Analysis of overvoltage on motor winding insulation fed by PWM pulses
- 格式:pdf
- 大小:262.32 KB
- 文档页数:4
电气英语证书考试(PEC)—电力系统常用英语词汇(coaxial) cable (同轴)电缆ac motor 交流环电动机AC transmission system 交流输电系统active filter 有源滤波器Active power 有功功率aging 老化air—gap flux 气隙磁通air—gap line 气隙磁化线alloy 合金alternating current 交流电ammeter 电流表amplidyne 微场扩流发电机amplitude modulation (AM) 调幅Amplitude Modulation(AM 调幅analytical 解析的anode (cathode)阳极(阴极)arc discharge 电弧放电Arc reignition 电弧重燃Arc suppression coil 消弧线圈arc-extinguishing chamber 灭弧室armature circuit 电枢电路Armature 电枢Armature 电枢asynchronous machine 异步电机attachment coefficient 附着系数attenuate 衰减attenuation factor 衰减系数Automatic control 自动控制Automatic meter reading 自动抄表Automatic oscillograph 自动录波仪automatic Voltage regulator(A VR)自动电压调整器Autotransformer 自耦变压器Autotransformer 自藕变压器baghouse 集尘室bandwidth 带宽Bare conductor 裸导线binary 二进制Blackout 断电、停电block diagram 方框图Boiler 锅炉boost 增压boost—buck 升压去磁breakaway force 起步阻力breakdown (电)击穿breakdown torque 极限转矩bronze 青铜Brush 电刷bubble breakdown 气泡击穿buck 补偿bus bar 母线Bus tie breaker 母联断路器bushing tap grounding wire 套管末屏接地线bushing 套管Bushing 套管Line trap 线路限波器calibrate 校准Capacitor bank 电容器组Carbon brush 炭刷carrier 载波cascade transformer 串级变压器cast—aluminum rotor 铸铝转子cathode ray oscilloscope 阴极射线示波器cavity 空穴,腔charging(damping)resistor 充电(阻尼)电阻chopper circuit 斩波电路circuit breaker CB 断路器circuit components 电路元件circuit parameters 电路参数coaxial 共轴的,同轴的coil winding 线圈绕组Combustion turbine 燃气轮机Commutator 换向器complex impedance 复数阻抗composite insulation 组合绝缘Composite insulator 合成绝缘子compounded 复励conductor 导体conductor 导线Converter (inverter)换流器(逆变器)Copper loss 铜损corona 电晕Counter emf 反电势coupling capacitor 结合电容coupling capacitor 耦合电容Creep distance 爬电距离critical breakdown voltage 临界击穿电压crusher 碎煤机current transformer CT 电流互感器dc generator 直流发电机dc motor 直流电动机de machine 直流电机dead tank oil circuit breaker 多油断路器decimal 十进制Deenergize 断电Demagnetization 退磁,去磁demodulator 解调器detection impedance 检测阻抗dielectric constant 介质常数dielectric loss 介质损耗Dielectric 电介质,绝缘体Digital signal processing 数字信号处理direct axis transient time constant 直轴瞬变时间常数direct current 直流电direct—current 直流Discharge 放电disconnector 隔离开关Dispatcher 调度员Distribution automation system 配电网自动化系统Distribution dispatch center 配电调度中心Distribution system 配电系统divider ratio 分压器分压比Domestic load 民用电Drum 汽包,炉筒dynamic response 动态响应dynamo 直流发电机e。
小学下册英语第1单元综合卷英语试题一、综合题(本题有100小题,每小题1分,共100分.每小题不选、错误,均不给分)1.What do you call the time when the sun rises?A. SunriseB. SunsetC. NoonD. Midnight2.ts are excellent for attracting beneficial ______ to your garden. (某些植物非常适合吸引对花园有益的生物。
) Some pla3.I believe in setting goals. My short-term goal is to __________. My long-term goal is to __________. Working towards these goals motivates me every day.4.What is the smallest country in the world?A. MonacoB. Vatican CityC. San MarinoD. LiechtensteinB5. A _______ (小刺猬) rolls into a ball when frightened.6.The main gas emitted by volcanoes is _______.7.What do we call a story based on real events?A. FictionB. Non-fictionC. FantasyD. MythB8.I like to ___ (explore/hike) in the woods.9.What is the primary purpose of a lock?A. To keep doors openB. To protect belongingsC. To hold things togetherD. To keep things warmB10.The __________ (历史的开阔) invites exploration.11.An atom's mass number is the sum of its _____ and neutrons.12.My favorite type of ________ (食物) is Chinese.13.The rainbow is _____ in the sky. (bright)14.They are _____ (jumping) on the trampoline.15.Can you help me _____ (find/lose) my toy?16.What do we call a group of elephants?A. HerdB. PackC. TroopD. GaggleA17.I can express my individual style with my ________ (玩具类型).18.She has a _____ backpack. (red)19.The chemical formula for potassium iodide is ______.20.How many days are in a week?A. FiveB. SixC. SevenD. Eight21. A _____ (灌木) can provide privacy in a garden.22.Seals are great _________ (游泳者).23.The fish swims in the ______.24.What do we call the day after today?A. YesterdayB. TodayC. TomorrowD. Next weekC25.The __________ (历史的趋势) predicts future paths.26.The capital of Hungary is ________ (布达佩斯).27.The first man on the moon was _____.28.I like to ___ (explore/discover) new places.29.We are going to ___ a parade. (watch)30.How many colors are there in a rainbow?A. 5B. 6C. 7D. 8C31. A rabbit's burrow is a complex system of ________________ (洞穴).32.Which animal can fly?A. CatB. DogC. BirdD. FishC33.What do we call the study of numbers and shapes?A. MathematicsB. ScienceC. GeographyD. History34. A ________ (植物) can provide oxygen.35.What is the name of the process that causes rocks to break down?A. ErosionB. WeatheringC. SedimentationD. CompactionB36. A mixture that appears uniform is called a _______ mixture.37.The _______ (小海星) clings to the rocks.38.The _____ is the third planet from the sun.39.The __________ (历史的探索者) uncover stories long forgotten.40. A supernova can outshine an entire ______.41. A butterfly starts as a ______.42.The discovery of ________ has changed our understanding of the ecosystem.43.What is the main ingredient in chocolate?A. CocoaB. VanillaC. SugarD. Milk44.The ______ teaches us about health.45.We are studying for the ________ (考试).46.The __________ (历史的声音) echoes through time.47. A tarantula can be found in the ________________ (森林).48.I find ________ (古典文学) very inspiring.49. A ____ can often be found in gardens, helping to control pests.50.The _____ (train) is leaving the station.51.Which instrument is used to measure temperature?A. BarometerB. ThermometerC. AltimeterD. Speedometer52.The ______ (花坛) is filled with tulips.53.She has ___ (ten) fingers.54.My grandmother makes the best __________ (点心).55.The _______ (青蛙) has long legs.56.Which fruit is typically red and grows on trees?A. BananaB. CherryC. GrapeD. PeachB57.What is the capital of Norway?A. OsloB. BergenC. AlesundD. Tromsø58.What is the largest organ in the human body?A. HeartB. SkinC. LiverD. Brain59.The _____ (大象) flaps its ears to cool off.60.ts are cultivated for their ability to improve ______ conditions. (某些植物因其改善土壤条件的能力而受到种植。
PP Product ion Proveout 生产验证TT O Tool Try-Out 工装设备试运行(J1) Job 1 整车投产DFME A Design Failure Mode Effe cts Analysis 故障模式影响分析设计DVP Design Verificat ion Plan 设计验证计划DVP&R Design Verificat ion Plan & Report 设计验证计划和结果F ME A Failure Mode Effe cts Analysis 故障模式影响分析FP DS Ford Product Development System 福特产品开发系统GYR Green-Yellow-Red 绿-黄-红MRD Materia l Required Date 物料要求到厂日O TT OK-TO-TOOL 可以开模TKO Tooling-Kick-Off 工装启动OEM original Equipment Manufacturer 设备最初制造厂FtF/F2F Face To Face 面对面会议PV Production Validation 产品验证OTS Off-Tooling-Sample 完全工装样件QOS Quality Operating System 质量运作体系TS-16949 Technical Specificat ion– 16949 技术规范-16949APQP Advanced Product Quality Planning 先期产品质量计划IPD In Plant Date 进厂日PPM Parts per Million (applied to defective Supplier parts) 零件的百万分比率(适用于供应商不合格零件)PPAP Production Part Approval Process 生产件批准程序Pre-PV Pre -Product ion Validat ion产品预先验证1PP- First Phase of Product ion Prove-Out 第一次试生产3C Customer(顾客导向)、Competit ion(竞争导向)、Competence(专长导向)4S Sale, Sparepart零配件, Service, Survey信息反馈5S 整理,整顿,清理,清洁,素养8D- 8 DisciplineABS Anti-lock Braking SystemAIAG 美国汽车联合会ANPQP Alliance New Product Quality ProcedureApport ion ment 分配APQP Advanced Product Quality PlanBacklite Wind shield 后窗玻璃Benchmark Data 样件资料bloodshot adj.充血的, 有血丝的BMW Bavarian Motor WorksC.P.M Certified Purchasing manger 认证采购经理人制度CB- Confirmat ion Build 确认样车制造CC- Change CutOff 设计变更冻结CC\SC- critical/significant characteristicCC R Concern & Countermeasure Re questCC T Cross Company TeamCharacteristics Matrix特性矩阵图COD Cash on Delivery 货到付现预付货款(T/T in advance) C P1- Confirmat ion Prototype 1st 第一次确认样车CP2- Confirmat ion Prototype 2nd 第二次确认样车Cpk 过程能力指数Cpk=Zmin/3CPO Complementary Parts orderCraftsmanship 精致工艺Cross-funct ion al teams 跨功能小组CUV Car-Based Ultility VehicleD1:信息收集;8DD2:建立8D小组;D3:制定临时的围堵行动措施,避免不良品流出;D4:定义和证实根本原因,避免再发;D5:根据基本原因制定永久措施;D6:执行和确认永久措施;D7:预防再发,实施永久措施;D8:认可团队和个人的贡献。
第22卷第9期 2018年9月电机与控制学报E lectric Machines and ControlVol.22 No.9Sep.2018投切过电压累积作用下干式空心电抗器匝间绝缘局部放电特性聂洪岩1!2,张潮海%,姚远航2,顾哲屹2,刘晓胜1(1.哈尔滨工业大学电气工程及自动化学院,哈尔滨150001;2.哈尔滨理工大学工程电介质及其应用教育部重点实验室,哈尔滨150080)摘要:为研究投切干式空心电抗器过程中产生的指数衰减振荡过电压对匝间绝缘的影响,制作了模拟实际干式空心电抗器匝间绝缘结构的试样模型,搭建了指数衰减振荡过电压试验平台和局部放电测试平台,研究投切过电压累积作用下匝间绝缘局部放电特性参数的变化规律并进行验证性试验。
结果表明:投切过电压导致干式空心电抗器匝间绝缘强度大幅下降,应减少投切次数或采取 措施限制投切过电压幅值;综合多个局部放电特征参数的变化规律可以表征过电压累积作用导致匝间绝缘老化的程度;过电压作用下发生的局部放电是导致匝间绝缘老化的主要原因之一。
通过 提高匝间绝缘局部放电起始电压的方法增强绝缘,为电抗器改进制造工艺提供参考。
关键词:干式空心电抗器;匝间绝缘;局部放电特性;累积作用D O I:10.15938/j.emc.2018.09. 003中图分类号:TM 855 文献标志码:A 文章编号:1007-449X(2018)09-0015-09Partial discharge characteristics of interturninsulationof dry-type air core reactor under the accumulative effect of switching overvoltageNIE Hong-yan1'2,ZHANGChao-hai1,YAO Yuan-hang2,GUZhe-yi2,LlUXiao-sheng1(1. School of E lectrical E ngineering and A utom ation,H arbin Institute of T echnology,H arbin 150001,C h in a;2. Key Laboratory of E ngineering D ielectrics an d Its A p p licatio n,M inistry of E d u c a tio n,H arbin U niversity of Scienceand T echnology,H arbin 150080,C hina)Abstract:In order to study the effect of exponential decay oscillating overvoltage on the interturn insulation in the process of switching the dry-type air core reactor,an experimental model was manufactured tosimulate intertum insulation structure o f dry-type air core reactor.The test platform under the exponentialdecay oscillating overvoltage and the partial discharge testing platform were establishe of the partial d ischarge characteristic parameters were studied under the accumulation effect of switchingovervoltage and the confirmatory tests w ere carried out.The test results show that:the s age leads to a significant decrease for the interturn insulation strength;the switching duced or measures should b e taken to limit the overvoltage amplitude;the change rules of partial discharge characteristic parameters can be considered synthetically to characterize the insulation aging degreecaused by the overvoltage;the partial discharge caused by the overvoltage i 收稿日期:2018 -03-02基金项目:国家重点研发计划(2017YFB0902705 #;国家电网公司科技项目(SGTYHT/16 - JS - 198 #作者简介:聂洪岩(1984—#,男,博士研究生,讲师,研究方向为电力设备的绝缘结构设计、绝缘诊断及高电压试验技术;张潮海(1963—#,男,博士,教授,博士生导师,研究方向为电气绝缘、等离子体及其应用技术;姚远航(1991 一),男,硕士,助教,研究方向为电力设备绝缘检测及高电压试验技术;顾哲屹(1991 一#,男,硕士,研究方向为固体绝缘材料的老化及高电压试验技术;刘晓胜(1966—),男,博士,教授,博士生导师,研究方向为电力线载波通信、网络通信、照明电子学、智能控制等。
From watch motor to power plant generator, motor design and analysis depends on many different constraints. CEDRAT offers a wide range of solutions for the analysis of various types of electric machines.þ Motor design and analysis >>>Electromagnetic analysis >>>Thanks to a complete library of components (type of motor and rotor, slots and bars, windings scheme, drive…), SPEED is a fast and easy to use package for si-zing and analysing electric machines and their drive. Induction, brushless perma-nent magnet, DC commutator or switched reluctance machines can be fully desi-gned via a complete set of templates enabling an easy data input and output.For a finer analysis, FLUX , the leading 2D and 3D finite element package for motor design, features all needed tools for mo-tor analysis:● Geometry building facilities such as import of objects and copy of geometry, mesh and parameters,● Advanced electric circuit with dedica-ted components to model brushes, squir-rel cage…● Rotating cinematic coupling to account for the motion of the machine (inertia, friction, drag tor-que…) as well as to compute all mechanical values (speed, torque, position…).Thermal analysis >>>MOTOR-CAD is the most advanced motor design software dedicated to simplify the complexity of 3D thermal analysis of electric machines. Numerous so-phisticated cooling methods (spiral grooves, liquid cooling, through ventilation) associated with near instantaneous computation make MOTOR-CAD a valuable and powerful help for motors size re-duction and static or transient ther-mal behaviour analysis.Interconnection >>>Those three packages are closely connected to speed up their use. Data exchan-ges from MOTOR-CAD to SPEED and vice versa as well as geometry and mesh import from SPEED to FLUX make the association of them the most efficient tool-box for motor design and analysis.Links to Main applicationsClick on text and picturesBrushless PM DC Commutator Claw pole motor Induction motor/generator Switchedreluctance machine Synchronous motor/Generator Universal motor Coil motor Micro Motor Stepper MotorAxial Flux MotorSPEED interface with outline andwinding editors.Induction in the teeth of a claw polemotor (FLUX modelling).þ References >>>For any motor size, CEDRAT solutions are the reference in many organisations worl d wide:ABB, Aérospatiale, Alstom, Amer , Ametek, Arcelik, Auxilec, Bevi, Bosch, Crouzet Automatismes, Daewoo, Dana, Delphi, FAURECIA, Electricité De France, Efacec, ETA, Faulhaber Motoren, FMV , Globe Motors, Grundfos, Hyundai, INDAR, ISA, ITT FLYGT , Jeumont Industrie, Kollmorgen, Labinal, Lafert, Leeson Electric, Salmson,Leroy Somer,Liebheer Aerospace, Lokheed Martin, Magnetek, Magneti Marelli, MES, Matra, MMT , Moulinex, Peugeot,Piller , Precilec, Renault, Rockwell, Samsung, S&P , SEW Eurodrive, Siemens Automotive, SMH automobiles, Snecma, Struckmeier , Sulzer Innotec, Suzuki motors, Thrige Electric, Timex,Tridelta, Valeo, Visteon, Warner Electric, Wolf, Zanussi...þ The motor and its drive >>>The transient behaviour of an electric machine is widely dependent on its drive. Modelling then both the machine and its drive gives a better prediction of the behaviour. The association of FLUX (for transient electromagnetic computation) and SIMULINK (for drive and control) gave birth to the most advanced tool for system design. Thanks to its co-simulation capabilities, FLUX to SIMULINK Technology enables to account for saturation and eddy currents as well as motion and control loops within the same simulation run.þ The motor in a network >>>Do you want to study a whole network including electric machines?PSCAD features advanced models to simulate electric machines such as squirrel cage or wounded rotor induction machine, synchronous or DC machine. As any component of PSCAD ’s library, the machine components can be fully parameterised to simulate as accurately as possible its behaviour in the network.PSCAD model of a wind farm including asynchronous generator.Generator for wind farm turbine modelledwith FLUX.C o p y r i g h t © C e d r a t M a r c h 2004CEDRATLinks toKey featuresClick on text and picturesSPEED for EM fast sizing MOTOR-CAD for thermal fast analysisFLUX for fine EM analysis FLUX to SIMULINK T echnology for drive analysis PSCAD fornetwork embeddingSRD model including the drive and the finite element modeland flux lines.。
