B =90° B .C =120° C .c =4 3 D .C =60°[解析] ∵asin A =b sin B ,∴sin B =b sin A a=1,∴B =90°,C =60°,c =4 3.故选A 、C 、D.8.(2020·某某某某期中)下列关于正弦定理的叙述中正确的是( ACD )A .在△ABC 中,a ︰b ︰c =sin A ︰sinB ︰sinC B .在△ABC 中,若sin 2A =sin 2B ,则A =BC .在△ABC 中,若sin A >sin B ,则A >B ;若A >B ,则sin A >sin BD .在△ABC 中,a sin A =b +csin B +sin C[解析] 对于A ,在△ABC 中,由正弦定理可得a =2R sin A ,b =2R sin B ,c =2R sin C ,所以a ︰b ︰c =sin A ︰sin B ︰sin C ,故A 正确;对于B ,若sin 2A =sin 2B ,则2A =2B 或2A +2B =π,可得A =B 或A +B =π2,故B 错误;对于C ,若sin A >sin B ,根据正弦定理a=2R sin A ,b =2R sin B ,得a >b ,再根据大边对大角可得A >B .若A >B ,则a >b ,由正弦定理a =2R sin A ,b =2R sin B ,得sin A >sin B ,故C 正确;对于D ,由a sin A =b sin B =csin C,再根据比例式的性质可知D 正确.故选A 、C 、D.三、填空题9.(2015·某某卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a =3,sin B =12,C =π6,则b =__1__. [解析] ∵sin B =12且B ∈(0,π),∴B =π6或5π6,又C =π6,∴B =π6,A =π-B -C =2π3.又a =3,由a sin A =b sin B ,得3sin 2π3=bsinπ6,∴b =1.10.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知b cos C +c cos B =2b ,则ab=__2__ [解析] 解法一:由正弦定理sin B cos C +sin C cos B =2sin B ,即sin (B +C )=sin A =2sin B ,有a b =sin Asin B=2.解法二:由余弦定理得b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2b ,化简得a =2b ,因此,ab=2.解法三:由三角形射影定理,知b cos C +c cos B =a ,所以a =2b ,所以ab=2.故填2. 11.(2017·某某节选)已知△ABC ,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是152.[解析] 取BC 中点E ,由题意,AE ⊥BC .△ABE 中,cos ∠ABC =BE AB =14,所以cos ∠DBC =-14,sin ∠DBC =1-116=154,所以S △BCD =12×BD ×BC ×sin ∠DBC =152.故填152. 12.(2019·某某)在△ABC 中,∠ABC =90°,AB =4,BC =3,点D 在线段AC 上.若∠BDC =45°,则BD =1225,cos ∠ABD =7210.[解析] 在Rt △ABC 中,易得AC =5,sin C =AB AC =45.在△BCD 中,由正弦定理得BD =BCsin ∠BDC×sin ∠BCD =322×45=1225,sin ∠DBC =sin [π-(∠BCD +∠BDC )]=sin (∠BCD +∠BDC )=sin ∠BCD cos ∠BDC +cos ∠BCD ·sin ∠BDC =45×22+35×22=7210.又∠ABD +∠DBC =π2,所以cos ∠ABD =sin ∠DBC =7210. 三、解答题13.(2019·)在△ABC 中,a =3,b -c =2,cos B =-12.(1)求b ,c 的值; (2)求sin (B +C )的值.[解析] (1)由余弦定理b 2=a 2+c 2-2ac cos B ,得b 2=32+c 2-2×3×c ×(-12).因为b =c +2,所以(c +2)2=32+c 2-2×3×c ×(-12).解得c =5. 所以b =7.(2)由cos B =-12得sin B =32.由正弦定理得sin A =a b sin B =3314.在△ABC 中,B +C =π-A . 所以sin (B +C )=sin A =3314.14.(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin B -sin C )2=sin 2A -sinB sinC .(1)求A ;(2)若2a +b =2c ,求sin C .[解析] 由已知得sin 2B +sin 2C -sin 2A =sinB sinC ,故由正弦定理得b 2+c 2-a 2=bc .由余弦定理得cos A =b 2+c 2-a 22bc =12.因为0°<A <180°,所以A =60°.(2)由(1)知B =120°-C ,由题设及正弦定理得2sin A +sin (120°-C )=2sin C ,即62+32cos C +12sin C =2sin C ,可得cos (C +60°)=-22. 由于0°<C <120°,所以sin (C +60°)=22,故 sin C =sin (C +60°-60°)=sin (C +60°)cos 60°-cos (C +60°)sin 60° =6+24. B 组能力提升1.(2020·某某省级示X 性高中联合体联考)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若3sin A =2sin C ,b =5,cos C =-13,则a =(C)A .3B .4C .6D .8[解析] 由3sin A =2sin C 及正弦定理,得3a =2c ,设a =2k (k >0),则c =3k .