风力机 wind turbine风力发电机组 wi nd turbi ne gen erator system (WTGS)风电场 wind power station; wind farm水平轴风力机 horizo ntal axis wi nd turbi ne垂直轴风力机 vertical axis wi nd turbi ne 轮毂(风力机)Hub(for wind turbi nes) 机舱 nacelle支撑结构(风力机)support structure (for wi nd turbi ne) 关机(风力机) shutdow n (for wind turbi ne)紧急关机(风力机) emerge ncy shutdow n(for wi nd turbi ne)空转(风力机) idli ng(for wind turbi ne)block ing (for wind turb ine) park ing静止 standstill park ing brake (for wind turb ine) rotor speed (for wind turb ine) con trol system (for wind turb ine)保护系统(风力发电系统) protection system (for WTGS)设计工况 desig n situatio n载荷情况load case外部条件(风力机)external co nditio ns (for wind turbi ne) 设计极限 desig n limits极限状态limit state安全寿命safe life风速 wind speed风矢量 wind velocity额定风速(风力机)rated wi nd speed(for wi nd turbi ne) 切入风速 cut-i n wind speed 切出风速 cut-out wind speed 年平均 annual average年平均风速 annual average wind speed 平均风速 mean wind speed极端风速 extreme wind speed 风切变 wind shear 下风向 down wind 上风向up wi nd阵风gust 粗糙长度 rough ness len gth 湍流强度 turbule nee inten sity 风场wind site测量参数 measureme nt parameters 测量位置 measureme nt seat最大风速 maximum wi nd speed 风功率密度 wind energy den sity 阵风影响gust in flue nee环境 environment气候 climate海洋气候 ocea n climate室内气候 in door climate极端最高 extreme极端最高 extreme maximum年最高 annual maximum月平均温度 mea n mon thly temperature空气湿度 air humidity绝对湿度 absolute humidity 制动器(风力机) brake(for wind turb ine) 锁机(风力机) 停机(风力机) 停机制动(风力机) 风轮转速(风力机)相对湿度relative humidity雨rain冻雨freezing rain雾淞;霜rime雾fog盐雾salt fog标准大气压sta ndard air pressure平均海平面mean sea level太阳辐射solar radiati on直接太阳辐射direct solar radiatio n天空辐射sky radiati on太阳常数solar con sta nt黑体black body白体white body温室效应gree nhouse effect表面温度surface temperature输出功率(风力发电机组)output power额定功率(风力发电机组)rated power功率特性power performa nee功率系数power coefficie nt扫掠面积swept area测量功率曲线measured power可利用率(风力发电机组)availability(for WTGS)数据组(测试功率特性)data set(for power performa nee measureme nt)精度(风力发电机组)accuracy(for WTGS)测量误差un certa inty in measureme nt测量周期measureme nt period实验场地test site气流畸变flow distortion障碍物obstacles风障wind break声压级sound pressure level声级weighted sound pressure level; sound level值向性(风力发电机组)directivity(for WTGS)音值tonality风的基准风速acoustic reference wind speed标准风速sta ndardized wind speed基准高度refere nee height基准粗糙长度reference rough ness len gth基准距离refere nee dista nee掠射角grazi ng an gle比恩法method of bins标准误差sta ndard un certa inly风能利用系数rotor power coefficie nt力矩系数torque coefficie nt额定力矩系数rated torque coefficie nt起动力矩系数start ing torque coefficie nt最大力矩系数maximum torque coefficie nt过载度ratio of over load风力发电机组输出特性output characteristic of WTGS调节特性regulati ng characteristics平均噪音average no ise level机组效率efficie ncy of WTGS机组寿命service life度电成本cost per kilowatt hour of the electricity gen erated by WTGS 风轮wind rotor风轮直径rotor diameter风轮扫掠面积rotor swept area 风轮仰角tilt an gle of rotor shaft 风轮偏航角yaw ing an gle of rotor shaft风轮额定转速rated turning speed of rotor 风轮最高转速maximum turning speed of rotor 风轮尾流rotor wake 尾流损失wake losses 风轮稳定rotor stability 实度损失the degree of actual loss 叶片数number of blades 叶片blade 等截面叶片con sta nt chord blade 变截面叶片面积variable chord blade叶片投影面积projected area of blade 叶片长度len gth of blade 叶根root of blade 叶尖tip of blade 叶尖速度tip speed 桨距角pitch an gle 翼型airfoil 前缘leading edge 后缘tailing edge 几何弦长geometric chord of airfoil 平均几何弦长mean geometric chord of airfoil 气动弦线aerody namic chord of airfoil翼型厚度thickness of airfoil翼型相对厚度relative thick ness of airfoil厚度函数thick ness function of airfoil翼型族the family of airfoil叶片根梢比ratio of tip-sect ion chord to root-secti on chord叶片展弦比aspect ratio叶片安装角sett ing an gle of blade叶片扭角twist of blade叶片几何攻角an gle of attack of blade叶尖损失tip losses叶片损失blade losses颤振flutter迎风机构orie ntati on mecha nism 调速机构regulat ing mecha nism 风轮偏侧式调速机构regulati ng mecha nism of turni ng wi nd rotor out of the wi nd sideward变桨距调节机构regulat ing mecha nism by adjust ing the pitch of blade导流罩nose 顺桨feathering 阻尼板spoiling flap 风轮空气动力特性aerody namic characteristics叶尖速比tip-speed ratio 额定叶尖速比rated tip-speed ratio 升力系数lift coefficie nt 阻力系数drag coefficie nt 推或拉力系数thrust coefficient 传动比transmission ratio 齿轮gear 齿轮畐U gear pair 平行轴齿轮副gear pair with parallel axes 齿轮系train of gears 行星齿轮系pla netary gear train小齿轮pinion 大齿轮wheel gear 主动齿轮driv ing gear 从动齿轮drive n gear 行星齿轮pla net gear 行星架planet carrier 太阳轮sun gear 内齿圈ring gear 夕卜齿轮external gear 内齿轮internal gear 内齿轮副internal gear pair 增速齿轮副speed in creas ing gear pair 增速齿轮系speed in creas ing gear train中心距离cen ter dista nee 增速比speed increasing ratio齿面tooth flank工作齿面work ing flank 非工作齿面non-work ing flank 模数module 齿数number of teeth 啮合engagement ; mesh 齿轮的变位adde ndum modificatio n on gear 变位齿轮gear with adde ndum modificati on 圆柱齿轮cyli ndrical gear 直齿圆柱齿轮spur gear 斜齿圆柱齿轮helical gear; sin gle-helical gear 节点pitch point 节圆pitch circle 齿顶圆tip circle 齿根圆root circle 直径和半径diameter and radius 齿宽face width 齿厚tooth thickness 压力角pressure an gle 蜗杆worm 蜗轮worm wheel 联轴器coupling 刚性联轴器rigid coupli ng万向联轴器uni versal coupli ng 安全联轴器security coupli ng 齿tooth 齿槽tooth space 斜齿轮helical gear 人字齿轮double-helical gear 齿距pitch 法向齿距no rmal pitch 齿高tooth depth 输入轴input shaft 输出轴output shaft 柱销pin 柱销套roller行星齿轮传动机构pla netary gear drive mecha nism中心轮center gear单级行星齿轮系sin gle pla netary gear train多级行星齿轮系multiple-stage pla netary gear train柔性齿轮flexible 刚性齿轮rigidity gear柔性滚动轴承flexible rolli ng beari ng 输出联接output coupli ng 刚度rigidity 扭转刚度torsio nal rigidity扭转刚度系数coefficie nt of torsional rigidity起动力矩starti ng torque 传动误差tran smissi on error 传动精度tran smissi on accuracy固有频率n atural freque ncy 弹性联接elastic coupli ng 刚性联接rigid coupli ng 滑块联接Oldham coupli ng 固定联接in tegrated coupli ng 齿啮式连接dyn amic coupli ng花键联接spli ned coupli ng 牙嵌式联接castellated coupli ng径向销联接radial pin coupli ng周期振动periodic vibrati on 随机振动random vibrati on 峰值peak value 临界阻尼critical damp ing 阻尼系数damp ing coefficie nt 阻尼比damping ratio 减震器vibration isolator 幅值amplitude 位移幅值displaceme nt amplitude 速度幅值velocity amplitude 力口速度幅值accelerati on amplitude同步发电机synchronous gen erator异步发电机asynchronous gen erator感应电机induction gen erator 转差率slip 瞬态电流tran sie nt curre nt 笼型cage 绕线转子wou nd rotor 绕组系数wi ndi ng factor 换向器commutator 集电环collector ring 换向片commutator segment 励磁响应excitati on response 制动系统brak ing system 制动机构brake mecha nism 正常制动系no rmal brak ing system紧急制动系emerge ncy brak ing system空气制动系air braking system液压制动系hydraulic brak ing system电磁制动系electromag netic brak ing system机械制动系mecha nical brak ing system辅助装置auxiliary device 制动器释放brak ing releas ing制动器闭合brake sett ing液压缸hydraulic cylinder 溢流阀relief valve 泄油drain 齿轮马达gear motor 齿轮泵gear pump 电磁阀solenoid valve 液压过滤器hydraulic filter液压泵hydraulic pump 液压系统hydraulic system 油冷却器oil cooler 压力控制阀p ressure control valve安全阀safety valve 设定压力sett ing pressure 切换switching 旋转接头rotati ng union 压力表pressure gauge 液压油hydraulic fluid 液压马达hydraulic motor 油圭寸oil seal 刹车盘brake disc 闸垫brake pad 刹车油brake fluid 闸衬片brake lining 滑动制动器slidi ng shoes偏航yawing 主动偏航active yaw ing 被动偏航passive yaw ing 偏航驱动yaw ing drive n 解缆untwist 塔架tower 独立式塔架free sta nd tower拉索式塔架guyed tower塔影效应in flue nee by the tower shadow 远程监视telem on itori ng 协议protocol 实时real time 单向传输simplex tran smissi on 半双工传输h alf-duplex tran smissi on双工传输duplex tran smissi on 前置机front end processor 运动终端remote term inal uni t (RUT) 调制解调器modern数据终端设备date termi nal equipme nt接口in terface 数据电路date circuit信息information状态信息state in formati on分接头位置信息tap positi on in formati on监视信息mon itored in formati on事件信息event in formati on设备故障信息equipme nt failure in formati on返回信息return in formati on 告警alarm 设定值set point valve 瞬时测量in sta ntan eous measured 计量值counted measured ; metered measured ; metered reading 确认ack no wledgeme nt 信号signal 模拟信息an alog sig nal 命令comma nd 字节byte位:比特bit地址address波特BD编码encode 译码decode 代码code 集中控制cen tralized control 可编程序控制programmable con trol微机程制mini computer program control 模拟控制an alogue control 数字控制digital con trol 强电控制strong curre nt con trol 弱电控制weak curre nt con trol 单元控制unit con trol 就地控制local co ntrol 联锁装置in terlocker 模拟盘analogue board 配电盘switch board 控制台control desk 紧急停车按钮emerge ncy stop push-butt on限位开关limit switch 有载指示灯on-load in dicator位置指示灯positi on in dicator屏幕显示scree n display 指示灯display lamp 起动信号start ing sig nal 公共供电点point of com mon coupli ng闪变flicker 数据库data base 硬件hardware硬件平台hardware platform层layer ; level ; class 模型model 响应时间response time 软件software 软件平台software platform 系统软件system software 自由脱扣trip-free 基准误差basic err 一对一控制方式on e-to-one con trol mode一次电流primary curre nt 一次电压primary voltage 二次电流sec ondary curre nt 二次电压sec ondary voltage 低压电器low voltage 额定工作电压rated operati onal voltage运行管理operati on man ageme nt 安全方案safety外部条件external con ditio n(for WTGS) 失效failure 故障fault控制柜control cabinet 冗余技术redundance 正常关机no rmal shutdow n (for wind turb ine) 失效-安全fail-safe 排除故障cleara nee 空转idling (for wind turbine) 夕卜部动力exter nal power supply 锁定装置lock ing set 临界转速activati on rotati onal speed 最大转速maximum rotati onal speed 过载功率over power (for wi nd turbi ne) 临界功率activati on power (for wind turb ine) 最大功率maximum power (for wi nd turbi ne) 外联机试验field test with turbi ne试验台test-bed 台架试验test on bed 防雷系统lighti ng protection system(LPS) 夕卜部防雷系统exter nal lighti ng protecti on system 内部防雷系统intern al lighti ng protect ion system接闪器air-term in ati on system 等电位连接equipote ntial bonding弓丨下线down-conductor 接地装置earth-term in ati on system 接地线earth con ductor 接地体earth electrode环行接地体ring earth electrode基础接地体foun dati on earth electrode等电位连接带bonding bar等电位连接导体bonding con ductor 保护等级protecti on lever 防雷区light ning protect ion zone 雷电流lightning current 电涌保护区surge suppressor共用接地系统com mon earth ing system接地基准点earth ing refere nee poin t (ERP)持续运行continu ous operatio n 持续运行的闪变系数flicker coefficie nt for con ti nu ous operati on闪变阶跃系数flicker step factor最大允许功率maximum permitted power最大测量功率maximum measured power电网阻抗相角n etwork impeda nee phase an gle正常运行no rmal operati on 功率采集系统power collectio n syetem额定电流rated curre nt 额定无功功率r ated reactive power停机standstill 起动start up 切换运行switchi ng operati on风力机最大功率maximum power of wi nd turbi ne风力机停机parked wi nd turbi ne安全系数safety system 控制装置con trol device 额定负载rated load 周期period 相位phase 频率frequency 阻尼damping 电electricity 电的electric 电流electric current 导电性conductivity 电压voltage 电磁感应electromag netic induction 励磁excitation 电阻率resistivity 导体con ductor 半导体semic on ductor 电路electric circuit 串联电路series circuit 电容capacitanee 电感inductanee电阻resista nee 阻抗impedanee 电抗reactance 传递比transfer rati on 交流电压alter nati ng voltage 交流电流alter nati ng curre nt 脉动电压pulsat ing voltage 脉动电流pulsat ing curre nt 直流电压direct voltage 直流电流direct curre nt 瞬时功率in sta ntan eous power 有功功率active power 无功功率reactive power 有功电流active curre nt 无功电流reactive curre nt 功率因数power factor 中性点n eutral point 相序sequential order of the phase 电气元件electrical device 接线端子termi nal 电极electrode 地earth ; ground 接地电路resista nee of an earthed con ductor 绝缘子insulator绝缘套管in sulati ng bush ing 母线busbar 线圈coil 螺线管solenoid 绕组winding 电阻器resistor 电感器in ductor 电容器capacitor 继电器relay电能转换器electric energy tran sducer 电机electric machine 发电机generator 电动机motor 变压器transformer 变流器converter 变频器frequency converter 整流器rectifier 逆变器inverter 传感器sensor 偶合器electric coupling 放大器amplifier 振荡器oscillator滤波器filter 触头con tact 开关设备switchgear 控制设备con trolgear 闭合电路closed circuit 断开电路ope n circuit 通断switching 联结connection 串联series connection 并联parallel connection 星型联结star connection 三角形联结star connection 主电路main circuit 辅助电路auxiliary circuit 控制电路con trol circuit 信号电路sig nal circuit 保护电路protective circuit 换向commutation 输入功率in put power 输入in put 输出output 负载load 加载to load 充电to charge 放电to discharge 有载运行on-load operati on 空载运行no-load operati on 开路运行ope n-circuit operati on 短路运行short-circuit operati on 满载full load 效率efficiency 损耗loss 过电压over-voltage 过电流over circuit 欠电压under-voltage 特性characteristic 绝缘物insulant 隔绝to isolate 绝缘电阻in sulati on resista nee 泄漏电流leakage curre nt 短路short circuit 噪音noise 额定值rated value 环境条件environment con diti on 工况operating condition 额定工况rated con diti on极限数limiting value 绝缘比insulation level 负载比duty ratio 扌由样试验sampli ng test 维护试验maintenance test 投运试验commissi oning test 力口速accelerating 特性曲线characteristic curve 额定电压rated voltage 额定频率rated freque ncy 额定转速rated speed 温升temperature rise 温度系数temperature coefficie nt 端电压terminal voltage 短路电流short circuit curre nt 可靠性reliability 有效性availability 耐久性durability 维修maintenance 修复时间repair time 寿命life 寿命试验life time 使用寿命useful life 平均寿命mea n life 耐久试验en dura nee test 可靠性测定试验reliability determ in atio n现场可靠性试验field reliability test加速试验accelerated test 安全性fail safe 应力stress 强度strength 试验数据test data 现场数据field data 电触头electrical contact 主触头main contact 击穿breakdown 电线电缆electrical wire and cable 电力电缆power cable通讯电缆telecom mun icati on cable ; com mun icatio n cable 油浸式变压器oil-immersed type tran sformer 干式变压器dry-type tran sformer自耦变压器auto-tra nsformer空载电流non-load curre nt 阻抗电压impeda nee voltage 电抗电压reacta nee voltage 电阻电压resista nee voltage酉己电电器distributi ng apparatus控制电器con trol apparatus 开关switch 熔断器fuse 断路器circuit breaker 控制器controller 接触器contactor机械寿命mecha nical en dura nee 电气寿命electrical en dura nee 旋转电机electrical rotati ng machi ne 直流电机direct curre nt mach ine 交流电机alter nat ing curre nt mach ine 同步电机synchronous mach ine 异步电机asynchronous mach ine 感应电机induction mach ine 开路特性ope n-circuit characteristic 负载特性load characteristic 短路特性short-circuit characteristic 额定转矩rated load torque 同步转速synchronous speed 转差率slip 短路比short-circuit ratio 同步系数synchronous speed 空载no-load 系统system 正常状态no rmal con diti on 接触电压touch voltage 跨步电压step voltage 对地电压voltage to earth 安全阻抗safer impeda nee 安全距离safe dista nee 安全标志safe marking 安全色safety color 中性点有效接地系统s ystem with effectively earthed neutral检修接地in specti on earth ing 工作接地worki ng earth ing 保护接地protective earth ing 过电压保护over voltage protect ion 过电流保护over curre nt protecti on 断相保护ope n-phase protect ion 电力电子器件power electro nic device 晶闸管thyratron 电力二级管power diode 半导体整流器semico nductor rectifier -SR绝缘栅双级晶体管in sulated-gate bipolar transistor ---- IGBT普通二级管(整流二级管)gen eral purpose diode【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。
Chapter 4Switching Overvoltage Analysis4.1 IntroductionIn the extra high voltage (EHV) transmission line, switching overvoltages are used to determine the insulation design rather than lightning overvoltages. The insulation level required to withstand the switching surge overvoltages can had a significant influence on the cost of the transmission systems. Therefore, an accurate estimation of the switching overvoltages under various conditions of the operation is important factor for the design of transmission systems. Switching overvoltages result from the operation of switching devices, either during normal conditions or as a result of fault clearings. These transients have durations from ten to thousands of microseconds. This thesis investigates the switching overvoltages occurring during the switching of line circuit breaker on each side of the 500 kV transmission line between Nam Theun 2 and Thailand network at Roi Et 2 substation as shown in Figure 4.1. The analyses to assess the switching overvoltages in cases are as following: [4], [5], [16]-Line energization-Line re-energization due to single phase to ground and three phases to ground faults.Two cases above bring to get the highest overvoltage. In case of line re-energization, more than 85-90% comes from line to ground faults and the other comes from three phases to ground faults. However, case of three phases to ground faults has more damage than single line to ground fault.4.2 Line Energization Analysis4.2.1 Cases of the studyThe 500 kV transmission line between Nam Theu 2 and Roi Et 2 had double circuits. The study of line energization is divided into three cases as following:1) Line energization from Nam Theun 2 to Roi Et 2 circuit 1 with opencircuit at the receiving end at RE 2 substation and energizing with loadconditions.2) Line energization from Nam Theu 2 to Roi Et 2 circuit 2 with opencircuit at the receiving end at RE 2 substation.3) Line energization from Nam Theun 2 to Roi Et 2 circuit 1 and circuit 2energizing with load.Switching overvoltages during line energization of the 500 kV transmission line between Nam Theun 2 and Thailand network at Rio Et 2 substation is analyzed with a presence of 444 kV surge arresters at both sides and 3×55 Mvar shunt reactors at Nam Theun 2 Power Plant and 2×55 Mvar at Roi Et 2 substation at both sides terminal. It was assumed that protection devices switched turning on/off during line energization. The 200 operations statistical switching are considered for finding that the maximum overvoltage occurring the transmission lines.4.2.2 MethodologyAll cases of the study, the circuit breaker at bus the sending end is operating energizing to lines. The line energization overvoltages study during no load, half load and full load are considered. In case of line energization, it brings to get the maximum overvoltages and more damage, for example, open circuit breaker at the receiving end during the energization from the sending end will get the overvoltages at the receiving end. As well known, switching overvoltage occurred on power systems due to many factors which have an effect on the value and waveform. The maximum overvoltage is found out by the statistical method. This method is random many parameters such as circuit breaker closing time, time scatter between phases, line parameters. It should be note that the closing time plays an important role on the value of energization overvoltage. First step to study switching energization, we have to find out the worst closing and the statistical closing time.4.2.3 Line Energizing from NTN 2- RE2 Circuit 1Line energization overvoltage study of circuit 1, energizing from the sending end named NTN 2 to the receiving end named RE 2 as illustrated in Figure 4.1.Figure 4.1 Single line diagram of 500 kV transmission line NTN 2 – RE 2 substation circuit 1 energizing.Before closing the circuit breaker of Nam Theun 2, the generator of power plant has to be in steady state condition. All line circuit breakers at both sides of these two circuits are opened and one set of line circuit breaker on the circuit 1 of the double circuit lines a Nam Theun 2 is operated.Since one circle of waveform has 20 ms, result in many closing times can apply for circuit breaker. To find the worst closing time ( mean closing time ), we have change the closing phase angle and find out the particular closing phase angle which can cause the highest value. Table: 4.1 shown the results for different closing time ( when the three phases closing at same time ). The highest overvoltage is 1.704 p.u occurred at the receiving end when the closing time is 15ms.Table: 4.1. The effect of different closing time on the energization overvoltage closing 3 poles of circuit breaker at the same time from NTN 2 –RE 2 with protection devices terminal.Maximum overvoltage at Roi Et 2 substation ( 1 p.u = 429 kV )Closing time ( ms ) Voltage ( kV L-N peak ) Voltage ( pu )0 711.797 1.6591 728.564 1.6982 730.517 1.7033 718.479 1.6754 724.676 1.6895 731.185 1.7046 723.486 1.6867 718.853 1.6768 730.494 1.7039 727.547 1.69610 711.932 1.66011 728.738 1.69912 730.689 1.70313 718.632 1.67514 724.818 1.69015 731.191 1.70416 723.638 1.68717 719.000 1.67618 730.643 1.70319 727.698 1.69620 712.105 1.660The switching overvoltage during line energization of the 500 kV transmissionline between Nam Theun 2 substation and Roi Et 2 substation circuit 1 are analyzedwith presence of 444 kV line surge arresters at both sides and 3x55 Mvar shunt reactor at Nam Theun 2 Power Plant and 2x55 Mvar at Roi Et 2 receiving end. For the200 operations are tested. The closing angle of main contract has normal distribution ( Gaussian normal ). The mean of main contract closing is 15 ms and standard deviation is 1 ms. It was assumed that protection devices switched on/off during line energization. The simulation results as illustrated in table 4.2 to table: 4.8. It is obvious that the highest value of line energization overvoltage could be 2.188 p.u.which case without arresters at both sides at no load condition. When the transmissionline has installed arresters, the overvoltage can be reduced from 2.188 to 1.706 p.u.The shunt reactor can be also reduced the value of overvoltage, but the effect is minorfrom 1.750 to 1.706 p.u. The maximum at receiving end waveform during changing switched on/off protection devices at both sides as illustrated in Figure 4.2 to Figure4.8.Table: 4.2 The 200 statistical calculations for energization overvoltage fromNTN 2 – RE 2 circuit 1 with protection devices.No. Voltage No. Voltage No. Voltage No. Voltage No. Voltage( p.u ) ( p.u ) ( p.u ) ( p.u ) ( p.u )1 1.688 41 1.695 81 1.693 121 1.700 161 1.7022 1.702 42 1.704 82 1.665 122 1.676 162 1.6943 1.706 43 1.697 83 1.704 123 1.681 163 1.6924 1.704 44 1.690 84 1.701 124 1.676 164 1.6995 1.699 45 1.701 85 1.703 125 1.665 165 1.7026 1.703 46 1.704 86 1.702 126 1.702 166 1.6807 1.704 47 1.697 87 1.680 127 1.703 167 1.6828 1.699 48 1.703 88 1.694 128 1.682 168 1.7049 1.686 49 1.686 89 1.704 129 1.688 169 1.70110 1.701 50 1.691 90 1.671 130 1.680 170 1.70011 1.702 51 1.703 91 1.704 131 1.698 171 1.67812 1.676 52 1.706 92 1.706 132 1.702 172 1.69413 1.695 53 1.688 93 1.672 133 1.685 173 1.70314 1.703 54 1.704 94 1.674 134 1.662 174 1.69015 1.664 55 1.703 95 1.704 135 1.703 175 1.70316 1.697 56 1.697 96 1.678 136 1.694 176 1.70217 1.691 57 1.686 97 1.706 137 1.704 177 1.70218 1.703 58 1.691 98 1.688 138 1.704 178 1.66219 1.667 59 1.703 99 1.706 139 1.690 179 1.70120 1.702 60 1.686 100 1.702 140 1.704 180 1.69721 1.704 61 1.695 101 1.703 141 1.667 181 1.70322 1.704 62 1.704 102 1.686 142 1.689 182 1.69123 1.704 63 1.697 103 1.705 143 1.678 183 1.70424 1.703 64 1.690 104 1.676 144 1.704 184 1.67125 1.678 65 1.701 105 1.686 145 1.705 185 1.70226 1.688 66 1.704 106 1.706 146 1.672 186 1.70227 1.704 67 1.697 107 1.704 147 1.693 187 1.68328 1.702 68 1.703 108 1.693 148 1.704 188 1.70529 1.696 69 1.686 109 1.697 149 1.704 189 1.70430 1.678 70 1.691 110 1.699 150 1.674 190 1.67431 1.687 71 1.703 111 1.703 151 1.704 191 1.66532 1.694 72 1.706 112 1.683 152 1.702 192 1.70233 1.680 73 1.688 113 1.706 153 1.681 193 1.67634 1.701 74 1.704 114 1.704 154 1.684 194 1.69435 1.704 75 1.703 115 1.693 155 1.703 195 1.66936 1.704 76 1.697 116 1.684 156 1.686 196 1.67837 1.676 77 1.686 117 1.671 157 1.702 197 1.70438 1.705 78 1.691 118 1.680 158 1.702 198 1.69739 1.691 79 1.703 119 1.691 159 1.703 199 1.70340 1.704 80 1.686 120 1.700 160 1.700 200 1.702From table: 4.2, the 200 operations switching line energization circuit 1 with protection devices of 500 kV transmission lines Nam Theun 2 to Roi Et 2 substation. The line energization overvoltage in circuit breakers occurs at the closing time of 14.28 ms. The maximum overvoltage at the receiving end is reach 1.706 p.u. The minimum overvoltage at the receiving end is 1.662 p.u. The mean of overvoltage at the receiving end is 1.692 p.u and the standard deviation is 5.056 %. The voltage waveform is illustrated in Figure 4.2.Figure 4.2 SOV during line energizing circuit 1 with protection devices.Table: 4.3 The 200 statistical calculations for energization overvoltage from NTN 2 – RE 2 circuit 1 without shunt reactor at NTN 2.No. Voltage( p.u )No.Voltage( p.u )No.Voltage( p.u )No.Voltage( p.u )No.Voltage( p.u )1 1.701 41 1.708 81 1.706 121 1.715 161 1.7212 1.721 42 1.722 82 1.684 122 1.697 162 1.7143 1.721 43 1.710 83 1.722 123 1.703 163 1.7054 1.722 44 1.711 84 1.720 124 1.689 164 1.7125 1.718 45 1.714 85 1.721 125 1.684 165 1.7216 1.721 46 1.722 86 1.718 126 1.721 166 1.7017 1.722 47 1.710 87 1.693 127 1.720 167 1.6958 1.712 48 1.720 88 1.707 128 1.695 168 1.7229 1.699 49 1.699 89 1.719 129 1.701 169 1.71410 1.720 50 1.712 90 1.684 130 1.693 170 1.71511 1.721 51 1.716 91 1.722 131 1.711 171 1.69112 1.689 52 1.723 92 1.722 132 1.721 172 1.70713 1.716 53 1.709 93 1.684 133 1.706 173 1.72214 1.721 54 1.719 94 1.687 134 1.681 174 1.71115 1.677 55 1.719 95 1.721 135 1.721 175 1.72116 1.712 56 1.710 96 1.691 136 1.707 176 1.72117 1.712 57 1.699 97 1.723 137 1.722 177 1.72118 1.720 58 1.712 98 1.701 138 1.720 178 1.67519 1.680 59 1.719 99 1.722 139 1.702 179 1.71720 1.715 60 1.699 100 1.721 140 1.722 180 1.71221 1.722 61 1.714 101 1.719 141 1.680 181 1.72122 1.722 62 1.691 102 1.699 142 1.702 182 1.70423 1.721 63 1.690 103 1.720 143 1.691 183 1.72224 1.716 64 1.687 104 1.689 144 1.722 184 1.68425 1.691 65 1.708 105 1.699 145 1.722 185 1.72126 1.709 66 1.678 106 1.721 146 1.684 186 1.72127 1.718 67 1.721 107 1.723 147 1.706 187 1.70528 1.721 68 1.722 108 1.706 148 1.723 188 1.72029 1.710 69 1.721 109 1.712 149 1.722 189 1.72230 1.691 70 1.716 110 1.713 150 1.687 190 1.68731 1.708 71 1.718 111 1.716 151 1.718 191 1.68432 1.707 72 1.710 112 1.705 152 1.721 192 1.71833 1.693 73 1.695 113 1.722 153 1.703 193 1.69734 1.714 74 1.721 114 1.721 154 1.697 194 1.70735 1.721 75 1.721 115 1.706 155 1.722 195 1.68236 1.722 76 1.722 116 1.697 156 1.699 196 1.69137 1.697 77 1.690 117 1.692 157 1.721 197 1.72238 1.723 78 1.722 118 1.693 158 1.721 198 1.71039 1.704 79 1.718 119 1.712 159 1.720 199 1.71640 1.722 80 1.707 120 1.716 160 1.716 200 1.721From table: 4.3, the 200 operations switching line energization circuit 1 without shunt reactors at Nam Theun 2 of 500 kV transmission lines Nam Theun 2 to Roi Et 2 substation. The energization overvoltage in circuit breakers closing time is 14.31 ms. The maximum overvoltage at the receiving end is reach 1.723 p.u. The minimum overvoltage at the receiving end is 1.675 p.u. The mean of overvoltage at the receiving end is 1.709 p.u and the standard deviation is 5.582 %. The voltage waveform is illustrated in Figure 4.3.Figure 4.3 SOV during line energizing circuit 1 without shunt reactor at NTN 2.Table: 4.4 The 200 statistical calculations for energization overvoltage from NTN 2 – RE 2 circuit 1 without shunt reactor at RE 2.No. Voltage( p.u )No.Voltage( p.u )No.Voltage( p.u )No.Voltage( p.u )No.Voltage( p.u )1 1.708 41 1.718 81 1.713 121 1.724 161 1.7292 1.729 42 1.730 82 1.691 122 1.704 162 1.7223 1.730 43 1.717 83 1.730 123 1.710 163 1.7154 1.730 44 1.718 84 1.728 124 1.696 164 1.7205 1.726 45 1.722 85 1.730 125 1.691 165 1.7296 1.730 46 1.731 86 1.727 126 1.729 166 1.7097 1.730 47 1.717 87 1.700 127 1.728 167 1.7028 1.720 48 1.728 88 1.716 128 1.702 168 1.7319 1.707 49 1.706 89 1.728 129 1.708 169 1.72210 1.728 50 1.720 90 1.691 130 1.700 170 1.72411 1.729 51 1.725 91 1.731 131 1.718 171 1.69812 1.696 52 1.731 92 1.731 132 1.729 172 1.71613 1.723 53 1.717 93 1.692 133 1.714 173 1.73014 1.730 54 1.728 94 1.694 134 1.688 174 1.71815 1.685 55 1.728 95 1.730 135 1.730 175 1.73016 1.721 56 1.717 96 1.698 136 1.716 176 1.72917 1.720 57 1.707 97 1.731 137 1.731 177 1.72918 1.728 58 1.720 98 1.709 138 1.729 178 1.68219 1.687 59 1.728 99 1.731 139 1.710 179 1.72620 1.724 60 1.706 100 1.729 140 1.731 180 1.72121 1.731 61 1.722 101 1.728 141 1.687 181 1.73022 1.730 62 1.698 102 1.706 142 1.711 182 1.71123 1.730 63 1.696 103 1.729 143 1.698 183 1.73024 1.726 64 1.694 104 1.696 144 1.731 184 1.69125 1.698 65 1.718 105 1.707 145 1.731 185 1.72926 1.717 66 1.685 106 1.730 146 1.692 186 1.72927 1.727 67 1.730 107 1.731 147 1.713 187 1.71228 1.729 68 1.731 108 1.713 148 1.731 188 1.72929 1.720 69 1.729 109 1.721 149 1.730 189 1.73030 1.698 70 1.725 110 1.722 150 1.694 190 1.69431 1.715 71 1.726 111 1.726 151 1.727 191 1.69132 1.714 72 1.720 112 1.712 152 1.729 192 1.72733 1.700 73 1.702 113 1.731 153 1.710 193 1.70434 1.722 74 1.729 114 1.730 154 1.704 194 1.71435 1.730 75 1.729 115 1.713 155 1.730 195 1.68936 1.731 76 