由余弦定理,得cos C =a 2+b 2-c 22ab =25-5k 220k =-13,解得k =3或k =-53(舍去),从而a =6.故选C.2.(2020·某某某某七中一诊)设a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,已知(b +c )sin (A +C )=(a +c )·(sin A -sin C ),则A =(C)A .30°B .60°C .120°D .150°[解析] 依题意,知(b +c )sin B =(a +c )(sin A -sin C ),由正弦定理,得(b +c )b =(a +c )·(a -c ),即b 2+c 2-a 2=-bc .由余弦定理,得cos A =b 2+c 2-a 22bc =-bc 2bc =-12,所以A =120°.故选C.3.(2020·某某四校摸底调研)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin Asin B +sin C +ba +c=1,则C =(B)A .π6B .π3C .2π3D .5π6[解析] 由正弦定理及sin A sin B +sin C +b a +c =1,得a b +c +b a +c=1,整理可得a 2+b 2-c2=ab ,由余弦定理得cos C =a 2+b 2-c 22ab =12,又C ∈(0,π),所以C =π3.故选B.4.(2020·某某某某部分重点中学第一次联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2a cos B =c ,sin A sin B (2-cos C )=sin 2C 2+12,则△ABC 为(B)A .等边三角形B .等腰直角三角形C .锐角非等边三角形D .钝角三角形[解析] 由2a cos B =c 及正弦定理,得2sin A cos B =sin C .在△ABC 中,因为sin C=sin (A +B ),所以2sin A cos B =sin A cos B +cos A sin B ,整理得sin (A -B )=0,又A ,B ∈(0,π),所以A =B .因为sin A sin B (2-cosC )=sin 2C 2+12,所以sin A sin B [2-(1-2sin 2C 2)]=sin 2C 2+12,即sin A sin B (1+2sin 2C 2)=12(1+2sin 2C 2),所以sin A sin B =12.又A=B ,且A ,B ∈(0,π),所以A =B =π4,所以C =π-A -B =π2,所以△ABC 是等腰直角三角形.故选B.5.(2019·某某)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,b =2,cos B =23,求c 的值;(2)若sin A a =cos B 2b ,求sin (B +π2)的值.[解析] (1)因为a =3c ,b =2,cos B =23,由余弦定理cos B =a 2+c 2-b 22ac,得23=3c 2+c 2-222×3c ×c ,即c 2=13.所以c =33. (2)因为sin A a =cos B2b,由正弦定理a sin A =b sin B ,得cos B 2b =sin Bb,所以cos B =2sin B .从而cos 2B =(2sin B )2,即cos 2B =4(1-cos 2B ), 故cos 2B =45.因为sin B >0,所以cos B =2sin B >0,从而cos B =255. 因此sin (B +π2)=cos B =255.。
第六节 解三角形2019考纲考题考情1.正弦定理asin A=b sin B =csin C=2R 其中2R 为△ABC 外接圆直径。
变式:a =2R sin A ,b =2R sin B ,c =2R sin C 。
a ∶b ∶c =sin A ∶sin B ∶sin C 。
2.余弦定理a 2=b 2+c 2-2bc cos A ;b 2=a 2+c 2-2ac cos B ; c 2=a 2+b 2-2ab cos C 。
变式:cos A =b 2+c 2-a 22bc ;cos B =a 2+c 2-b 22ac ;cos C =a 2+b 2-c 22ab。
sin 2A =sin 2B +sin 2C -2sin B sin C cos A 。
3.解三角形(1)已知三边a,b ,c 。
运用余弦定理可求三角A ,B ,C 。
(2)已知两边a ,b 及夹角C 。
运用余弦定理可求第三边c 。
(3)已知两边a ,b 及一边对角A 。
先用正弦定理,求sin B ,sin B =b sin Aa。
①A 为锐角时,若a <b sin A ,无解;若a =b sin A ,一解;若b sin A <a <b ,两解;若a ≥b ,一解。
②A 为直角或钝角时,若a ≤b ,无解;若a >b ,一解。
(4)已知一边a 及两角A ,B (或B ,C )用正弦定理,先求出一边,后求另一边。
4.三角形常用面积公式(1)S =12a ·h a (h a 表示a 边上的高)。
(2)S =12ab sin C =12ac sin B =12bc sin A =abc 4R 。
(3)S =12r (a +b +c )(r 为内切圆半径)。
在△ABC 中,常有以下结论: 1.∠A +∠B +∠C =π。
2.任意两边之和大于第三边,任意两边之差小于第三边。
3.sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sin A +B2=cos C 2;cos A +B 2=sin C2。
第6讲 正弦定理和余弦定理1.正弦定理、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆的半径,则2.在△ABC 中,已知a ,b 和A 时,三角形解的情况3.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高).(2)S =12bc sin A =□0112ac sin B =□0212ab sin C . (3)S =12r (a +b +c )(r 为三角形的内切圆半径).1.概念辨析(1)正弦定理和余弦定理对任意三角形都成立.( ) (2)在△ABC 中,若sin A >sin B ,则A >B .( )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( ) (4)当b 2+c 2-a 2>0时,三角形ABC 为锐角三角形.( ) 答案 (1)√ (2)√ (3)× (4)× 2.小题热身(1)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =5,c =2,cos A =23,则b=( )A. 2B. 3 C .2 D .3 答案 D解析 由余弦定理得5=b 2+4-2×b ×2×23,解得b =3或b =-13(舍去),故选D.(2)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,若cos A cos B =ba =2,则该三角形的形状是( )A.直角三角形 B .等腰三角形 C.等边三角形 D .钝角三角形答案 A解析 因为cos A cos B =b a ,由正弦定理得cos A cos B =sin B sin A ,所以sin2A =sin2B .由ba=2,可知a ≠b ,所以A ≠B .又A ,B ∈(0,π),所以2A =180°-2B ,即A +B =90°,所以C =90°,于是△ABC 是直角三角形.(3)在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为________.答案 4 3解析 ∵cos C =13,0<C <π,∴sin C =223,∴S △ABC =12ab sin C =12×32×23×223=4 3.(4)在△ABC 中,a =4,b =5,c =6,则sin2Asin C =________.答案 1解析因为a=4,b=5,c=6,所以cos A=b2+c2-a22bc=52+62-422×5×6=34,所以sin2Asin C=2sin A cos Asin C=2a cos Ac=2×4×346=1.题型一利用正、余弦定理解三角形角度1 用正弦定理解三角形1.(1)设△ABC的内角A,B,C的对边分别为a,b,c.若a=3,sin B=12,C=π6,则b=________;(2)(2017·全国卷Ⅲ)△ABC的内角A,B,C的对边分别为a,b,c.已知C=60°,b =6,c=3,则A=________.答案(1)1 (2)75°解析(1)因为sin B=12且B∈(0,π),所以B=π6或B=5π6,又C=π6,所以B=π6,A=π-B-C=2π3,又a=3,由正弦定理得asin A=bsin B,即3sin2π3=bsinπ6,解得b=1.(2) 如图,由正弦定理,得3sin60°=6sin B,∴sin B =22. 又c >b ,∴B =45°,∴A =180°-60°-45°=75°. 角度2 用余弦定理解三角形2.(1)在△ABC 中,若b =1,c =3,A =π6,则cos5B =( )A.-32B.12C.12或-1 D .-32或0 (2)在△ABC 中,AB =3,BC =13,AC =4,则边AC 上的高为( ) A.322 B.332 C.32D .3 3 答案 (1)A (2)B解析 (1)因为b =1,c =3,A =π6,所以由余弦定理得a 2=b 2+c 2-2bc cos A =1+3-2×1×3×32=1, 所以a =1.由a =b =1,得B =A =π6,所以cos5B =cos 5π6=-cos π6=-32.(2)由题意得cos A =AB 2+AC 2-BC 22AB ·AC=32+42-1322×3×4=12, ∴sin A =1-⎝ ⎛⎭⎪⎫122=32, ∴边AC 上的高h =AB sin A =332. 角度3 综合利用正、余弦定理解三角形3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b . (1)求角A 的大小;(2)若c =2,角B 的平分线BD =3,求a .解 (1)∵2a cos C -c =2b ,由正弦定理得2sin A cos C -sin C =2sin B,2sin A cos C -sin C =2sin(A +C )=2sin A cos C +2cos A sin C ,∴-sin C =2cos A sin C ,∵sin C ≠0,∴cos A =-12,又A ∈(0,π),∴A =2π3.(2)在△ABD 中,由正弦定理得,AB sin ∠ADB =BDsin A,∴sin ∠ADB =AB sin A BD =22. 又∠ADB ∈(0,π),A =2π3,∴∠ADB =π4,∴∠ABC =π6,∠ACB =π6,AC =AB =2,由余弦定理,得BC 2=AB 2+AC2-2AB ·AC ·cos A =(2)2+(2)2-2×2×2cos 2π3=6,∴a = 6.用正弦、余弦定理解三角形的基本题型及解题方法(1)已知两角和一边①用三角形内角和定理求第三个角. ②用正弦定理求另外两条边. (2)已知两边及其中一边所对的角 ①用正弦定理(适用于优先求角的题) 以知a ,b ,A 解三角形为例: a .根据正弦定理,经讨论求B ;b .求出B 后,由A +B +C =180°,求出C ;c .再根据正弦定理a sin A =csin C ,求出边c .②用余弦定理(适用于优先求边的题) 以知a ,b ,A 解三角形为例:列出以边c 为元的一元二次方程c 2-(2b cos A )c +(b 2-a 2)=0,根据一元二次方程的解法,求边c ,然后应用正弦定理或余弦定理,求出B ,C .(3)已知两边和它们的夹角 ①用余弦定理求第三边.②用余弦定理的变形或正弦定理求另外两角. (4)已知三边可以连续用余弦定理求出两角,常常是分别求较小两边所对的角,再由A +B +C =180°,求出第三个角.1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =62b ,A =2B ,则cos B 等于( ) A.66 B.65 C.64 D.63答案 C解析因为a=62b,A=2B,所以由正弦定理可得62bsin2B=bsin B,所以622sin B cos B=1sin B,所以cos B=64.2.