1.730 116 1.704 156 1.706 196 1.69837 1.704 77 1.696 117 1.699 157 1.729 197 1.73038 1.731 78 1.730 118 1.700 158 1.729 198 1.71739 1.711 79 1.727 119 1.720 159 1.728 199 1.72540 1.730 80 1.716 120 1.725 160 1.725 200 1.729From table: 4.4, the 200 operations switching line energization circuit 1 without shunt reactors at Roi Et 2 of 500 kV transmission lines Nam Theun 2 to Roi Et 2 substation. The energization overvoltage in circuit breakers closing time is 14.31 ms. The maximum overvoltage at the receiving end is reach 1.731 p.u. The minimum overvoltage at the receiving end is 1.682 p.u. The mean of overvoltage at the receiving end is 1.717 p.u and the standard deviation is 5.835 %. The voltage waveform is illustrated in Figure 4.4.Figure 4.4 SOV during line energizing circuit 1 without shunt reactor at RE 2.Table: 4.5 The 200 statistical calculations for energization overvoltage from NTN 2 – RE 2 circuit 1 without arrester at NTN 2.No. Voltage( p.u )No.Voltage( p.u )No.Voltage( p.u )No.Voltage( p.u )No.Voltage( p.u )1 1.693 41 1.705 81 1.698 121 1.710 161 1.7132 1.713 42 1.716 82 1.673 122 1.685 162 1.7053 1.715 43 1.703 83 1.715 123 1.691 163 1.7024 1.714 44 1.700 84 1.711 124 1.681 164 1.7065 1.709 45 1.709 85 1.714 125 1.673 165 1.7136 1.714 46 1.715 86 1.713 126 1.713 166 1.6897 1.715 47 1.703 87 1.686 127 1.714 167 1.6888 1.706 48 1.714 88 1.703 128 1.690 168 1.7159 1.695 49 1.691 89 1.714 129 1.693 169 1.70910 1.711 50 1.702 90 1.677 130 1.686 170 1.71011 1.713 51 1.711 91 1.715 131 1.705 171 1.68612 1.681 52 1.716 92 1.716 132 1.713 172 1.70313 1.706 53 1.699 93 1.679 133 1.695 173 1.71414 1.714 54 1.714 94 1.679 134 1.670 174 1.70015 1.671 55 1.713 95 1.715 135 1.714 175 1.71416 1.708 56 1.703 96 1.684 136 1.703 176 1.71317 1.702 57 1.695 97 1.716 137 1.715 177 1.71318 1.714 58 1.702 98 1.696 138 1.715 178 1.66819 1.674 59 1.713 99 1.716 139 1.695 179 1.71220 1.710 60 1.691 100 1.713 140 1.715 180 1.70821 1.715 61 1.709 101 1.713 141 1.674 181 1.71422 1.715 62 1.684 102 1.691 142 1.698 182 1.69723 1.715 63 1.678 103 1.715 143 1.684 183 1.71424 1.712 64 1.681 104 1.684 144 1.715 184 1.67725 1.684 65 1.705 105 1.695 145 1.716 185 1.71326 1.699 66 1.667 106 1.715 146 1.679 186 1.71327 1.713 67 1.714 107 1.716 147 1.698 187 1.69328 1.713 68 1.716 108 1.698 148 1.716 188 1.71529 1.706 69 1.713 109 1.708 149 1.716 189 1.71530 1.684 70 1.711 110 1.709 150 1.681 190 1.68131 1.697 71 1.709 111 1.712 151 1.713 191 1.67332 1.700 72 1.706 112 1.693 152 1.713 192 1.71333 1.688 73 1.690 113 1.716 153 1.691 193 1.68534 1.709 74 1.713 114 1.715 154 1.692 194 1.70035 1.715 75 1.713 115 1.698 155 1.714 195 1.67636 1.715 76 1.715 116 1.690 156 1.691 196 1.68437 1.685 77 1.678 117 1.681 157 1.713 197 1.71538 1.716 78 1.715 118 1.688 158 1.713 198 1.70339 1.697 79 1.713 119 1.702 159 1.714 199 1.71140 1.714 80 1.698 120 1.711 160 1.711 200 1.713From table: 4.5, the 200 operations switching line energization circuit 1 without arresters at Nam Theun 2 of 500 kV transmission lines Nam Theun 2 to Roi Et 2 substation. The line energization overvoltage closing time is 14.28 ms. The maximum overvoltage at receiving end is reach 1.716 p.u. The minimum overvoltage at receiving end is 1.667 p.u. The mean of overvoltage at receiving end is 1.702 p.u and the standard deviation is 5.787 %. The voltage waveform is illustrated in Figure 4.5.Figure 4.5 SOV during line energizing circuit 1 without Arrester at NTN 2.Table: 4.6 The 200 statistical calculations for energization overvoltage from NTN 2 – RE 2 circuit 1 without arrester at RE 2.No. Voltage( p.u )No.Voltage( p.u )No.Voltage( p.u )No.Voltage( p.u )No.Voltage( p.u )1 1.963 41 2.009 81 1.979 121 2.015 161 2.0022 2.002 42 2.023 82 1.880 122 1.855 162 1.9573 2.020 43 1.990 83 2.012 123 1.888 163 2.0034 2.010 44 1.934 84 1.992 124 1.928 164 1.9955 1.982 45 1.999 85 2.005 125 1.880 165 2.0026 2.005 46 2.015 86 2.014 126 2.002 166 1.8787 2.014 47 1.990 87 1.940 127 2.018 167 1.9468 1.995 48 2.018 88 2.007 128 1.974 168 2.0189 1.985 49 1.958 89 2.014 129 1.963 169 1.99910 1.992 50 1.942 90 1.916 130 1.940 170 2.01511 2.002 51 2.003 91 2.018 131 1.993 171 1.96212 1.928 52 2.021 92 2.021 132 2.002 172 2.00713 1.964 53 1.926 93 1.940 133 1.908 173 2.00914 2.005 54 2.014 94 1.923 134 1.889 174 1.93415 1.916 55 2.016 95 2.021 135 2.005 175 2.00516 2.013 56 1.990 96 1.935 136 2.007 176 2.00217 1.942 57 1.985 97 2.021 137 2.015 177 2.00218 2.018 58 1.942 98 1.990 138 2.020 178 1.90719 1.925 59 2.016 99 2.021 139 1.969 179 2.01420 2.000 60 1.958 100 2.002 140 2.015 180 2.01321 2.018 61 1.999 101 2.016 141 1.925 181 2.00522 2.012 62 1.935 102 1.958 142 1.995 182 1.97323 2.021 63 1.870 103 2.017 143 1.935 183 2.01224 2.007 64 1.948 104 1.956 144 2.015 184 1.91625 1.935 65 2.009 105 1.985 145 2.022 185 2.00226 1.926 66 1.898 106 2.020 146 1.940 186 2.00227 2.011 67 2.005 107 2.019 147 1.979 187 1.89828 2.000 68 2.021 108 1.979 148 2.019 188 2.01729 2.011 69 2.002 109 2.013 149 2.023 189 2.01230 1.935 70 2.015 110 2.014 150 1.948 190 1.94831 1.917 71 1.982 111 2.007 151 2.011 191 1.88032 1.983 72 2.011 112 1.898 152 2.002 192 2.01433 1.968 73 1.974 113 2.021 153 1.888 193 1.85534 1.999 74 2.002 114 2.021 154 1.980 194 1.98335 2.021 75 2.002 115 1.979 155 2.009 195 1.93236 2.015 76 2.014 116 1.953 156 1.958 196 1.93537 1.855 77 1.870 117 1.864 157 2.002 197 2.01238 2.020 78 2.022 118 1.968 158 2.002 198 1.99039 1.973 79 2.011 119 1.942 159 2.018 199 2.00340 2.012 80 2.007 120 2.015 160 2.015 200 2.002From table: 4.6, the 200 operations switching line energization circuit 1 without arresters at Rio Et 2 of 500 kV transmission lines Nam Theun 2 to Roi Et 2 substation, for energization overvoltage closing time is 17.47ms. The maximum overvoltage at receiving end is 2.023 p.u. The minimum overvoltage at receiving end is 1.855 p.u. The mean of overvoltage at receiving end is 1.980 p.u and the standard deviation is 18.524 %. The voltage waveform is illustrated in Figure 4.6.Figure 4.6 SOV during line energizing circuit 1 without Arrester at RE 2.Table 4.7 The 200 statistical calculations for energization overvoltage from NTN 2 – RE 2 circuit 1 without shunt reactor at both sides.No. Voltage( p.u )No.Voltage( p.u )No.Voltage( p.u )No.Voltage( p.u )No.Voltage( p.u )1 1.723 41 1.736 81 1.728 121 1.742 161 1.7492 1.749 42 1.749 82 1.708 122 1.723 162 1.7463 1.748 43 1.733 83 1.750 123 1.732 163 1.7314 1.750 44 1.743 84 1.749 124 1.711 164 1.7365 1.748 45 1.740 85 1.749 125 1.708 165 1.7496 1.749 46 1.750 86 1.745 126 1.749 166 1.7297 1.750 47 1.733 87 1.716 127 1.747 167 1.7188 1.736 48 1.747 88 1.734 128 1.718 168 1.7509 1.721 49 1.722 89 1.746 129 1.723 169 1.74010 1.749 50 1.744 90 1.707 130 1.716 170 1.74211 1.749 51 1.743 91 1.750 131 1.734 171 1.71412 1.711 52 1.750 92 1.749 132 1.749 172 1.73413 1.746 53 1.741 93 1.707 133 1.737 173 1.74914 1.749 54 1.746 94 1.709 134 1.705 174 1.74315 1.701 55 1.746 95 1.748 135 1.749 175 1.74916 1.740 56 1.733 96 1.714 136 1.734 176 1.74917 1.744 57 1.721 97 1.750 137 1.750 177 1.74918 1.747 58 1.744 98 1.724 138 1.747 178 1.69819 1.703 59 1.746 99 1.749 139 1.725 179 1.74420 1.742 60 1.722 100 1.749 140 1.750 180 1.74021 1.750 61 1.740 101 1.746 141 1.703 181 1.74922 1.750 62 1.714 102 1.722 142 1.726 182 1.72723 1.748 63 1.714 103 1.747 143 1.714 183 1.75024 1.744 64 1.709 104 1.711 144 1.750 184 1.70725 1.714 65 1.736 105 1.721 145 1.749 185 1.74926 1.741 66 1.701 106 1.748 146 1.707 186 1.74927 1.745 67 1.749 107 1.750 147 1.728 187 1.73428 1.750 68 1.749 108 1.728 148 1.750 188 1.74729 1.738 69 1.749 109 1.740 149 1.749 189 1.75030 1.714 70 1.743 110 1.741 150 1.709 190 1.70931 1.739 71 1.748 111 1.744 151 1.745 191 1.70832 1.730 72 1.738 112 1.734 152 1.749 192 1.74533 1.716 73 1.718 113 1.749 153 1.732 193 1.72334 1.740 74 1.749 114 1.748 154 1.720 194 1.73035 1.748 75 1.749 115 1.728 155 1.749 195 1.70536 1.750 76 1.750 116 1.720 156 1.722 196 1.71437 1.723 77 1.714 117 1.717 157 1.749 197 1.75038 1.750 78 1.748 118 1.716 158 1.749 198 1.73339 1.727 79 1.745 119 1.744 159 1.747 199 1.74340 1.750 80 1.734 120 1.743 160 1.743 200 1.749From table: 4.7, the 200 operations switching line energization circuit 1 without shunt reactors at both sides of 500 kV transmission lines Nam Theun 2 to Roi Et 2 substation, for energization overvoltage closing time is 14.31ms. The maximum overvoltage at receiving end is reach 1.750 p.u. The minimum overvoltage at receiving end is 1.698 p.u. The mean of overvoltage at receiving end is 1.736 p.u and the standard deviation is 6.430 %. The voltage waveform is illustrated in Figure 4.7.Figure 4.7 SOV during line energizing circuit 1 without Shunt reactor at both sides.Table: 4.8 The 200 statistical calculations for energization overvoltage from NTN 2 – RE 2 circuit 1 without arrester at both sides.No. Voltage( p.u )No.Voltage( p.u )No.Voltage( p.u )No.Voltage( p.u )No.Voltage( p.u )1 2.121 41 2.183 81 2.139 121 2.188 161 2.0682 2.068 42 2.157 82 2.094 122 2.058 162 2.0163 2.151 43 2.154 83 2.099 123 2.044 163 2.1764 2.096 44 2.025 84 2.055 124 2.103 164 2.1615 2.044 45 2.165 85 2.078 125 2.094 165 2.0686 2.078 46 2.109 86 2.183 126 2.068 166 2.0477 2.114 47 2.154 87 2.106 127 2.177 167 2.1068 2.161 48 2.177 88 2.180 128 2.146 168 2.1199 2.158 49 2.115 89 2.163 129 2.121 169 2.16510 2.055 50 2.019 90 2.102 130 2.106 170 2.18811 2.068 51 2.166 91 2.119 131 2.158 171 2.13312 2.103 52 2.134 92 2.146 132 2.068 172 2.18013 2.023 53 2.030 93 2.125 133 2.037 173 2.08914 2.078 54 2.163 94 2.104 134 2.099 174 2.02515 2.114 55 2.181 95 2.169 135 2.078 175 2.07816 2.187 56 2.154 96 2.105 136 2.180 176 2.06817 2.019 57 2.158 97 2.127 137 2.109 177 2.06818 2.177 58 2.019 98 2.164 138 2.174 178 2.10919 2.117 59 2.181 99 2.146 139 2.128 179 2.18520 2.166 60 2.115 100 2.068 140 2.109 180 2.18721 2.119 61 2.165 101 2.181 141 2.117 181 2.07822 2.099 62 2.105 102 2.115 142 2.169 182 2.13323 2.169 63 2.081 103 2.160 143 2.105 183 2.10624 2.166 64 2.129 104 2.132 144 2.109 184 2.10225 2.105 65 2.183 105 2.158 145 2.150 185 2.06826 2.030 66 2.104 106 2.151 146 2.125 186 2.06827 2.165 67 2.078 107 2.129 147 2.139 187 2.04128 2.066 68 2.146 108 2.139 148 2.129 188 2.16029 2.186 69 2.068 109 2.187 149 2.157 189 2.09930 2.105 70 2.187 110 2.186 150 2.129 190 2.12931 2.033 71 2.044 111 2.166 151 2.165 191 2.09432 2.145 72 2.186 112 2.041 152 2.068 192 2.18333 2.138 73 2.146 113 2.146 153 2.044 193 2.05834 2.165 74 2.068 114 2.169 154 2.150 194 2.14535 2.169 75 2.068 115 2.139 155 2.089 195 2.12136 2.109 76 2.114 116 2.110 156 2.115 196 2.10537 2.058 77 2.081 117 2.074 157 2.068 197 2.09938 2.137 78 2.164 118 2.138 158 2.068 198 2.15439 2.133 79 2.165 119 2.019 159 2.177 199 2.16640 2.106 80 2.180 120 2.187 160 2.187 200 2.068From table: 4.8, the 200 operations switching line energization circuit 1 without arresters at both sides of 500 kV transmission lines Nam Theun 2 to Roi Et 2 substation, for energization overvoltage closing time is 17.05 ms. The maximum overvoltage at receiving end is reach 2.188 p.u. The minimum overvoltage at receiving end is 2.016 p.u. The mean of overvoltage at receiving end is 2.119 p.u and the standard deviation is 20.225 %. The voltage waveform is illustrated in Figure 4.8.Figure 4.8 SOV during line energizing circuit 1 without arrester at both sides.Table: 4.9 The 200 statistical calculations for energization overvoltage from NTN 2 – RE 2 circuit 1 without any protection at both sides.No. Voltage( p.u )No.Voltage( p.u )No.Voltage( p.u )No.Voltage( p.u )No.Voltage( p.u )1 2.362 41 2.365 81 2.369 121 2.364 161 2.3202 2.320 42 2.352 82 2.262 122 2.236 162 2.2653 2.359 43 2.373 83 2.334 123 2.224 163 2.3634 2.335 44 2.237 84 2.310 124 2.334 164 2.3735 2.297 45 2.370 85 2.326 125 2.262 165 2.3206 2.326 46 2.339 86 2.357 126 2.320 166 2.2297 2.349 47 2.373 87 2.345 127 2.352 167 2.3508 2.373 48 2.352 88 2.365 128 2.345 168 2.3429 2.353 49 2.358 89 2.359 129 2.362 169 2.37010 2.310 50 2.247 90 2.321 130 2.345 170 2.36411 2.320 51 2.366 91 2.342 131 2.373 171 2.33512 2.334 52 2.355 92 2.358 132 2.320 172 2.36513 2.273 53 2.227 93 2.317 133 2.220 173 2.33014 2.326 54 2.359 94 2.327 134 2.271 174 2.23715 2.296 55 2.355 95 2.353 135 2.326 175 2.32616 2.366 56 2.373 96 2.339 136 2.365 176 2.32017 2.247 57 2.353 97 2.352 137 2.339 177 2.32018 2.352 58 2.247 98 2.356 138 2.353 178 2.28819 2.303 59 2.355 99 2.358 139 2.365 179 2.36020 2.368 60 2.358 100 2.320 140 2.339 180 2.36621 2.342 61 2.370 101 2.355 141 2.303 181 2.32622 2.334 62 2.339 102 2.358 142 2.359 182 2.36823 2.353 63 2.247 103 2.359 143 2.339 183 2.33924 2.363 64 2.324 104 2.330 144 2.339 184 2.32125 2.339 65 2.365 105 2.353 145 2.351 185 2.32026 2.227 66 2.280 106 2.359 146 2.317 186 2.32027 2.360 67 2.326 107 2.345 147 2.369 187 2.22228 2.322 68 2.358 108 2.369 148 2.345 188 2.35929 2.366 69 2.320 109 2.366 149 2.352 189 2.33430 2.339 70 2.362 110 2.365 150 2.324 190 2.32431 2.218 71 2.297 111 2.363 151 2.360 191 2.26232 2.371 72 2.366 112 2.222 152 2.320 192 2.35733 2.341 73 2.345 113 2.358 153 2.224 193 2.23634 2.370 74 2.320 114 2.353 154 2.349 194 2.37135 2.353 75 2.320 115 2.369 155 2.330 195 2.31136 2.339 76 2.349 116 2.354 156 2.358 196 2.33937 2.236 77 2.247 117 2.244 157 2.320 197 2.33438 2.347 78 2.353 118 2.341 158 2.320 198 2.37339 2.368 79 2.360 119 2.247 159 2.352 199 2.36640 2.339 80 2.365 120 2.362 160 2.362 200 2.320。
第51卷第1期Vol.51No.l 山东大学学报(工学版)J O U R N A L O F S H A N D O N G U N I V E R S I T Y (E N G I N E E R I N G S C I E N C E )2021年2月Feb. 2021文章编号:1672-3961 (202 U 01-0094-06 DOI : 10.6040/j.issn. 1672-3961.0.2020.393海上风电过电压及无功补偿问题研究徐大鹏\蔡德宇2* *,赵兰明、刘旭敏2(1.山东电力工程咨询院有限公司,山东济南250013; 2.山东大学电气工程学院,山东济南250061)摘要:提出一种新的海上风电并网过电压及无功配置问题的动态研究方法。
利用D I g S I L E N T PowerFacotry软件建立海上风 电场模型,包括风电机组、海缆、变压器及相关的控制策略。
利用时域仿真方法分析不同风速条件下风电场的有功、无功及电 压特性,根据时域仿真的结果,配置无功补偿装置,调整、改善风电场电压及无功特性。
通过时域仿真方法对无功补偿配置方 案的效果进行验证。