(2018·和平区模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,若a2-b2=3 bc,且sin C=23sin B,则角A的大小为________.答案π6解析由sin C=23·sin B得c=23b.∴a2-b2=3bc=3·23b2,即a2=7b2.则cos A=b2+c2-a22bc=b2+12b2-7b243b2=32.又A∈(0,π).∴A=π6.3.如图,在△ABC中,B=45°,D是BC边上一点,AD=5,AC=7,DC=3,则AB=________.答案562解析在△ACD中,由余弦定理可得cos C=49+9-252×7×3=1114,则sin C=5314.在△ABC中,由正弦定理可得ABsin C=ACsin B,则AB=AC sin Csin B=7×531422=562.题型二利用正、余弦定理判定三角形的形状1.(2018·武汉调研)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cb<cos A ,则△ABC 为( )A.钝角三角形 B .直角三角形 C.锐角三角形 D .等边三角形答案 A解析 因为c b<cos A ,所以c <b cos A , 由正弦定理得sin C <sin B cos A ,又A +B +C =π,所以sin C =sin(A +B ). 所以sin A cos B +cos A sin B <sin B cos A , 所以sin A cos B <0,又sin A >0,所以cos B <0,B 为钝角,所以△ABC 是钝角三角形. 2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A.直角三角形 B .等腰非等边三角形 C.等边三角形 D .钝角三角形答案 C解析 ∵sin A sin B =a c ,∴a b =ac ,∴b =c .又(b +c +a )(b +c -a )=3bc , ∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =bc 2bc =12.∵A ∈(0,π),∴A =π3,∴△ABC 是等边三角形.条件探究1 把举例说明2中△ABC 满足的条件改为“a cos A =b cos B ”,判断△ABC 的形状.解 因为a cos A =b cos B , 所以sin A cos A =sin B cos B , 所以sin2A =sin2B ,又因为0<2A <2π,0<2B <2π,0<A +B <π, 所以2A =2B 或2A +2B =π, 即A =B 或A +B =π2,所以△ABC 是等腰三角形或直角三角形.条件探究2 把举例说明2中△ABC 满足的条件改为“cos 2B 2=a +c 2c”,判断△ABC 的形状.解 因为cos 2B 2=a +c 2c, 所以12(1+cos B )=a +c 2c ,在△ABC 中,由余弦定理得 12+12·a 2+c 2-b 22ac =a +c 2c. 化简得2ac +a 2+c 2-b 2=2a (a +c ), 则c 2=a 2+b 2,所以△ABC 为直角三角形.1.应用余弦定理判断三角形形状的方法 在△ABC 中,c 是最大的边.若c 2<a 2+b 2,则△ABC 是锐角三角形; 若c 2=a 2+b 2,则△ABC 是直角三角形; 若c 2>a 2+b 2,则△ABC 是钝角三角形. 2.判断三角形形状的常用技巧 若已知条件中既有边又有角,则(1)化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状. (2)化角:通过三角恒等变换,得出内角的关系,从而判断三角形的形状.此时要注意应用A +B +C =π这个结论.1.若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13,则△ABC ( ) A.一定是锐角三角形 B.一定是直角三角形 C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形 答案 C解析 由正弦定理得,a ∶b ∶c =sin A ∶sin B ∶sin C =5∶11∶13,设a =5t ,b =11t ,c =13t (t >0),则cos C =a 2+b 2-c 22ab=5t2+11t 2-13t 22×5t ×11t<0,所以C 是钝角,△ABC 是钝角三角形.2.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A.锐角三角形 B .直角三角形 C.钝角三角形 D .不确定答案 B解析 根据正弦定理,由b cos C +c cos B =a sin A 得sin B ·cos C +sin C cos B =sin 2A ,即sin(B +C )=sin 2A ,又因为A +B +C =π,所以sin(B +C )=sin A ,所以sin A =1,由0<A <π,得A =π2.所以△ABC 是直角三角形.题型 三 与三角形面积有关的问题(2017·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知△ABC 的面积为a 23sin A. (1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 解 (1)由题设得12ac sin B =a 23sin A ,即12c sin B =a 3sin A .由正弦定理得12sin C sin B =sin A3sin A .故sin B sin C =23.(2)由题设及(1)得cos B cos C -sin B sin C =-12,即cos(B +C )=-12.所以B +C =2π3,故A =π3.由题意得12bc sin A =a23sin A ,a =3,所以bc =8.由余弦定理得b 2+c 2-bc =9,即(b +c )2-3bc =9.由bc =8,得b +c =33. 故△ABC 的周长为3+33.1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积,总之,结合图形恰当选择面积公式是解题的关键.2.