关键词:海上风电;工频过电压;海底电缆;无功补偿;风电机组控制 中图分类号:T M 72文献标志码:A引用格式:徐大鹏,蔡德宇.赵兰明,等.海上风电过电压及无功补偿问题研究[J].山东大学学报(工学版),2021,51(1) :94-99.X U Dapeng, CAI Deyu, Z H A O Lanming, e t a l . Study on offshore wind farm overvoltage and reactive power compensation[ J]. Journal of Shandong University (Engineering Science), 2021, 51(1) :94-99.Study on offshore wind farm overvoltage and reactive power compensationXU Dapeng 1, CAI Deyu 2* , ZHAO Lanming 1, LIU Xumin 2(1. Shandong Electric Power Engineering Consulting Institute Co., Ltd., Jinan 250013, Shandong, China; 2. School of Electrical Engineering, Shandong University, Jinan 250061, Shandong, China)Abstract : This paper presented a n e w methodology for offshore wind farm grid-connection overvoltage and reactive power compensation. The methodology used D I g S I L E N T PowerFactory software for offshore wind farm modelling, including wind turbine, submarine cable, transformer and relevant control schemes. Moreover, dynamic simulations was performed in time-domain to analyze the active power, reactive power and voltage characteristics of the wind farm under different wind speed conditions. According to the results of the simulations, reactive power compensation devices were configured, and consequently the voltage and power factor condition of the offshore wind farm would be improved, which was also verified by the simulation results.Key words : offshore wind farm ; overvoltage ; submarine cable ; reactive power compensation ; wind turbine control〇引言2019年4月,山东省发改委颁布了《山东海上 风电规划报告》(修订版),确定了山东省近、中、远期三个阶段(2019—2035)的海上风电发展目标。
风力发电机专业英语词汇偏航驱动yawing driven风力机wind turbine极端风速extreme wind speed年发电量annual energy production叶片长度length of blade解缆untwist过载度ratio of over load减压阀reducing valve齿轮的变位addendum modification on gears传动误差transmission error重复接地iterative earth风电场wind power stationwind farm安全风速survival wind speed可利用率availability叶根root of blade塔架tower风力发电机组输出特性output characteristic of WTGS安全阀safety valve变位齿轮gears with addendum modification传动精度transmission accuracy故障接地fault earthing 风力发电机组wind turbine generator system WTGS参考风速reference wind speed叶尖tip of blade数据组功率特性测试data set for power performance measurement 独立式塔架free stand tower调节特性gulating characteristics设定压力setting pressure圆柱齿轮cylindrical gear固有频率natural frequency过电压保护over-voltage protection水平轴风力机horizontal axis wind turbine风速分布wind speed distribution精度accuracy叶尖速度tip speed拉索式塔架guyed tower平均噪声average noise level切换switching直齿圆柱齿轮spur gear弹性联接elastic coupling 过电流保护over-current protection垂直轴风力机vertical axis wind turbine瑞利分布RayLeigh distribution测量误差uncertainty in measurement浆距角pitch angle塔影响效应influence by the tower shadow机组效率efficiency of WTGS旋转接头rotating union斜齿圆柱齿轮helical gearsingle-helical gear刚性联接rigid coupling断相保护open-phase protection轮毂(风力机)hub (for wind turbine)威布尔分布Weibull distribution分组方法method of bins翼型airfoil<<功率特性测试>>使用寿命service life压力表pressure gauge节点pitch point滑块联接Oldham coupling防尘dust-protected 机舱nacelle风切变wind shear测量周期measurement period前缘leading edge功率特性power performance度电成本cost per kilowatt hour of the electricity generated by WTG S液压油hydraulic fluid节圆pitch circle 固定联接integrated coupling防溅protected against splashing 支撑结构support structure for wind turbine风廓线风切变律wind profile wind shear law测量扇区measurement sector后缘tailing edge净电功率输出net electric power output发电机液压马达hydraulic motor齿顶圆tip circle齿啮式联接dynamic coupling防滴protected against dropping water关机shutdownfor wind turbine风切变指数wind shear exponent日变化diurnal variations几何弦长geometric chord of airfoil 功率系数power coefficient同步电机synchronous generator油封oil seal齿根圆root circle花键式联接splined coupling防浸水protected against the effects of immersion正常关机normal shutdown for wind turbine对数风切变律logarithmic wind shear law浆距角pitch angle平均几何弦长mean geometric of airfoil自由流风速free stream wind speed异步电机asynchronous generator刹车盘brake disc直径和半径diameter and radius牙嵌式联接castellated coupling过电流保护装置over-current protective device紧急关机emergency shutdown for wind turbine风切变幂律power law for wind shear距离常数distance constant气动弦线aerodynamic chord of airfoil扫掠面积swept area感应电机induction generator闸垫brake pad齿宽face width径向销联接radial pin coupling保护继电器protective relay风力发电机英语词汇对照(i~q)Ii-beamidler gear惰轮齿idler pulley惰轮,空转轮,导轮idling 空载,无载impeller 推进者, 叶轮impinge 撞击,冲击imprint 印记imprison监禁, 关押impulse推动, 刺激, 冲动, 推动力, 脉冲impurity杂质, 混杂物, 不洁, 不纯inductance 感应系数, 自感应,电感induction coil电感线圈inductive 诱导的, 感应的inflammable易燃的, 易怒的ingot条,块,锭initial 最初的, 词首的, 初始的initialize初始化initials缩写injector. 注射器injure 损害, 伤害inlet 进口, 入口inlet valve入口阀inner 内部的, 里面的, 内心的,内部inoperative不起作用的;无效的inspection 审查,检查instance 例图;事[实,范]例,样品,实例, 建议, 要求, 情况, 场合instantaneous瞬间的, 即刻的, 即时的,瞬时,立即insufficient不充足的,不适合的,不能胜任的insulation绝热;绝缘;隔离,绝缘体;绝缘材料intensive强烈的, 精深的, . 加强器interchange 互换,交换;交换机interlock连锁装置, 连锁internal callipers内卡钳internal-combustion engine内燃机inertia switch惯性开关interval 间隔,时间间隔,区间intervene干涉, 干预, 插入, 介入inverter反用换流器, 变极器, 反相器;"非"门irregularity 不规则, 无规律不规则性,不正则性irritation激怒;被激怒疼痛处isolating 孤立的,绝缘的isolation 隔绝, 孤立, 隔离, 绝缘, 离析isometric projection等边体isosceles triangle等边三角形Jjack 插孔,插口,插座;插头,接头;千斤顶jet 喷嘴;射流jib crane挺杆臂,转臂起重机jig 钻模;夹具;定位;模具jointing compound复合填料joist托梁 ,搁栅jubilee clipjumper 跨接线,跨接,跨[短]接片,跳接器,∏型短路线Kkeyhole sawkey-operate键盘操作keyway 键槽king dick spannerking pin大头钉kit成套工具, 用具包, 工具箱, 成套用具knob 按钮;调节器knuckle joint万向接头knurled nut凸螺母knurling多瘤的, 多节的Llabel 标签, 签条, 商标, 标志labyrinth迷路, 迷宫, 难解的事物ladder. 梯子, 阶梯ladle杓子, 长柄杓lager贮藏啤酒lagging绝缘层材料laminate 层压(制品),迭片,迭层板,绝缘板; 碾压lamp holder 灯座lapjoint搭接lap 盖板;搭接,重迭;研磨,抛光lapping compound研磨,抛光化合物large power drill大型钻latch 锁存器;门闩线路;凸轮;闩锁lathe 车床lathe tool车床工具layout 规划, 设计, 编排, 版面, 配线, 企划, 设计图案,布局图, 版面设计leaf spring叠簧leaflet 小叶, 传单leak漏洞, 漏出, 漏出物, 泄漏, 泄漏leakage 漏, 泄漏, 渗漏left-hand thread左旋螺纹lengthwise纵长的,纵向长的level水平, 水平面, 水准, 标准, 级别leverage杠杆作用liberal自由,丰富,充足lid. 盖子lifting提升light光, 日光, 发光体, 灯轻的, 发光的light metal spirit level光金属水平仪lighting conductor光导体limit gaugelining内衬,衬里link链环, 连结物, 火把, 链接, 连结, 联合lintel楣, 过梁lip. 嘴唇, 唇缘lithium saponify锂基脂litre 升local地方的, 当地的, 局部的, 乡土的,当地居民, 本地新闻, 慢车, 局部locate定位,位置location单元;位置,定位lock 加锁,锁(紧,定),封闭;自动跟踪locking nut自锁螺母locknut防松螺母,对开螺母locomotive 机车, 火车头log(运行)记录,(系统)日志logging saw伐木锯loom. 织布机, 织机, 隐现, 迫近lorry卡车, 铁路货车lost-head nail断头钉loudspeaker 扩音器, 喇叭lubricant润滑剂lubricate 润滑lug 接线柱;柄,把手;突起Mmachine tools 工作母机magnet 磁体, 磁铁magnetic 磁的, 有磁性的, 有吸引力的magnifier 放大器magnifying glass放大镜main主要部分, 体力, 力量, 大陆, 要点, 干线main spar主梁mallet木槌 ,球棍mandrel 半导体阴极金属心;心轴manhole人孔, 检修孔manner礼貌, 风格, 方式, 样式, 习惯manometer 流体压力计manometric. 压力计的, 用压力计测量的manual 手册,指南,人[手]工,手控,手动marine engine海用引擎masonry 石工术, 石匠职业masonry drill石钻masonry nail 水泥钉master征服,控制,精通master cylinder主液压缸mat 字模,垫块material 物质,材料;资料measureing scale测量刻度measuring 测量measuring tape卷尺mechanical机械的, 机械制的, 机械似的mechanical drawing机械图mechanism 机制;机械学,结构方式;机械装置;技巧;机械论medium媒体;介质;平均值;手段,方法;中(等);粗略,一般[M]membrane 薄膜;隔板;表层memory记忆, 记忆力, 回忆, 存储(器), 存储器存储器,内存mention 提及, 说起mercury barometer 汞,水银气压计meshing接合;相合;啮合message 消息报文,电文;信息micrometer screw gauge螺旋测位器microprocessing unit 微处理器microscope显微镜microswitch 微动开关middle中间,中型;mill 碾磨, 磨细milling轧齿边milling machine 铣床mineral. 矿物, 矿石minimise 成极小,求最小值minor次要,局部,小minus 减(号);负missing 故障,损失,遗漏mitre block 斜接,斜面接合块mitre joint 斜接mitring machinemix 混合mixture混合, 混合物, 混合剂Monitoring监控mode方式, 模式, 样式, 时尚modem 调制解调器modification修改,改造,改变 , 变型,变体module 模数, 模块, 登月舱, 指令舱modulus模量,系数,模数moisture 湿气,湿度,潮湿molding塑造;铸型;造型塑造物;铸造物mole wrenchmomentary刹那间的;顷刻的;短暂的mortar 臼, 研钵, 灰泥mortise. 榫眼mortise chisel榫.Motor start马达启动moulding sand沙模multimeter 万用表,多用途计量器multi-meter万用表multiplication乘法, 增加,(动, 植的)繁殖, 增殖multiplier 增加者, 繁殖者,乘数, 增效器, 乘法器multiply 繁殖, 乘, 增加Nnacelle发动机舱,机舱nail指甲, 钉, 钉子needle file 针锉needle valve 针形阀, 针状活门negative 否定, 负数,阴性的;负极的network. 网络, 网状物, 广播网neutralization中立化, 中立状态, [化]中和noise噪声 ,噪音non-shrinking非收缩性normal正常,普通,标准nose cone. 火箭或飞弹之鼻锥体, 头锥体nozzle管口, 喷嘴nut 坚果, 螺母, 螺帽, 难解的问题nut tap自攻螺母nylon 尼龙Oobstruct 阻隔, 阻塞, 遮断(道路、通道等), 阻碍物, 障碍物obtuse angle 钝角obtuse-angled triangle钝角三角形occur 发生, 出现off-shore oil rig海上平台oil ringoil switch油开关oil well 油井oilstone油石oldham coupling欧氏联轴节on-site在场open ring wrench开口扳手open-hearth furnace平炉optimum最佳,最优orifice 孔, 口oscillation摆动, 振动outlet 输出;出口;引出线,电源插座output 产量, 输出, 输出量out yawing外偏航oval nail椭圆钉over speed过速overaging超龄的;老朽的;旧式的over current protection过电流保护overhead-valve engine 顶阀发动机,预置气门发动机overheat加热过度使发展过快,使过热overlap重叠,覆盖overload 超载,过载,过负荷overpressure过压overproduction生产过剩overspeed 超速over voltage过电压oxidation氧化[作用];氧化层oxyacetylene welding氧乙炔焊P 来源:packaging. 包装packaging 封装,组装packing 压[紧]缩;组装;包装,打包pad 焊点焊盘;填充,插入,拼凑篇幅;衰减器paint 上色,着色;涂料,油漆;paint brush漆刷paint roller. 漆滚筒, 辊子pallet扁平工具, 棘爪, 货盘panel pinpanel sawparallel 并行,并联,平行parallel connectionparallelogram平行四边形parallels平行线parameter 参数[量],变量parity奇偶particle粒子, 点, 极小量, 微粒, 质点pawl掣子;棘爪;制转杆peak 峰值,波峰pedal踏板;踏蹬pedestal 基架, 底座, 基础peg 钉, 栓, 桩, 销子pendulum 摆,振动体;钟摆perfect, 正确的, 熟练的, 精通的,完美的perform. 履行, 执行, 表演, 演出performance 性能,特性;实绩;【动】完成,实现,执行permanent永久的, 持久的permeate 弥漫, 渗透, 透过, 充满permissible 可允许的, 可容许程度的persistent持久性,不变personnel 人员, 职员perspective drawing透视图pestle and mortar 研杵petrol engine汽油机petroleum石油phase 阶段, 状态, 相, 相位phenomena 现象pick 抓[拾]取,挑,检,挑选,挑拣pile 堆积,堆,桩pile-driver打桩机pillar crane支柱起重机pilot 驾驶(飞机等), 领航, 引水pin 插针引脚,插头;引线;管脚pin puncherpin spannerpincers铁钳;钳子pinion 小齿轮pipe wrenchpiston活塞, 瓣piston ring. 活塞环pitch桨矩pitch angle桨矩角pivot枢;枢轴;支点plane平面, 飞机, 水平, 程度, 刨planet gear 行星齿轮planetary gear 行星planetary wheel行星架planimeter. 测面器, 求积计planing machine 刨床plano-concave lens 平凹镜plano-convex lens平凸镜plaster 石膏, 灰泥, 膏药, 橡皮膏plastic塑胶, 可塑体, 塑料制品, 整形plastic hammer塑胶榔头plate clutch 盘式离合器,联轴器platform)月台, 讲台, 讲坛平台platinum 白金, 铂plenty. 丰富, 大量pliers. 钳子, 老虎钳plug 插头;插塞, 插栓plumb line铅垂线pneumatic drill气[风]动钻polarization 偏振,极化polish 抛光,磨光polishing machine抛光机polyester 聚酯polymer聚合体;聚合物polymidwasherpoppet valve 提升阀pore 气孔,微孔port 端口,通信口,进出口position 位置,定位,部位;状态positive正(确;片,数,极),阳性,无条件,肯定potential-freepotentiometerrpour灌注, 倾泻, 涌入, 流power factor功率因数power hammerprecaution 预防, 警惕, 防范, 预防措施;预防方法precise 精确的, 准确的, 精确predetermine. 预定, 预先确定preserve 保护, 保持, 保存, 保藏press 压, 按, 印刷, 压力, 拥挤, 紧握, 新闻press plier压钳pressure 压, 压力, 电压, 压迫, 强制, 紧迫pressure gauge 压力计pressure switch压力开关pressurize增压, 密封, 使...加压prestressed concrete 钢筋混凝土pretension 借口, 要求, 主张, 自负, 骄傲prevailing流行,占优势prevent防止;预防priority 优先级,优先(权)prism 棱镜,棱柱(体);棱形procedure. 程序, 手续produce 提出, 出示, 生产, 制造, 结(果实), 引起, 招致, 创作profile 剖面, 侧面, 外形, 轮廓prolong延长;伸展propeller螺旋桨;推进器propeller shaft桨轴property 财产, 所有物, 所有权, 性质,特性, (小)道具proportional dividers比列规protection保护protection glasses保护镜protocol 草案, 协议protractor量角器;分度规pulley 滑车, 滑轮pump泵,抽水机pump ability泵性能punch冲孔, 打孔punching machine冲孔, 打孔机punner夯,夯具purging清除,清理pyramid角锥、棱椎, 金字塔Qquality质量, 品质, 性质quantity 量,数量;大量quenching 淬火, 熄query 询问,查询;询问程序abrasive研磨料abrasive disc磨料盘accumulator 储压罐acetone丙酮activation活动, 赋活,激活,活化,激励,启用acute angle锐角adhesive 带粘性的, 胶粘, 粘合剂adjustable spanner 活动扳手admixture 混合, 混合物adversely逆地, 反对地adze扁斧aerial航空的, 生活在空气中的, 空气的, 高耸的,天线aerosol 浮质,气溶胶, 气雾剂, 烟雾剂aggregate 合计, 总计, 集合体aggressively 侵略地, 攻势地air inlet通风口air-cushion vehicle气垫船air gap气隙align对准,校直,定位;调,排列, 使结盟, 使成一行alkali-sensitive碱性感测allen key 六方allen wrench 六方扳手alloy 合金alteration变更, 改造alternator 交替符;交流发电机ammeter安培计,电流表anaerobic没有空气而能生活的, 厌氧性的anchor 锚, 抛锚, 锚定aneroid barometer无液气压表, 无液晴雨angle grinder角锉angle plate角盘annealing 退火annulus环面anode阳极, 正极anodization阳极氧化antenna 天线;触角antifriction减低或防止磨擦之物, 润滑剂anvil铁砧approximate近似, 接近, 约计 adjarbor 树阴;凉亭;藤架〈机〉柄轴;心轴arc 弧, 弓形, 拱,电弧arc welding 电弧焊archimedean screw阿基米德螺线arrmature 电枢articulated接合,链接,有关节的assemble集合, 聚集, 装配assorted files分类排列;相匹配(文件)assume假定, 设想, 采取, 呈现attenuation变薄, 稀薄化, 变细, 衰减auger打孔钻,螺丝钻averagen 平均, 平均水平, 平均数, 海损, 一般的, 通常的awln锥子axe斧, (经费的)大削减axle 轮轴, 车轴Bback saw背锯backlash反冲,无效行程;间隙,偏移;退ball bearing滚珠轴ball saddle滚珠支撑ball-peen hammerband区;带,波段带子, 镶边, 波段, 队, 乐队联合, 结合bandsaw用带锯锯bar magnet磁条barometer气压计;晴雨表battery power drill电池钻beach海滨;湖滨;河滩bead 珠子, 水珠beam compass长臂圆规beam trammel骨架bearer 支架,托架,支座,载体bell crank曲柄belting制带的材料, 带类, 调带装置bessemer酸性转炉钢bessemer converter 酸性转炉,贝塞麦转炉bevel gear斜角;斜齿轮bevel-edge shisel斜缘薄钢板biconcave lens两面凹镜biconvex lens两面凸镜bifurcated rivetbimetallic双金属的bin二进制;双态bit 位, 比特blade for iron saw剧刃blast 强风,过载blast furnace鼓风炉blast cleaning皮老虎bleed 放出(液体,气体等);漏出,漏入,泄漏,色料扩散bleeder valve 溢流阀block and tackle滑轮组blowlamp喷灯blowpipe吹风管blowtorch 吹管, 喷灯board 底板,板boiler锅炉;煮器;烧水器bolt螺栓,螺钉,支持,维持bone 骨剔除bonnet软帽,汽车发动机罩bore钻孔,钻bottom dead-centrebow-spring compassbox spanner管钳子box spanner insetbrac支柱, 带子, 振作精神bracket托架, 括弧, 支架brad曲头钉bradawl小锥Brakebrake lining闸, 刹车的衬里, 内层, 衬套brake shoe 闸轨branch of joint连接分支brass黄铜, 黄铜制品,brazing铜焊breast drillbreather 呼吸者, 喘息者, 剧烈的运动bricklayer's hammerbubble 磁泡,水泡,气泡bucket桶, 一桶的量, 铲斗Buffing wheelbulk大小, 体积, 大批, 大多数, 散装bulkhead隔壁, 防水壁bulldozer 推土机bunsen burner 本生灯burr芒刺;刺果植物;针球burstn 突然破裂, 爆发, 脉冲bursting discbush 矮树丛, (机械)衬套bushing轴衬, 套管Ccabinet screw drivercable bundle 束,光纤束;捆,卷cable reel电缆盘cable shear电缆剪cable shoes电缆靴cable tie电缆带calibration标度, 刻度, 校准caliper测径器, 卡钳, 弯脚器cam凸轮camber 拱形camshaft凸轮轴cantilever伸臂,悬臂;悬臂梁cap帽,罩cap nut螺冒capaciron电容汞弧管capacitance电容;电容量capstan lathe绞盘车床carburettor 汽化器cardan shaft万向轴cartridge额盒式磁盘[带](机);夹头cast投;掷;抛casting 铸件, 铸造castle nut城堡螺母catalyst 催化剂,触媒cathode 阴极cathode-ray tube阴极射线管catwalk桥上人行道, 狭小通道caulking 填以防漏caution小心, 谨慎, 警告cement 水泥, 接合剂, 接合, 用水泥涂, 巩固, 粘牢center puncher中心冲centre bit中心位centrifugal离心centrifugal unit离心单元ceramics 陶瓷;陶瓷技术chain vice链式钳chain wheel 滑轮chain-grate stoker链条炉排加煤机change over 改变成,对调位chaser猎人, 驱逐舰cheese 干酪,垫砖cheese-head screw 有槽凸圆柱头螺钉chisel 凿子砍凿chloride氯化物,漂白粉choke窒息, 阻气门choke valve阻气阀chord弦, 和音, 情绪chrome 铬;铬矿石;氧化铬chuck 轻拍, 抛掷, 驱逐, 丢弃, 用卡盘夹住circlip环形circular圆形,环;循环circular saw圆锯circulate 循环;流通circulating循环, 流通circumference周线;外围;周围clamp夹子, 夹具, 夹钳clamp ammeter钳形表claw hammer 拔钉锤clearancen清理,清除;出空,间空,间隔;距离cleat夹板clog填塞;塞满close grainedclout nail大帽钉club hammer锤子,榔头clutch离合器,联轴器coarse粗(糙,略),近似cobalt钴(符号为Co), 钴类颜料, 由钴制的深蓝色coil线圈,绕组coil spring弹圈collar 凸缘;圈,环,套环,轴;卡圈;安装环collar bolt凸缘螺栓combination结合, 联合, 合并, 化合, 化合物combination pliers台钳combustion chamber燃烧室compound 混合物, [化]化合物复合的, 混合, 配合compresso压缩物, 压缩机, 收缩肌comutator 换向器, 转接器concave len凹面镜concave-convex len凸凹镜concrete混凝土;具体concrete drill混凝土钻condenser冷凝器;凝结器,电容器conduit管道, 导管, 沟渠, 泉水, 喷泉cone数、物]锥形物, 圆锥体, (松树的)球果, 使成锥形cone and cup unionconical 圆锥的, 圆锥形的conjunction联合, 关联, 连接词connecting rod连接杆considerably 相当地consistency连结, 结合, 坚固性, 浓度, 密度, 一致性, 连贯性console 安慰, 