已知三角形的面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.(2018·洛阳三模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin B +(c -b )sin C =a sin A .(1)求角A 的大小;(2)若sin B sin C =38,且△ABC 的面积为23,求a .解 (1)由b sin B +(c -b )sin C =a sin A 及正弦定理得b 2+(c -b )c =a 2,即b 2+c 2-bc =a 2, 所以b 2+c 2-a 22bc =cos A =12,所以A =π3.(2)由正弦定理a sin A =b sin B =c sin C ,可得b =a sin B sin A ,c =a sin Csin A,所以S △ABC =12bc sin A =12·a sin B sin A ·a sin Csin A·sin A=a 2sin B sin C2sin A=2 3.又sin B sin C =38,sin A =32,∴38a 2=23,解得a =4.高频考点 用正弦、余弦定理进行边、角之间的转化考点分析 在综合运用正、余弦定理解决较为复杂的与解三角形有关的问题时,常利用边、角之间的转化与化归的方法解决.[典例1] (2018·枣庄二模)已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且(a 2+b 2-c 2)·(a cos B +b cos A )=abc ,若a +b =2,则c 的取值范围为( )A .(0,2)B .[1,2) C.⎣⎢⎡⎭⎪⎫12,2D .(1,2]答案 B解析 由正、余弦定理,得2cos C (sin A cos B +sin B cos A )=sin C .即 2cos C sin(A +B )=sin C .所以2cos C sin C =sin C ,因为sin C ≠0,所以cos C =12.又C ∈(0,π),所以C =π3.因为c 2=a 2+b 2-2ab cos C =(a +b )2-3ab ,且 (a +b )2≥4ab ,所以ab ≤1. 所以c 2≥1,即c ≥1,又c <a +b =2. 所以1≤c <2.[典例2] (2017·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos B =a cos C +c cos A ,则B =________.答案π3解析 解法一:由2b cos B =a cos C +c cos A 及正弦定理,得11 2sin B cos B =sin A cos C +sin C cos A .∴2sin B cos B =sin(A +C ).又A +B +C =π,∴A +C =π-B .∴2sin B cos B =sin(π-B )=sin B .又sin B ≠0,∴cos B =12.∴B =π3. 解法二:∵在△ABC 中,a cos C +c cos A =b , ∴条件等式变为2b cos B =b ,∴cos B =12. 又0<B <π,∴B =π3. [典例3] (2018·东北三省四市教研联合体模拟)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b =2,且2b cos B =a cos C +c cos A .(1)求B 的大小;(2)求△ABC 面积的最大值.解 (1)由正弦定理a sin A =b sin B =Csin C可得 2sin B cos B =sin A cos C +sin C cos A =sin B ,∵sin B >0,故cos B =12,∵0<B <π,∴B =π3. (2)由b =2,B =π3及余弦定理可得ac =a 2+c 2-4, 由基本不等式可得ac =a 2+c 2-4≥2ac -4,ac ≤4,而且仅当a =c =2时,S △ABC =12ac sin B 取得最大值12×4×32=3,故△ABC 的面积的最大值为 3.方法指导 1.两种主要方法1全部化为角的关系,用三角恒等变换及三角函数的性质解答.2全部化为边的关系,用因式分解、配方等方法变形.2.基本原则1若出现边的一次式一般采用正弦定理;2若出现边的二次式一般采用余弦定理.。
正弦定理和余弦定理及其应用【选题明细表】知识点、方法题号利用正、余弦定理解三角形1,2,7与三角形面积有关的计算6,8三角形形状的判断 3几何计算问题12,13实际问题与综合问题4,5,9,10,11,14基础巩固(时间:30分钟)1.△ABC的内角A,B,C的对边分别为a,b,c.已知a= ,c=2,cos A= ,则b等于(D)(A) (B) (C)2 (D)3解析:由余弦定理得5=b2+4-2×b×2× ,解得b=3(b=- 舍去),选D.2.在△ABC中,B= ,BC边上的高等于BC,则sin A等于(D)(A) (B) (C) (D)解析: 如图,设BC边上的高为AD,因为B= ,所以∠BAD= .所以BD=AD,又AD= BC,所以DC=2AD,所以sin∠BAC=sin(∠BAD+∠DAC)=sin 45°cos∠DAC+cos 45°sin∠DAC= ×+ ×= .故选D.3.(2018·杭州模拟)在△ABC中,cos = ,则△ABC一定是(A)(A)等腰三角形(B)直角三角形(C)等腰直角三角形(D)无法确定解析:由cos = 得2cos2 -1=cos A=cos B,所以A=B,故选A.4.(2018·通辽模拟)海面上有A,B,C三个灯塔,AB=10n mile,从A望C 和B成60°视角,从B望C和A成75°视角,则BC等于(D)(A)10 n mile (B) n mile(C)5 n mile (D)5 n mile解析:由题意可知,∠CAB=60°,∠CBA=75°,所以∠C=45°,由正弦定理得= ,所以BC=5 .5.(2018·南宁模拟)在△ABC中,若sin2A≤sin2B+sin2C-sin B sin C,则A的取值范围是(C)(A)(0, ](B)[,π)(C)(0, ](D)[,π)解析:由正弦定理角化边,得a2≤b2+c2-bc.