藉慰,控制台container箱;罐;容器集装箱,货柜contaminate污染,弄污contrast使与对比, 使与对照, 和形成对照, 对比, 对照, (对照中的) Controlconvection传送;运流;对流converter换流器;变换器;变流器convex lens凸透镜cooling冷却;冷却技术core sandcorrespond符合, 协调, 通信, 相当, 相应corrosion腐蚀,浸蚀cotter pincountersink bit装定位countersunk埋头孔, 暗钉眼countersunk rivetcountersunk-head screwcounting计算coupling bolt 联结, 接合, 耦合,耦合性,耦合技术coverage 覆盖;敷层;有效区域crack 裂纹,裂缝cramp 钳位(电路);压[夹板];卡子,夹(子);压[夹]紧crane起重机crank不稳定的,摇晃的,曲柄crankcase曲柄轴箱crankshaft曲轴;机轴criterion标准,判据,准则cross mark十字标记cross slotted screw十字长孔crosshead 小标题, 子题, [机]十字头, 丁字头cross-peen hammer 横头锤cross-section横断面;横切面;截面crosswise斜地, 成十字状地, 交叉地crowbar撬棍;铁棍;起货钩crown wheel 顶圈crucible坩锅, 严酷的考验cupola furnace园顶熔炉current ration电流定值customs 进口税, 海关cutter刀具, 切割机cutting disk切割盘cylinder block缸体cylinder head缸头cylinder-head gasket缸头垫片,垫圈;接合垫cylindrical圆柱形,圆柱体;柱面Ddampen使潮湿, 使沮丧damper风门;节气阀darwing board画图板deactivate释放;去激励;停用;退出工作;使无效debris碎片, 残骸decimal 十进的, 小数的,小数defective有缺陷的,欠缺的deflect (使)偏斜, (使)偏转deflection偏向;偏斜;转向deformation 变形,形变;畸变,失真degrease脱脂, 除油污degree celsius摄氏度deploy展开, 配置deposit 堆积物, 沉淀物, 存款, 押金, 保证金, 存放物depress使沮丧, 使消沉, 压下, 压低depression 沮丧, 消沉, 低气压, 低压depressurizes 使减压, 使降压depth gauge深度计detergent 清洁剂, 去垢剂deviation 偏差,偏移dial gauge量规dial micrometer千分尺dielectric 电介质, 绝缘体diestock螺丝攻differential gear差速齿轮differential protection差动保护diffuser 漫射体;(扬声器)纸盆;扩散器digger挖掘者挖掘机digital clock数字钟digitizing tablet数字面板dilute 冲淡, 变淡, 变弱, 稀释discharge 卸下, 放出, 清偿(债务), 履行(义务), 解雇, 开(炮), 放(枪), 射(箭) 卸货, 流注, 放电dismantle拆除,拆卸dismount 拆卸,卸下disposal 处理, 处置, 布置, 安排, 配置, 支配dissipation 分散, 浪费, 损耗,耗散,消耗distance ring间隔环distributor发行人,分电盘,配电器dividers圆规double phase两相dog clutchdolly洋娃娃 ,移动车,台车,移动摄影车domed nut 圆顶螺母doubt不确定;疑惑dowel 木钉, 销子, 用暗销接合drain排水沟, 消耗, 排水drain tap排气阀draw bar绘图刀drawing pin图钉drawing point绘图点drift 漂移,偏差drill 训练, 钻孔, 条播, 钻头;锥子;钻孔机;钻床;钻drill gauge钻规driller 钻孔者, 钻孔机drilling machine 钻床drip pan油滴盘drop hammer落锤drum鼓, 鼓声drum brake鼓状刹车dryness干, 干燥duplex双(向,重),双工,二重durability 耐久性,耐用性duration宽度,持续时间dust 灰尘, 尘土, 尘埃dynamo 发电机dynamometer 测力计, 功率计Eearthmover 重型推土机eccentric古怪的;偏执的不同圆心的,离心的;不正圆的edge刀口, 利刃, 锋, 优势, 边缘, 优势, 尖锐elbow机械肘, 肘electric furnace电熔炉electric plier电气钳electric screw driver电钻electric welding电焊electricalelectrode 电极electrolysis 电解,电蚀electrolyte电解, 电解液electroplating 电镀, 电镀术eliminate消除,删去,排除;切断emery 金刚砂, 刚玉砂emery cloth砂布,金刚砂布emery wheel 金刚砂旋转磨石, 砂轮endplate终板endwise末端朝前或向上的,向前的energizing使活跃, 给予精力, 加强, 给与电压, 激励,赋能;接通epicyclic gear计数齿epoxy 环氧树脂epoxy-glued环氧胶equilateral triangle 等边三角形erection直立, 竖起, 建筑物exectric arc电弧exhaust pipe 排气管exhaust valve排气阀expanded metal膨胀金属expander扩展器,扩展电路,扩大器expansion bolt自攻螺丝explanatory quad填充铅块extension tube伸缩管extern外(面)的, 外来的external callipers外卡钳extrusion 挤压,挤压成形eye bolt吊耳eye screw螺丝眼Ffabrication 制造;生产;结构faceplate面板, 花盘facilitate使容易, 使便利, 推动, 帮助, 使容易, 促进fag bolt, 疲劳螺栓fake假货, 欺骗, 伪造, 赝造, 捏造, 假造, 仿造fan belt风扇皮带fan heate风扇加热器feeler gauge触规felling axe外轮轴fetch 接来, 取来, 带来, 售得, 引出, 吸引, 到达, 演绎出filament灯丝;细丝fire extinguisher灭火器firebrick 耐火砖fireman's axe消防斧firmer chisel 凿子flange 边缘, 轮缘, 凸缘, 法兰flange coupling凸缘联轴器flanged nut凸缘螺母flanged union凸缘连接flank侧面, 军队侧翼, 侧腹, 胁flash welding 闪光焊flashlight 手电筒, 闪光灯flashpoint闪点flat 平坦的, 扁平的, 单调的, 倒下的, 浅的flat nut平螺母flat-head rivet平头铆钉flaw裂缝,缺陷,疵瑕flex弯曲(四肢), 伸缩, 折曲flexure 弯曲,挠曲float chamber浮子floating 漂浮的, 浮动的, 移动的, 流动的, 不固定的flue烟洞, 烟道, 暖气管, 蓬松的东西flush刷新flux 磁通,通量;焊剂;流动, 熔化, 流出footpump脚泵forge炼炉;熔炉fork 派生(指令),分叉(指令),分支fork-lift truck叉架式运货车,铲车formation 构造,结构;形成,建立;形式forming印版foundry铸造, 翻砂, 铸工厂, 玻璃厂, 铸造厂foundation 基础, 根本, 建立, 创立, 地基, four-jaw chuck四爪卡盘four-stroke四冲程frame帧,画面;框架机架,架,机柜fret-saw线剧friction 摩擦, 摩擦力friction grip摩擦盘frictional摩擦的, 摩擦力的frost霜, 霜冻, 严寒, 结霜funnel 漏斗, 烟窗furnace炉子, 熔炉furnish 供应, 提供, 装备, 布置Ggale强风,大风galvanizing 通电流于, 电镀gang saw 直锯gas burner 煤气灶, 煤气火焰gas main 煤气总管gas mask防毒面具gas pedal气体, 煤气, 毒气, 汽油, 瓦斯gas turbine 燃气涡轮gas well 天然气井gas works煤气厂gasket垫片,垫圈;接合垫gaskets垫片,垫圈;接合垫gasometer煤气厂, 气量计gate pole门极gate valve门阀gauge标准尺, 规格, 量规, 量表, 测量gavel 槌gear lever 变速杆gear train齿轮系gear wheel齿轮geiger counter盖格计数器gel-coated胶衣gimbals 平衡环,平衡架gimlet手钻;螺丝锥girder 梁, 钢桁的支架girder bridgegland腺,密封管glass cutter玻璃刀glaze釉料, 釉面, 光滑面, 上釉, 上光globe valve球形阀gloss注释;注解;评注, 光泽的表面, 光彩, 欺人的表面, 假象, gloss paint光滑涂料glossy 平滑的, 有光泽的glove手套glue胶, 胶水, 胶合, 粘贴, 粘合goggle 眼睛睁视, (复数)风镜, 护目镜gold leaf金叶goons细打包麻布gouge弧口凿,半圆凿governor 调节器;控制器grab 抢夺, 攫取, 夺取grader 分类机,分级机grain 颗粒,晶粒,粒度;纹理graph 图表, 曲线图grease油膏;润滑油grease gun注油枪;滑脂枪grease nipple油管grinding磨的, 磨擦的, 碾的grinding disk 磨擦盘grinding machine磨床grinding wheel 砂轮groove凹槽, 惯例, 最佳状态grout 薄泥浆, 水泥浆grouting给…灌灰浆,给…涂薄胶泥grub screw自攻螺丝guide bars导向棍guide block导向块guide ring导向绳guiding shaft导向轴guillotine闸刀,处斩刑, 切(纸)gumming树胶分泌gyroscope 陀螺仪, 回旋装置, 回转仪, 纵舵调整器Hhacksaw可锯金属的弓形锯, 钢锯hairspring细弹簧, 游丝half shaft半轴half-round file半圆锉halfway中途的, 部分的, 不彻底的,半路地,在中途, 在半途handling 处理(技术,方法)hanging顶端对齐,悬挂hardener 固化剂,硬化剂harder硬的, 坚固的, (问题, 工作等)困难的,艰苦的, 猛烈的, 确实的harness导线,装备;利用harrow耙hatch 舱口, 舱口盖,开口, 孵, 孵出,策划, 图谋hatchet 短柄斧hazard 冒险(性);相关危险;事故,故障headscrew主轴螺杆headstock主轴箱helical gearing螺旋齿helix 螺旋, 螺旋状物hemp 大麻, 纤维hereafter 今后, 从此以后herring-bone gearhexagon screw diehexagon spanner六方hexagonal nut六角螺母hightensile 高强度high-tension cable高压电缆hissing发嘶嘶声, 蔑视hob滚刀, 铁架hoe 锄头,用锄耕地, 锄hoist升起;吊起;推起, 起重机, (台、架等)支持物, 固定器hollow空的,中空的hook bolt吊耳hook spanner 钩,弯脚扳手hook's jointhopper 单足跳者horizontal地平线的, 水平的horseshoe magnet马蹄形磁铁hose 软管,胶皮管,蛇管hose clip管夹hot-dip热沾hottest 热的,热烈的housing住房,房屋,护盖,框架hovercraft 水翼船hub rigidity轮毂刚度hubcap 轮毂罩hull外壳, 船体humidity湿气, 潮湿, 湿度hydraulic水压的;液压的hydraulic block液压块hydraulic ram液压活塞hygrographs 自动湿度记录计hygrometer湿度计hysteresis 滞后作用, [物]磁滞现象。
驱动器端的反电动势英文回答:Counter Electromotive Force (CEMF) on the Driving End.Counter electromotive force (CEMF), also known as back electromotive force (BEMF), is a phenomenon that occurs in electric motors and generators. It is an electromotive force that opposes the applied voltage in the motor or generator.In a DC motor, the CEMF is generated by the rotation of the armature in the magnetic field. The CEMF isproportional to the speed of the motor and the strength of the magnetic field. As the motor's speed increases, the CEMF also increases.In a DC generator, the CEMF is generated by therotation of the armature in the magnetic field. The CEMF is proportional to the speed of the generator and the strengthof the magnetic field. As the generator's speed increases, the CEMF also increases.The CEMF has a number of effects on the operation of motors and generators. In a DC motor, the CEMF reduces the current flow through the motor. This results in a decreasein the torque produced by the motor. In a DC generator, the CEMF reduces the voltage output of the generator. This results in a decrease in the power output of the generator.The CEMF can be used to control the speed of a DC motor. By adjusting the strength of the magnetic field, the CEMF can be increased or decreased. This will result in a change in the speed of the motor.The CEMF can also be used to control the voltage output of a DC generator. By adjusting the speed of the generator, the CEMF can be increased or decreased. This will result in a change in the voltage output of the generator.中文回答:驱动端的反电动势。
A Low-Loss Motor Terminal Filter for Overvoltage SuppressionKuen-faat YUENHenry Shu-hung CHUNG*Student member, IEEE Senior Member, IEEECentre for Power Electronics and School of Energy and EnvironmentCity University of Hong KongTat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong*eeshc@.hkAbstract -- Inverter-fed motor drive systems are widely used because of their benefits for energy efficiency and for flexiblecontrol of machinery using maintenance-free induction motors. As the inverter produces fast-switching voltage pulses, the transmission-line effects of the motor cable and motor stator windings become significant, and may lead to a doubling of the supply voltage to the motor and to the cable, causing premature failure of the motor and cable insulation. A typical protective measure is to use a passive filter to reduce the surge voltage and alter the rise time of the voltage pulses at the motor terminals. However, the filters have the drawbacks of bulky size and lossy. Importantly, the filter parameters are dependent on the cable length and characteristics. This paper presents a low-loss motor terminal filter that can suppress overvoltage and modify the rise time of the voltage pulses at the motor terminal for cables of any length. A comparative study into the performance between the popularly-used RC and RLC filters, and the proposed filter will be conducted. The proposed structure is confirmed by studying the experimental results of a 1-hp motor drive system.Index Terms -- Motor drives, inverters, inductor motors.I. I NTRODUCTION While high-frequency pulse width modulation (PWM) in inverter-fed inductor motor drive provides flexible speedcontrol, high-frequency pulses generate destructive voltage spikes that can cause deterioration of the motor and cable. Since the 1990’s a large body of work has documented themodeling and analysis of such overvoltage phenomenon withdifferent methods, like graphical traveling wave analysis [1], Bewley lattice diagrams [2], Smith chart analysis [3] andtransmission line theory [4]-[7]. Fig. 1 Motor drive system.Fig. 1 shows the model of the drive system. The motorcable is modeled as a long transmission line with distributedparameters and its characteristic impedance is C L Z o /=, where L is the cable inductance per unit length and C is the cable capacitance per unit length. When a voltage pulse +vgenerated by the inverter is applied to the cable, it will give acurrent oZ v i /++=. The motor stator winding is alsomodeled as a long transmission line. It has a high-frequency characteristic impedance M Z . When the voltage pulsesreach the motor terminals, part of the incident voltage +v will be reflected back toward the inverter, thus producing a reflected voltage −v and a reflected current o Z v i /−−=. At the motor terminals, −+−+++=i i v v Z M ⇒ oM oM Z Z Z Z v v K +−==−(1)The ratio K is the reflection coefficient. If o Z = M Z (matched condition), K = 0. No voltage reflection occurs. However, the practical value of M Z has several orders of magnitude greater than o Z (mismatched condition), especially in low-power motors. The magnitude of −v canbe at the same magnitude of +v . Then, the incident voltage and reflected voltage combine to develop a voltage withamplitude being as much as twice the amplitude of theincident voltage at the motor terminals.Such overvoltage will cause premature failure of the motor and cable insulation [8]-[14]. Factors affecting the overvoltage at the motor terminals include the values of o Z and M Z , cable length, motor load, spacing of the pulses,magnitude of the pulses and rise/fall times of the pulses [13]. The impedance mismatch between o Z and M Z primarily determines the overvoltage magnitude. The rise/fall timesof the pulses primarily determine the critical cable length where the peak overvoltage is developed. Most importantly, PWM with high carrier frequency gives narrow-spaced pulses. The reflected voltage may not have fully decayed before the next pulse. Then, charges trapped on long cable will develop a voltage greater than twice the incident voltage atthe motor terminals [5].Furthermore, voltage pulses cause highly nonlinear inter-coil and inter-turn voltage distributions in the motor windings[15]-[16]. Some studies show that, among the stator coils, the highest voltage peak appears across the coil next to theinput; thus, this first terminal-end coil is subject to the highestvoltage stress. The amplitude of the voltage stress is highlydependent upon the magnitude of the voltage at the motorterminal and rise/fall times of the pulses.There are two remedial measures put in place to protect the motor against insulation damage. The first one is to use oversized motors or inverter-duty motors with enhanced insulation system that can withstand high dielectric stress [10]-[11]. The second one is to use passive filter networks connecting to the entire drive system [17]-[34].The advantages of the above filters are usually offset by the following drawbacks:1) Filters with series reactors [5], [18]-[30] are physically large and generally energy inefficient as full rated motor current will flow through them, thus creating high copper loss and core loss due to the high-frequency pulses. 2) The termination filters [31]-[33] cannot alter the wavefront of the pulses at the motor terminal to improve the inter-coil and inter-turn voltage distributions in the motor.3) The optimal values of the filter constants are dependent on the cable length and cable characteristics [33]. 4) Some filters are difficult to be implemented practically. For example, the midpoint of the dc link inside the inverter is inaccessible in a commercial product [25]-[28]. A low-loss motor terminal filter that can suppress overvoltage and modify the rise time of the voltage pulses at the motor terminal for cables of any length is presented in this paper.II. O PERA TING P RINCIPLES OF T HE P ROPOSED F ILTER The proposed protection filter is encircled by a dash line in Fig. 2. There are assumptions for the operation analysis. All diodes are ideal. Both DC C V and 0C V are approximately constant, as the balance of charging and discharging is achieved during the operation. According to the transmission line theory, the cable can be modeled by LC circuit. Therefore, in the operation analysis, the cable is replaced by a circuit constructed by C L and C C . The equivalent circuit is shown in Fig. 3. In addition, since the value of C C is too small, it can be ignored in order to simplify the operation analysis and the circuit is shown inFig. 2 Proposed protection filter.Fig. 3 Equivalent circuit.C M(a) Simplified equivalent circuit.(b) Mode 1 [t 0, t 1].(c) Mode 2 [t 1, t 2].(d) Mode 3 [t 2, t 3].(e) Mode 4 [t 3, t 4].(f) Mode 5 [t 4, t 5].(g) Mode 6 [t 5, t 6].(h) Mode 7 [t 6, t 7].