所以b2+c2-a2≥bc,所以cos A= ≥,所以0<A≤.6.(2018·淄博一模)南宋时期的数学家秦九韶独立发现的计算三角形面积的“三斜求积术”,与著名的海伦公式等价,其求法是“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减小,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即S= .现有周长为2 + 的△ABC满足:sin A∶sin B∶sin C=( -1)∶∶( +1).试用“三斜求积术”求得△ABC的面积为(A)(A) (B) (C) (D)解析:因为sin A∶sin B∶sin C=( -1)∶∶( +1),由正弦定理得a∶b∶c=( -1)∶∶( +1).因为a+b+c=2 + ,所以a= -1,b= ,c= +1.所以ac=2-1=1.c2+a2-b2=1.所以S= = .故选A.7.(2017·全国Ⅲ卷)△ABC 的内角A,B,C 的对边分别为a,b,c.已知C=60°,b=,c=3,则A=.解析:由正弦定理= 得= ,所以sin B= ,又b<c,所以B<C,所以B=45°,A=180°-60°-45°=75°.答案:75°8.(2017·浙江卷)已知△ABC,AB=AC=4,BC=2. 点D 为AB 延长线上一点,BD=2,连接CD,则△BDC的面积是,cos∠BDC=. 解析:依题意作出图形,如图所示.则sin∠DBC=sin∠ABC.由题意知AB=AC=4,BC=BD=2,则cos∠ABC= ,sin∠ABC= .所以S△BDC= BC·BD·sin∠DBC= ×2×2×= .因为cos∠DBC=-cos∠ABC=-== ,所以CD= .由余弦定理,得cos∠BDC= = .答案:能力提升(时间:15分钟)9.(2018·宁波模拟)在△ABC中,a,b,c分别是内角A,B,C所对的边,且cos 2B+3cos (A+C)+2=0,b= ,则c∶sin C等于(D)(A)3∶1 (B) ∶1(C) ∶1 (D)2∶1解析:由cos 2B+3cos (A+C)+2=0,得2cos2B-3cos B+1=0,解得cosB=1(舍去)或cos B= ,所以sin B= ,所以由正弦定理知c∶sin C=b∶sin B=2∶1.10.(2018·石家庄一模)在△ABC中,AB=2,C= ,则AC+ BC的最大值为(D)(A) (B)2 (C)3 (D)4解析:由正弦定理可得,= = = =4.因为A+B= .所以AC+ BC=4sin B+4 sin A=4sin B+4 sin( -B)=4sin B+4 ( cos B+ sin B)=2 cos B+10sin B=4 sin(B+θ)(tan θ= ),因为0<B< ,故AC+ BC的最大值为4 .11. (2018·内蒙古赤峰模拟)如图,航空测量组的飞机航线和山顶在同一铅直平面内,已知飞机的飞行高度为10 000 m,速度为50 m/s.某一时刻飞机看山顶的俯角为15°,经过420 s后看山顶的俯角为45°,则山顶的海拔高度为m.(取≈1.4, ≈1.7)解析: 如图,作CD垂直于AB的延长线于点D,由题意知∠A=15°,∠DBC=45°,所以∠ACB=30°,AB=50×420=21 000(m).又在△ABC中, = ,所以BC= ×sin15°=10 500( - )(m).因为CD⊥AD,所以CD=BC·sin∠DBC=10 500( - )×=10 500( -1)≈7 350(m).故山顶的海拔高度h=10 000-7 350=2 650(m).答案:2 65012. (2018·四川泸州二珍)如图,在△ABC中,角A,B,C的对边分别为a,b,c.a=b(sin C+cos C).若A= ,D为△ABC外一点,DB=2,DC=1,则四边形ABDC面积的最大值为.解析:因为a=b(sin C+cos C),所以由正弦定理得sin A=sin∠ABC(sin C+cos C). 即sin(∠ABC+C)=sin∠ABC(sin C+cos C),所以cos∠ABCsin C=sin∠ABCsin C.因为C∈(0,π),所以sin C≠0,所以tan∠ABC=1.又∠ABC∈(0,π),所以∠ABC= .在△BCD中,因为DB=2,DC=1,所以BC2=12+22-2×2×1·cos D=5-4cos D.又因为A= ,∠ABC= ,所以△ABC为等腰直角三角形.所以S△ABC= BC2= -cos D.又因为S△BCD= ·BD·CD·sin D=sin D.所以S四边形ABDC= -cos D+sin D= + sin(D- ).所以当D= 时,S四边形ABDC最大.最大值为+ .答案: +13. (2018·福建宁德一检)如图,△ABC中,D为AB边上一点,BC=1, B= .(1)若△BCD的面积为,求CD的长;(2)若A= , = ,求的值.解:(1)BC=1,B= ,S△BCD= BC·BD·sin B= ×1×BD×= ,BD= .在△BCD中,由余弦定理得CD2=BC2+BD2-2BC·BD·cos B=1+2-2×1××=1,所以CD=1.(2)在△ACD中,由正弦定理得= ,所以sin ∠ACD= = = ,在△BCD中,由正弦定理得= ,所以sin ∠DCB= = = ,所以= = ×= .14.(2018·江西联考)已知函数f(x)=2sin 2x-2sin 2(x- ),x∈R.(1)求函数y=f(x)的对称中心;(2)已知在△ABC 中,角A,B,C 所对的边分别为a,b,c,且f(+ )= ,△ABC的外接圆半径为,求△ABC周长的最大值.解:由f(x)=1-cos 2x-(1-cos[2(x- )]=cos(2x- )-cos 2x= cos2x+ sin 2x-cos 2x= sin 2x- cos 2x=sin(2x- ).(1)令2x- =kπ(k∈Z),则x= + (k∈Z),所以函数y=f(x)的对称中心为( + ,0),k∈Z.(2)由f( + )= 得sin(B+ )= ⇒sin B+ cos B= ⇒asin B+acos B=b+c,由正弦定理得sin A sin B+sin A cos B=sin B+sin C⇒sin A sin B=sinEarlybirdB+cos Asin B,又因为sin B≠0,所以sin A-cos A=1⇒sin(A- )= .由0<A<π得- <A- < ,所以A- = ,即A= .又△ABC的外接圆的半径为,所以a=2 sin A=3.由余弦定理得a2=b2+c2-2bccos A=b2+c2-bc=(b+c)2-3bc≥(b+c)2- (b+c)2= . 即b+c≤6,当且仅当b=c时取等号,所以△ABC周长的最大值为9.。