(i) Mode 8 [t 7, t 8]. Fig. 4 Circuit operation.Fig. 5 Waveforms of the proposed filter’s operation modes.There are eight operating modes [Fig. 4(b)-(i)] for each incoming voltage pulse. During the operation, L R dissipates energy from DC C to keep DC C V constant. The key waveforms of each operation mode are shown in Fig.5.The operations are described as follows:Mode 1 [t 0, t 1] – During the rise time (01t ) of the incoming voltage pulse,L C ,R C ,R and L are working for matching the characteristic impedance of the cable (o Z ) in order to minimize the reflected voltage.in i is kept approximately proportional to the incoming pulse voltage. L C and R C arecharged by the incoming pulse. The voltage across the load (M v ) is equal to L C v Thus, in this mode,)(0t i in = 0A; )(0t i L = 0A; )(0t v R C = 0V; )(0t v L C = 0V. The initial load current is zero and in V is the amplitude of the inverter output pulse. Let ()()()δαγαβαε−−−= (2)()()()()()012222221111)(t L C LC t RC e C R L e C R L e C R L e C R L V t v C L R R t R t R t R t R in C L ⎟⎟⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎜⎜⎝⎛+++++++++++++++++=δγβααβγδαβδαβγαγδβγδεδδδεγγγεβββεαααδγβα (3) C R L L C LC 1=αβγδ(4) C R L C R L R L L C LC L C RC C LRC +−=+++δγβα (5) CL L LC R−=+++βγδαγδαβδαβγ (6)CR L CL R L L C LC L C LC LC ++=+++++γδβδαδβγαγαβ (7)This mode ends when the incoming pulse rises to its steadyvoltage in V . Mode 2 [t 1, t 2] –in i flows through L ,R C and R to charge up L C . Also,in i is limited approximately proportional to in V by L ,R C and R in order to reduce the reflected voltage in the cable. Thus,()[]()()xt C R C R L L R C L C in C in R m e t v xC t v xRC xC t i xRC xL t v C L x t i xL V C R xL x x f R L L ⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡−++++⎟⎟⎠⎞⎜⎜⎝⎛++++=)()(1)(1)()(1)(1111212 (8) CR L in m m m m C L C LC V f f f f t v L ⎥⎦⎤⎢⎣⎡++++=αβγδδεδγεγβεβαεα)()()()()(2222 (9) This mode ends when M C C C V V V t v DC L =−=0)(2. M V isthe maximum voltage across the load.Mode 3 [t 2, t 3] –1D is turned on to clamp LC v to be thevalue of M V .R C is discharging and L i is decreasing asM V > in V during this stage. Also, the energy stored at R C and 0C is transferred to DC C . Thus, 0)(C C M C V V V t v DC L −== (10)This mode ends when 0)(3C C C V V t v DC L −<. Mode 4 [t 3, t 4] –1D is OFF as 0)(C C C V V t v DC L −<. Oscillation occurs between L C , and L . Thus,()()()[]()[]xt in R C C R R C L C R L R m e V C R xL x t v LL C x R xC L L xC t v xC t i xRC L x f L R ⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧+++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++++−+=1)(1)()(1)(32334α (11)CR L in m m m m C L C LC V f f f f t v L ⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++++=αβγδδεδγεγβεβαεα)()()()()(4444 (12) This mode ends when the incoming pulse (in v ) start to fallfrom its steady level in V to0V. Mode 5 [t 4, t 5] –in v is decreasing from in V to 0V. Energystored at L C is released to the cable through R C ,R and L. 45t is the fall time of in v . Thus, ()[]()()()xt C R C R L L R C L C in C in R m e t v xC t v xRC xC t i xRC L t x t v C L t x t i L t x V xt C R L x x f R L L ⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡−++++⎥⎥⎦⎤⎢⎢⎣⎡++−++=)()(1)(1)()(11)(44445244534452455α(13) ()452222455555,)()()()(45t L C LC V t RC t f f f f v C R L in R m m m m t C L ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡−+++++−+++=δγβααβγδβγδαγδαβδαβγεδδεγγεββεαα (14)This mode ends when in v = 0V.Mode 6 [t 5, t 6] – Energy stored at L C is released to the cable through L ,R C and R . The discharging current of the L C is limited by L ,R C and R . Therefore, L C V decreases slowly.Thus,()[]()()()xt C R L R C R L C L C in C R m e t v xC t i xRC t v xRC xC L t v C xL t i L C R xL x x f R L L ⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡−+++++++=)()(1)(1)()(1)(555556C R L m m m m C L C LC f f f f t v L ⎦⎤⎢⎣⎡+++=εδεγεβεα)()()()()(6666(16) This mode ends when 0)(6C C V t v L =.Mode 7 [t 6, t 7] –2D is turned on to clamp L C v to V 0C absorbs the incoming energy to maintain L C v level. Thus,0)(C C V t v L = (17)This mode ends when 0)(6C C V t v L <.Mode 8 [t 7, t 8] –2D is turned off. Oscillation occurs between L C and L . Thus,()[]()()()xt C R C R L in R C L in C R m e t v xC V xRC xC t i xRC L V xC t i L C R xL x x f R ⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡−+−++−++=)(1)(1)(1)(777800 (18) CR L m m m m C L C LC f f f f t v L ⎦⎤⎢⎣⎡+++=δεδγεγβεβαεα)()()()()(8888 (19)This mode ends when incoming pulse is completed at t t =This completes one incoming pulse operation.III. C OMPARATIVE S TUDY WITH RC AND RLC F ILTERS overshoot range from approximately 14% to 22%.s f =10kHz ,Cable length =100m.Fig.7 reveals the relationship between motor terminal voltage rise times, motor terminal voltage overshoot and power losses of the three filters. Marking same rise time and dissipating same amount of energy, the proposed filter gives a smaller overshoot voltage than that of RLC filter. When the required rise time of the motor input pulse is less than 1.5 µs, the proposed filter can save at least half of the power in RLC filter under the same voltage overshoot level. Although RC filter gives the smallest overshoot under the same power loss, it cannot alter the wavefront of the pulses at the motor terminal to improve the inter-coil and inter-turn voltage overshoot verse filter losses. s f =10kHz, Cable length =100m.IV. E XPERIMENTAL V ERIFICATIONSA. Single phase operation resultsThe followings are system parameters for experiment: in V =300V, inverter r T ,= 30ns, s f = 10kHz. And the cableconstants are l = 100m, C L =0.49µH/m, C C =89pF/m and o Z =74Ω. A differential mode motor model with o Z R =1000 Ω, hf C =190pF, lf R =500Ω and lf L =240mH, shown in Fig. 8, was used. The proposed filter was designed to clamp the maximum motor terminal voltage to 350V and enlarge the rise/fall times of the pulses at the motor terminal to 2 µs. The component values of RLC, RC and the proposed filters are tabulated in Table I. For all the following waveforms, channel 1 shows the motor terminal voltages and channel 2 shows the inverter output voltage.TABLE I C OMPONENTS VALUES OF THE PROTOTYPEProposed filterRLC filter RC filter R 74 Ω C DC 330µF R 74 Ω R 74ΩC R 10nF R L3030 Ω L 105µH R30nF L 85µH C 0 2.2µF C 100nF C18.8nFD MUR460Fig. 8 Motor model.Fig. 9 Overvoltage phenomenon.(a) RC filter. (b) RLC filter.(c) Proposed filterFig. 10 Voltage waveforms at the motor terminals(a) RC filter. (b) RLC filter.(c) Proposed filter.Fig. 11 Detailed voltage waveformsA glance at Fig. 9 reveals the overvoltage phenomenon at the motor terminal. Its peak value is up to 520V while the dc-link voltage is 300V. Fig. 10 shows that the peak voltage at motor terminal is clamped at 350V. Fig. 11 shows that the rise times of the pulses at the motor terminal are enlarged to 2 µs by RLC filter and the proposed filter while RC filter does not enlarge the rise time. B. Three phase operation resultsExperiments have been conducted on a inverter drive typeKVFH222ES produced by KASUGA and a 1.1 kW three phase induction motor type DEM II No 9572380007 produced by Degem Systems. The operation frequency of the inverter drive is 10 kHz and the rise/fall time of the output voltage pulse is 250ns. And the cable constants are l = 100m, C L =0.49µH/m, C C =89pF/m and o Z =74Ω.LFig. 12 Proposed three phase filter.Motor TerminalInverter OutputTABLE II V ALUES OF THE FILTER COMPONENTSProposed filterR 47 Ω C DC 220µF C R 10nF R L 2030 ΩL 25µH C 0 10µF C 15nF D DSEI 12-12A S IRFP32N50KThe proposed three phase filter circuit is shown at Fig. 12. The component values of the proposed filter are tabulated in Table II. The rise/fall time of the voltage pulse presented at the motor terminal was set to be 1 µs.Fig. 13 Without filter.Fig. 14 Proposed filter is used.Fig. 15 Detailed waveforms. Fig. 16 Detailed waveforms.A glance at Fig. 13 reveals there are voltage spike presented at the motor terminal. Figs. 14 and 15 show that voltages were clamped to a safe level both at the motor terminal and inside cable. Fig. 16 shows the rise time of the motor terminal voltage is adjusted to 1µs by the proposed filter.VUWtap1 tap2tap3tap4tap5Phase AFig. 17 Modification of the internal winding of the AC induction motor.To test the voltage distribution inside the motor the motor was modified as Fig. 17 shown. The AC motor has a special construction with 5 taps installed in phase A. The winding turns between tap1 and W is 90% of the total turns of phase A (turns between U and W); the winding turns between tap2 and W is 70% of the total turns of phase A; the winding turns between tap3 and W is 50% of the total turns of phase A; the winding turns between tap4 and W is 30% of the total turns of phase A; the winding turns between tap5 and W is 10% of the total turns of phase A.When motor terminal voltage has different rise time, voltage distribution inside motor winding were measured as Figs. 18 and 19 shown. These figures reveal the inter-turn’ voltages are reduced especially the voltage between tap3 and terminal W when the rise time of the motor terminal voltage is enlarged form 250ns to 1µs by the proposed filter. Figs. 20 and 21 reveal proposed filter does not only reduce the voltage across motor winding turns but also suppress the common to the ground current.Fig. 18 Rise time = 250ns Fig. 19 Rise time = 1µs (100m Cable is used). (100m Cable is used).Fig. 20 Without filter Fig. 21 Proposed filter(1m Cable). (1m Cable).The relationship between voltage overshoot at motor terminal and power loss of the proposed filter is shown atMotor TerminalInverter OutputVoltage across U and WTap1 Tap5Tap3 Voltage across U and WTap1 Tap3 Tap5Voltage across U and WTap3 Tap4Tap3 Tap4Common-mode Current Common-mode CurrentVoltage across U and WFig. 22. The data was measured when the motor operated atits half load condition and the rise/fall time of the voltageV. C ONCLUSIONSA motor termination filter that can protect the AC motorfed by PWM inverter drives against insulation damage has been presented. It is not only designed to clamp the maximum motor terminal voltage at a safe level but also alter the wavefront of the pulses at the motor terminal to improve the inter-coil and inter-turn voltage distributions in the motor.The proposed filter is energy efficient comparing with some common used filters. The performance of the proposed filterhas been verified experimentally by a 1hp inverter-fed motor drive system.R EFERENCES[1] E. Persson, “Transient effects in application of PWM inverters to induction motors,” IEEE Transactions on Industry Applications , vo. 28, pp. 1095-1101, Sept./Oct. 1992.[2] W. H. Hayt, Engineering Electromagnetics. New York: McGraw-Hill, 1989.[3]T. Takahashi, M. Termeyer, T. Lowery, and H. Tsai, “Motor lead length issues for IGBT drives,” in Conference Record of Annual Pulp and Paper Industry Technical Conference , Vancouver, B.C., Canada, 1995, pp. 21–27.[4]G. Skibinski, R. Kerkman, D. Leggate, J. Pankau, and D. Schlegel, “Reflected wave modeling techniques for PWM ac motor drives,” in Conference Record of Applied Power Electronics Conference and Exposition , 15-19 Feb. 1998, vol. 2, pp. 1021-1029.[5]L. Saunders, G. Skibinski, S. Evon, and D. Kempkes, “Riding the reflected wave-IGBT drive technology demands new motor and cable considerations,” in Conference Record of IEEE-IAS Annual Petroleum and Chemical Industry Conference , 23-25 Sep 1996, pp. 75-84.[6]S. Amarir and K. Al-Haddad, “A modeling technique to analyze the impact of inverter supply voltage and cable length on industrial motor-drives,” IEEE Transactions on Power Electronics , vol. 23, no. 2, pp. 753-762, Mar 2008.[7]G. Oriti and A. Julian, “Application of the transmission line theory to the frequency domain analysis of the motor voltage stress causedby PWM inverters,” in Conference Record of the IEEE Industry Applications Conference , 3-7 Oct. 2004, vol. 3, pp. 1996-2002.[8] A. Bonnett, “Analysis of the impact of pulse-width modulated IEEE , vol. 32, no. 2, pp. 386-392, IEEE Transactions on Industry Applications , vol. 27, , vol. 13, no. 1, pp. 37-42, IEEE Electrical Insulation , vol. 21, no. 2, pp. 22–29, Mar/Apr 2005.IEEE Transactions on Industry Applications , vol. R. Kerkman, “Cable characteristics Conference Record , 23-27 IEEE , vol. 33, no. 3, pp. 722-731, Electrical Engineering , [16]M. T. Wright, S. J. Yang, and K. Mcleay, “General theory of fast-fronted inter-turn voltage distribution in electrical machine windings,” IEE Proceedings B – Electric Power Applications , vol. 130, no. 4, 245-256, July 1983.[17] M. Rahman, T. Haider, E. Haque, T. Blackburn, and C. Grantham, “Modelling and experimental studies of effects of steep fronted inverter waveforms on motor and supply cabling and their remedies,” in Conference Record of IEEE International Conference on Power Electronics and Drive Systems , Hong Kong, vol. 1, 27-29 July 1999, pp. 519 – 524.[18] H. Kim, G. Lee, C. Jang, and J. Lee, “Cost-effective design of an inverter output reactor in ASD applications,” IEEE Transactions on Industrial Electronics , vol. 48, no. 6, pp. 1128-1135, Dec. 2001. [19] G. Skibinski, “Design methodology of a cable terminator to reduce reflected voltage on ac motors,” in Conference Record of IEEE Industry Applications Conference , 1996, vol. 1, pp. 153-161.[20]A. von Jouanne and P. Enjeti, “Design considerations for an inverter output filter to mitigate the effects of long motor leads in ASD applications,” IEEE Transactions on Industry Applications , vol. 33, no. 5, pp. 1138-1145, Sep/Oct 1997.[21]A. Moreira, T. Lipo, G. Venkataramanan, S. Bernet, “High-frequency modeling for cable and induction motor overvoltage studies in long cable drives,” IEEE Transactions on Industry Applications , vol. 38, no. 5, pp. 1297-1306, Sep/Oct 2002.[22]A. Moreira, P. Santos, T. Lipo, G. Venkataramanan, “Filter networks for long cable drives and their influence on motor voltage distribution and common-mode currents,” IEEE Transactions on Industrial Electronics , vol. 52, no. 2, pp. 515 – 522, Apr. 2005.