[课堂练通考点]1.sin (180°+2α)1+cos 2α·cos 2αcos (90°+α)等于( )A .-sin αB .-cos αC .sin αD .cos α解析:选D 原式=(-sin 2α)·cos 2α(1+cos 2α)·(-sin α)=2sin α·cos α·cos 2α2cos 2α·sin α=cos α.2.化简:若α∈⎝ ⎛⎭⎪⎫π2,π,且3cos 2α=sin ⎝ ⎛⎭⎪⎫π4-α,则sin 2α的值为( )A.118 B .-118 C.1718D .-1718解析:选D cos 2α=sin ⎝ ⎛⎭⎪⎫π2-2α=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-α =2sin ⎝ ⎛⎭⎪⎫π4-αcos ⎝ ⎛⎭⎪⎫π4-α代入原式,得6sin ⎝ ⎛⎭⎪⎫π4-αcos ⎝ ⎛⎭⎪⎫π4-α=sin ⎝ ⎛⎭⎪⎫π4-α,∵α∈⎝ ⎛⎭⎪⎫π2,π,∴cos ⎝ ⎛⎭⎪⎫π4-α=16,∴sin 2α=cos ⎝ ⎛⎭⎪⎫π2-2α=2cos 2⎝ ⎛⎭⎪⎫π4-α-1=-1718.3.(创新题)设函数f (x )=sin x +cos x ,f ′(x )是f (x )的导数,若f (x )=2f ′(x ),则sin 2x -sin 2xcos 2x=________. 解析:f ′(x )=cos x -sin x ,由f (x )=2f ′(x )得sin x +cos x =2cos x -2sin x , ∴cos x =3sin x ,于是sin 2x -sin 2x cos 2x =sin 2x -2sin x cos x cos 2x=sin 2x -6sin 2x 9sin 2x =-59. 答案:-594.若锐角α、β满足(1+3tan α)(1+3tan β)=4,则α+β=________. 解析:由(1+3tan α)(1+3tan β)=4, 可得tan α+tan β1-tan αtan β=3,即tan(α+β)= 3.又α+β∈(0,π),所以α+β=π3. 答案:π35.(2013·揭阳二模)已知函数f (x )=1-2sin ⎝ ⎛⎭⎪⎫2x -π4cos x .(1)求函数f (x )的定义域;(2)设α是第四象限的角,且tan α=-43,求f (α)的值. 解:(1)函数f (x )要有意义,需满足cos x ≠0,解得x ≠π2+k π,k ∈Z ,即f (x )的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π2+k π,k ∈Z . (2)∵f (x )=1-2sin ⎝ ⎛⎭⎪⎫2x -π4cos x=1-2⎝ ⎛⎭⎪⎫22sin 2x -22cos 2x cos x =1+cos 2x -sin 2xcos x=2cos 2x -2sin x cos x cos x=2(cos x -sin x ),由tan α=-43得sin α=-43cos α,又sin2α+cos2α=1,∴cos2α=925.∵α是第四象限的角,∴cos α=35,sin α=-45,∴f(α)=2(cos α-sin α)=145.[课下提升考能]第Ⅰ卷:夯基保分卷1.已知tan α=4,则1+cos 2α+8sin2αsin 2α的值为()A.4 3 B.65 4C.4 D.23 3解析:选B 1+cos 2α+8sin2αsin 2α=2cos2α+8sin2α2sin αcos α,∵tan α=4,∴cos α≠0,分子分母都除以cos2α得1+cos 2α+8sin2αsin 2α=2+8tan2α2tan α=654.2.计算tan⎝⎛⎭⎪⎫π4+α·cos 2α2cos2⎝⎛⎭⎪⎫π4-α的值为()A.-2 B.2 C.-1 D.1解析:选D tan⎝⎛⎭⎪⎫π4+α·cos 2α2cos2⎝⎛⎭⎪⎫π4-α=sin⎝⎛⎭⎪⎫π4+α·cos 2α2sin2⎝⎛⎭⎪⎫π4+αcos⎝⎛⎭⎪⎫π4+α=cos 2α2sin ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4+α=cos 2αsin 2⎝ ⎛⎭⎪⎫π4+α=cos 2αsin ⎝ ⎛⎭⎪⎫π2+2α=cos 2αcos 2α=1. 3.化简sin 235°-12cos 10°cos 80°等于( )A .-2B .-12C .-1D .1解析:选C sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.4.定义运算⎪⎪⎪⎪⎪⎪ab c d =ad -bc .若cos α=17,⎪⎪⎪⎪⎪⎪sin α sin βcos α cos β=3314,0<β<α<π2,则β等于( )A.π12B.π6C.π4D.π3解析:选D 依题意有sin αcos β-cos αsin β=sin(α-β)=3314, 又0<β<α<π2,∴0<α-β<π2,故cos(α-β)=1-sin 2α-β=1314, 而cos α=17,∴sin α=437, 于是sin β=sin[α-(α-β)] =sin αcos(α-β)-cos αsin(α-β)=437×1314-17×3314=32. 故β=π3. 5.若sin x +cos xsin x -cos x=3,tan(x -y )=2,则tan(y -2x )=________.解析:由sin x +cos xsin x -cos x=3,得tan x +1tan x -1=3,即tan x =2.又tan(y -x )=-tan(x -y )=-2, 所以tan(y -2x )=tan (y -x )-tan x1+tan (y -x )tan x=-2-21-4=43. 答案:436.(2014·湖南师大附中月考)计算: tan 12°-3(4cos 212°-2)sin 12°=________. 解析:原式=sin 12°cos 12°-32(2cos 212°-1)sin 12°=sin 12°-3cos 12°2sin 12°cos 12° cos 24°=2⎝ ⎛⎭⎪⎫12sin 12°-32cos 12°sin 24°cos 24°=2sin (12°-60°)12sin 48°=-4.答案:-47.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +7π4+cos ⎝ ⎛⎭⎪⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0. 解:(1)∵f (x )=sin ⎝ ⎛⎭⎪⎫x -π4+2π+cos ⎝ ⎛⎭⎪⎫x -π4-π2=sin ⎝ ⎛⎭⎪⎫x -π4+sin ⎝ ⎛⎭⎪⎫x -π4=2sin ⎝ ⎛⎭⎪⎫x -π4,∴T =2π,f (x )的最小值为-2.(2)证明:由已知得cos βcos α+sin βsin α=45, cos βcos α-sin βsin α=-45. 两式相加得2cos βcos α=0. ∵0<α<β≤π2,∴β=π2.∴[f (β)]2-2=4sin 2π4-2=0.8.已知0<α<π2<β<π,tan α2=12,cos(β-α)=210. (1)求sin α的值; (2)求β的值. 解:(1)∵tan α2=12,∴tan α=2tan α21-tan 2α2=2×121-⎝ ⎛⎭⎪⎫122=43,由⎩⎪⎨⎪⎧sin αcos α=43,sin 2α+cos 2α=1,解得sin α=45⎝ ⎛⎭⎪⎫sin α=-45舍去.(2)由(1)知cos α=1-sin 2α=1-⎝ ⎛⎭⎪⎫452=35, 又0<α<π2<β<π,∴β-α∈(0,π), 而cos(β-α)=210,∴sin(β-α)=1-cos 2(β-α)= 1-⎝ ⎛⎭⎪⎫2102=7210, 于是sin β=sin[α+(β-α)] =sin αcos(β-α)+cos αsin(β-α) =45×210+35×7210=22. 又β∈⎝ ⎛⎭⎪⎫π2,π,∴β=3π4.第Ⅱ卷:提能增分卷1.已知,0<α<π2<β<π,cos ⎝ ⎛⎭⎪⎫β-π4=13,sin(α+β)=45. (1)求sin 2β的值; (2)求cos ⎝ ⎛⎭⎪⎫α+π4的值.解:(1)法一:∵cos ⎝ ⎛⎭⎪⎫β-π4=cos π4cos β+sin π4sin β=22cos β+22sin β=13,∴cos β+sin β=23,∴1+sin 2β=29,∴sin 2β=-79. 法二:sin 2β=cos ⎝ ⎛⎭⎪⎫π2-2β=2cos 2⎝ ⎛⎭⎪⎫β-π4-1=-79. (2)∵0<α<π2<β<π,∴π4<β-π4<34π,π2<α+β<3π2, ∴sin ⎝ ⎛⎭⎪⎫β-π4>0,cos(α+β)<0.∵cos ⎝ ⎛⎭⎪⎫β-π4=13,sin(α+β)=45,∴sin ⎝ ⎛⎭⎪⎫β-π4=223,cos(α+β)=-35.∴cos ⎝ ⎛⎭⎪⎫α+π4=cos ⎣⎢⎡⎦⎥⎤(α+β)-⎝ ⎛⎭⎪⎫β-π4=cos(α+β)· cos ⎝ ⎛⎭⎪⎫β-π4+sin(α+β)sin ⎝ ⎛⎭⎪⎫β-π4=-35×13+45×223=82-315.2.已知函数f (x )=3cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2<φ<0的最小正周期为π,且其图像经过点⎝ ⎛⎭⎪⎫5π12,0.(1)求函数f (x )的解析式;(2)若函数g (x )=f ⎝ ⎛⎭⎪⎫x 2+π6,α,β∈⎝ ⎛⎭⎪⎫0,π2,且g (α)=1,g (β)=324,求g (α-β)的值.解:(1)依题意函数f (x )的最小正周期T =2πω=π,解得ω=2, 所以f (x )=3cos(2x +φ).因为函数f (x )的图像经过点⎝ ⎛⎭⎪⎫5π12,0,所以3cos ⎝ ⎛⎭⎪⎫2×5π12+φ=0,则2×5π12+φ=k π+π2,k ∈Z , 即φ=k π-π3,k ∈Z . 由-π2<φ<0得φ=-π3. 故f (x )=3cos ⎝ ⎛⎭⎪⎫2x -π3.(2)依题意有g (x )=3cos ⎣⎢⎡⎦⎥⎤2×⎝⎛⎭⎪⎫x 2+π6-π3=3cos x , 由g (α)=3cos α=1,得cos α=13, 同理g (β)=3cos β=324,得cos β=24. 而α,β∈⎝ ⎛⎭⎪⎫0,π2,所以sin α=1-⎝ ⎛⎭⎪⎫132=223,sin β=1-⎝ ⎛⎭⎪⎫242=144,所以g (α-β)=3cos(α-β)=3(cos αcos β+sin αsin β)=3×⎝ ⎛⎭⎪⎫13×24+223×144=2+474.3.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3+sin ⎝ ⎛⎭⎪⎫2x -π3+3cos 2x -m ,若f (x )的最大值为1.(1)求m 的值,并求f (x )的单调递增区间;(2)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若f (B )=3-1,且3a =b +c ,试判断三角形的形状.解:(1)f (x )=2sin 2x ·cos π3+3cos 2x -m =sin 2x +3cos 2x -m =2sin ⎝ ⎛⎭⎪⎫2x +π3-m .又f (x )max =2-m ,所以2-m =1,得m =1. 由-π2+2k π≤2x +π3≤π2+2k π(k ∈Z ) 得到k π-5π12≤x ≤k π+π12(k ∈Z ),所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z ). (2)由f (B )=3-1, 得2sin ⎝ ⎛⎭⎪⎫2B +π3-1=3-1,所以B =π6.又3a =b +c ,则3sin A =sin B +sin C , 3sin A =12+sin ⎝ ⎛⎭⎪⎫5π6-A ,即sin ⎝ ⎛⎭⎪⎫A -π6=12,所以A =π3,C =π2,故△ABC 为直角三角形.。