[23]X. Chen, D. Xu, F. Liu and J. Zhang, “A novel inverter-output passive filter for reducing both differential-and common-mode dv/dt at the motor terminals in PWM drive systems,” IEEE Transactions on industrial Electronics , vol. 54, no. 1, pp. 419-426, Feb. 2007.[24]S. Lee and K. Nam, “An overvoltage suppression scheme for AC motor drives using a half DC-link voltage level at each PWM transition,” IEEE Transactions on Industrial Electronics , vol. 49, no. 3, pp. 549 – 557, June 2002.[25]L. Palma and P. Enjeti, “An inverter output filter to mitigate dv/dt effects in PWM drive systems,” in Conference Record of Applied Power Electronics Conference and Exposition , 2002, vol. 1, pp. 550-556.[26]S. Kim and S. Sul, “A novel filter design for suppression of high voltage gradient in voltage-fed PWM inverter,” in ConferenceRecord of IEEE Applied Power Electronics Conference andExposition, Feb 23-27, 1997, pp. 122-127.[27]T. Habetler, R. Naik, and T. Nondahl, “Design and implementationof an inverter output LC filter used for dv/dt reduction,” IEEETransactions on Power Electronics, vol. 17, no. 3, pp. 327-331,May 2002.[28]N. Hanigovszki, J. Poulsen, and F. Blaabjerg, “A novel output filtertopology to reduce motor overvoltage,” IEEE Transactions onIndustry Applications, vol. 40, no. 3, pp. 845-852, May/June 2004. [29] A. von Jouanne, H. Zhang, and A. Wallace, “An evaluation ofmitigation techniques for bearing currents, EMI and overvoltages inASD applications,” IEEE Transactions on Industry Applications,vol. 34, no. 5, pp. 1113-1122, Sep/Oct 1998.[30]H. Akagi, and S. Tamura, “A Passive EMI Filter for EliminatingBoth Bearing Current and Ground Leakage Current From anInverter-Driven Motor,” IEEE Transactions on Power Electronics,vol. 21, no. 5, pp. 1459-1469, Sept. 2006.[31]P. Finlayson, “Output filters for PWM drives with inductionmotors,” IEEE Industry Application Magazine, pp. 46-52, Jan/Feb1998.[32] A. von Jouanne, D. Rendusara, P. Enjeti, and J. Gray, “Filteringtechniques to minimize the effect of long motor leads on PWMinverter-fed AC motor drive systems,” IEEE Transactions onIndustry Applications, vol. 32, no. 4, pp. 919-926, Jul/Aug 1996. [33]S. Lee and K. Nam, “Overvoltage suppression filter design methodsbased on voltage reflection theory,” IEEE Transactions on PowerElectronics, vol. 19, no. 2, pp. 264-271, Mar 2004.[34]G. Skibinski, Apparatus used with ac motors for eliminating linevoltage reflections, US patent 5,831,410, Nov 3, 1998.。
电力系统powersystem发电机generator励磁excitation励磁器excitor电压voltage电流current升压变压器step-uptransformer母线bus变压器transformer空载损耗no-loadloss铁损ironloss铜损copperloss空载电流no-loadcurrent有功损耗activeloss无功损耗reactiveloss输电系统powertransmissionsystem 高压侧highside输电线transmissionline高压highvoltage低压lowvoltage中压middlevoltage功角稳定anglestability稳定stability电压稳定voltagestability暂态稳定transientstability 电厂powerplant能量输送powertransfer交流AC直流DC电网powersystem落点droppoint开关站switchstation调节regulation高抗highvoltageshuntreactor 并列的apposable裕度margin故障fault三相故障threephasefault 分接头tap切机generatortriping高顶值highlimitedvalue 静态staticstate动态dynamicstate机端电压控制AVR电抗reactance电阻resistance功角powerangle有功功率activepower电容器Capacitor电抗器Reactor断路器Breaker电动机motor功率因数power-factor定子stator阻抗impedance功角power-angle电压等级voltagegrade有功负载:activeloadPLoad无功负载reactiveload档位tapposition电阻resistor电抗reactance电导conductance电纳susceptance上限upperlimit下限lowerlimit正序阻抗positivesequenceimpedance 负序阻抗negativesequenceimpedance 零序阻抗zerosequenceimpedance无功功率reactivepower功率因数powerfactor无功电流reactivecurrent斜率slope额定rating变比ratio参考值referencevalue电压互感器PT分接头tap仿真分析simulationanalysis 下降率drooprate传递函数transferfunction框图blockdiagram受端receive-side同步synchronization保护断路器circuitbreaker摇摆swing阻尼damping无刷直流电机BruslessDCmotor 刀闸隔离开关Isolator机端generatorterminal变电站transformersubstation永磁同步电机Permanent-magnetSynchronismMotor异步电机AsynchronousMotor三绕组变压器three-columntransformerThrClnTrans 双绕组变压器double-columntransformerDblClmnTrans 固定串联电容补偿fixedseriescapacitorcompensation 双回同杆并架double-circuitlinesonthesametower单机无穷大系统onemachine-infinitybussystem励磁电流Magnetizingcurrent补偿度degreeofcompensation电磁场:Electromagneticfields失去同步lossofsynchronization装机容量installedcapacity无功补偿reactivepowercompensation故障切除时间faultclearingtime极限切除时间criticalclearingtime强行励磁reinforcedexcitation并联电容器shuntcapacitor<下降特性droopcharacteristics线路补偿器LDClinedropcompensation电机学ElectricalMachinery自动控制理论AutomaticControlTheory电磁场ElectromagneticField微机原理PrincipleofMicrocomputer电工学Electrotechnics电路原理Principleofcircuits电机学ElectricalMachinery电力系统稳态分析Steady-StateAnalysisofPowerSystem电力系统暂态分析Transient-StateAnalysisofPowerSystem电力系统继电保护原理PrincipleofElectricalSystem'sRelayProtection电力系统元件保护原理ProtectionPrincipleofPowerSystem'sElement 电力系统内部过电压PastVoltagewithinPowersystem模拟电子技术基础BasisofAnalogueElectronicTechnique数字电子技术DigitalElectricalTechnique电路原理实验电气工程讲座Lecturesonelectricalpowerproduction电力电子基础Basicfundamentalsofpowerelectronics高电压工程Highvoltageengineering电子专题实践Topicsonexperimentalprojectofelectronics 电气工程概论Introductiontoelectricalengineering电子电机集成系统Electronicmachinesystem电力传动与控制ElectricalDriveandControl电力系统继电保护PowerSystemRelayingProtection主变压器maintransformer升压变压器step-uptransformer降压变压器step-downtransformer工作变压器operatingtransformer备用变压器公用变压器commontransformer三相变压器three-phasetransformer单相变压器single-phasetransformer带负荷调压变压器on-loadregulatingtransformer 变压器铁芯transformercore变压器线圈transformercoil变压器绕组transformerwinding变压器油箱transformeroiltank变压器外壳变压器风扇transformerfan变压器油枕transformeroilconservator∽drum 变压器额定电压transformerretedvoltage变压器额定电流transformerretedcurrent变压器调压范围transformervoltageregulationrage 配电设备powerdistributionequipmentSF6断路器SF6circuitbreaker开关switch按钮button隔离开关isolator,disconnector 真空开关vacuumswitch刀闸开关knife-switch接地刀闸earthingknife-switch 电气设备electricalequipment 变流器currentconverter电流互感器currenttransformer电压互感器voltagetransformer电源powersource交流电源ACpowersource 直流电源DCpowersource 工作电源operatingsource 备用电源Standbysource 强电strongcurrent 弱电weakcurrent继电器relay信号继电器signalrelay电流继电器currentrelay电压继电器voltagerelay跳闸继电器trippingrelay合闸继电器closingrelay中间继电器intermediaterelay时间继电器timerelay零序电压继电器zero-sequencevoltagerelay 差动继电器differentialrelay闭锁装置lockingdevice遥控telecontrol遥信telesignalisation遥测telemetering遥调teleregulation断路器breaker,circuitbreaker少油断路器mini-oilbreaker,oil-mini-mumbreaker 高频滤波器high-frequencyfilter组合滤波器combinedfilter常开触点normallyopenedcontaact常闭触点normallyclosedcontaact 并联电容parallelcapacitance保护接地protectiveearthing熔断器cutout,fusiblecutout 电缆cable跳闸脉冲trippingpulse合闸脉冲closingpulse一次电压primaryvoltage二次电压secondaryvoltage并联电容器parallelcapacitor无功补偿器reactivepowercompensationdevice 消弧线圈arc-suppressingcoil母线Bus,busbar三角接法deltaconnection星形接法Wyeconnection原理图schematicdiagram一次系统图primarysystemdiagram二次系统图secondarysystemdiagram两相短路two-phaseshortcircuit三相短路three-phaseshortcircuit单相接地短路single-phasegroundshortcircuit短路电流计算calculationofshortcircuitcurrent 自动重合闸automaticreclosing高频保护high-freqencyprotection距离保护distanceprotection横差保护transversedifferentialprotection 纵差保护longitudinaldifferentialprotection 线路保护lineprotection过电压保护over-voltageprotection母差保护busdifferentialprotection 瓦斯保护Buchholtzprotection变压器保护transformerprotection电动机保护motorprotection远方控制remotecontrol用电量powerconsumption载波carrier故障fault选择性selectivity速动性speed灵敏性sensitivity可靠性reliability电磁型继电器electromagnetic无时限电流速断保护instantaneouslyover-currentprotection 跳闸线圈tripcoil工作线圈operatingcoil制动线圈retraintcoil主保护mainprotection后备保护back-upprotection定时限过电流保护definitetimeover-currentprotection 三段式电流保护thecurrentprotectionwiththreestages 反时限过电流保护inversetimeover-currentprotection 方向性电流保护thedirectionalcurrentprotection零序电流保护zero-sequencecurrentprotection阻抗impedance微机保护MicroprocessorProtection。
直驱风电系统变流器建模和跌落特性仿真胡书举1,2,李建林1,许洪华1(1.中国科学院电工研究所,北京100190;2.中国科学院研究生院,北京100049)摘 要:为增强直驱型变速恒频风电系统的低电压穿越能力,采取了变流器直流侧增加卸荷负载以在故障时消耗掉直流侧多余的能量,使风电机组的正常运行基本不受电压跌落影响的应对措施。
通过对发电机侧变流器、电网侧变流器和直流侧卸荷负载工作原理的详细分析,变流器采用背靠背双PW M 结构,实现了变流器的整体建模。
基于M atlab7 3/simulink6 5构建了变流器的仿真模型,对电网电压跌落时系统的跌落特性进行了变流器模型及其分析正确性的仿真验证,结果表明,采用直流侧卸荷负载可有效提高直驱系统的故障穿越能力,具有较快的动态响应速度。
关键词:直驱型风电系统;永磁同步发电机;建模;电压跌落;低电压穿越;卸荷负载中图分类号:T M 310文献标志码:A文章编号:1003-6520(2008)05-0949-06基金资助项目:中国博士后科学基金项目(20060390092)。
Project Su pported by China Pos t -doctorial Science Fou ndation (20060390092).Modeling on Converters of Direct -driven Wind Power System andIts Performance During Voltage SagsH U Shu -ju 1,2,LI Jian -lin 1,XU H ong -hua1(1.Electrical Engineering Institute of CAS,Beijing 100190,China;2.Graduate University of CAS,Beijing 100049,China)Abstract:T o enhance the lo w voltage ride thr ough (L VR T )capability of direct -dr iv en variable -speed const ant fre -quency (VSCF)wind power system,so me co untermeasures must be taken.By adding damp lo ad at DC -side o f the co nv erter ,r edundant ener gy at DC -side dur ing g rid faults w ill be consumed,therefo re the o per ating of w ind turbine will not be influenced by g rid v oltage sags.T he back -t o -back dual PW M co nv erter is used,and the pr inciples of g en -er ator -side conver ter,gr id -side conver ter and damp load ar e analyzed in detail,then the whole modeling o f the con -v erter is realized.T he simulation model of the co nv erter is developed based on t he M atlab7.3/simulink6.5,and the per formance dur ing g rid vo ltag e sags is simulated,w hich demo nstr ates the validity of the mo del and analysis.T he results sho w that dir ect -dr iven w ind po wer system hav e g ood capability of fault r ide thro ugh and fast dynamic re -spond speed by using damping lo ad at D C -side.Key words:dir ect -dr iven w ind pow er system;per manent mag net sy nchro no us g enerato r (PM SG );modeling ;vo lt -ag e sag s;low vo ltag e ride thro ug h(L V RT );dam p load0 引 言随着风力发电规模的不断增大,其在电力生产中所占的比重也越来越大,风电系统对电网的影响已经不能忽略。
河南理工大学外文文献翻译外文资料翻译变压器1. 简介要从远端发电厂送出电能,必须应用高压输电。
因为最终的负荷,在一些点高电压必须降低。
变压器能使电力系统各个部分运行在电压不同的等级。
本文我们讨论的原则和电力变压器的应用。
2.双绕组变压器变压器的最简单形式包括两个磁通相互耦合的固定线圈,两个线圈之间之所以相互耦合,是因为它们连接着共同的磁通。
在电气工程中,使用层式铁芯变压器,变压器效率比较高,因为没有旋转损失,因此在按压等级转换的过程中,能量损失比较少。
典型的效率范围在92%到99%,上限适用于大功率变压器。
从交流电源流入电流的一侧被称为变压器的一次侧绕组或者是原边。
它在铁圈中建立了磁通φ,它的幅值和方向都会发生周期性的变化。
磁通连接的第二个绕组被称为变压器的二次侧绕组或者是副边。
磁通是变化的;因此依据楞次定律,电磁感应在二次侧产生了电压。
变压器在原边接收电能的同时也在向副边所带的负荷输送电能。
这就是变压器的作用。
3. 变压器的工作原理当二次侧电路开路时,即使原边被施以正弦电压V p,也是没有能量转移的。
外加电压在一次侧绕组中产生一个小电流Iθ。
这个空载电流有两项功能:(1)在铁芯中产生电磁通,该磁通在零和φm之间做正弦变化,φm是铁芯磁通的最大值;(2)它的一个分量说明了铁芯中的涡流和磁滞损耗。
这两种相关的损耗被称为铁芯损耗。
变压器空载电流I θ一般大约只有满载电流的2%—5%。
因为在空载时,原边绕组中的铁芯相当于一个很大的电抗,空载电流的相位大约将滞后于原边电压相位90o。
显然可见电流分量I m = I 0sin θ0,被称做励磁电流,它在相位上滞后于原边电压V P 90o。
就是这个分量在铁芯中建立了磁通;因此磁通φ与I m 同相。
第二个分量I e =I 0sin θ0,与原边电压同相。
这个电流分量向铁芯提供用于损耗的电流。
两个相量的分量和代表空载电流,即I 0 = I m + I e应注意的是空载电流是畸变和非正弦形的。
卧式压缩机电机绝缘电阻提升浅析发布时间:2022-11-07T01:18:29.830Z 来源:《中国科技信息》2022年13期7月作者:刘锋李高旗[导读] 针对绝缘电阻测试原理进行了理论分析,通过试验分析了卧式压缩机绝缘电阻降低的原因。
通过加厚漆膜漆包线与原方刘锋李高旗珠海格力电器股份有限公司广东珠海 519000摘要:针对绝缘电阻测试原理进行了理论分析,通过试验分析了卧式压缩机绝缘电阻降低的原因。
通过加厚漆膜漆包线与原方案常规漆包线、绕组焊点密封与绕组焊点不密封方案在电机、压缩机和空调系统中验证,得出了绝缘提升的有效手段,为电机设计提供参考。
关键词:绝缘电阻;卧式压缩机;电机;Analysis on the Improvement of Insulation Resistance of Horizontal Compressor MotorLiu feng Li gao qiGree Electric Appliances, Inc. of Zhuhai Zhuhai Guangdong 519000Abstract:The principle of insulation resistance test is analyzed theoretically, and the reason of insulation resistance reduction of horizontal compressor is analyzed through experiment. Through the verification of thickened paint film enameled wire and conventional enameled wire in the original scheme, winding solder joint sealing and winding solder joint unsealing scheme in motor, compressor and air conditioning system, the effective means of insulation promotion are obtained, which can provide reference for motor design.Keywords: insulation resistance;horizontal Compressor;motor一、前言近年新能源车用空调市场不断拓展,《汽车空调用电动压缩机》JB/T 12845-2016要求压缩机首次灌注最大灌注量冷媒的条件下,运转3~5min后绝缘电阻≥10MΩ[1]。
Shutdown actuating protection停机联动保护Protection actuation for generator-transformer set 发变组保护联动引出压板Outlet connecting strip矩阵插点Matrix pin 失磁低阻抗field - loss low impedance 开相闭锁open - phase block 95% 定子接地保护95% protection against stator earth fault转子一点接地保护rotor - one point earth protection 220KV侧CT补偿变流器变比:0.43/1 Transformation ratio of CT compensated current transformer on 220KV side:0.43/1发电机侧CT补偿变流器变比:3.72/1 Transformation ratio of generator CT compensated current transformer :3.72/1 椭圆率ellipticity Connecting strip 压板YH=voltage transformer Steel gasket钢纸垫Disconnectors隔离刀闸earthing blades接地刀闸Hoist电动葫芦,卷扬schematic diagram 示意图dotted line block虚线框restrain excitation inrush current 抑制励磁涌流weight balance "hammer"重操作箱锤bevel wedge斜楔air admission hole进气口single-side gap单边间隙trial operation试运行Bulkhead防水壁one and half breakers一个半断流器(接线方式)percussive drilling冲击钻探Storage battery电瓶6.3KV busbar supplies service power of plant(6.3KV)母线供应厂用电Oil head受油器oil receiver油罐air receiver 储气罐Stop valve截止阀check valve止回阀non-return valve逆止阀gate valve闸阀Nameplate (data plate)铭牌rated value整定值generator longitudinal differential protection发电机纵差保护变比=电流变化比例系数current change proportion coefficient/ transformation radio 防水门bulkhead gate 架平台erect the necessary scaffold;scaffold脚手架国电东北公司人力资源部主任Section Chief of Human Resources of Northeast Branch of National Power Corporation 厂长directorput in service in grid并网发电=operate in grid=incorporate in power network zero-initial step-up voltage test零起升压试验SCR silicon controlled rectifier 可控硅visual annunciator(alarm)光字牌integrate theory with practice理论联系实际Impulse Closing Test for Main Transformer= closing switches at the high voltage side and supply power for main transformer. 合脉冲变试验breach破裂,裂口standby diesel generating unit, bottom gates MS6 (lifting& lowering), work out制定To adjust operation mode of system and equipment to achieve safe, stable and economic operation. To execute weekly program of changing-over operation modes of equipment, Vaseline 凡士林petroleum jelly (=petrolatum)凡士林油, 矿油,石油膏on load带负荷starting under load带负荷起动connect in parallel并联measure insulation摇绝缘wind tunnel/ channel风洞flexible circuit conductor软接手earth dam土坝penstock水渠surge tank浪涌槽tailrace 尾水irrigation canal灌溉渠step-up substation递升变电站switchyard开关站quadrate方形的reinforced concrete加固混凝土attached drawing附图water intake进水power generation(generate electricity)发电irrigation-discharging pipe灌溉排水管, at the intake of the penstock水渠入口, air hole气孔vertical-cylindrical type立柱式Pressure steel pipe压力钢管emergency gate快速门trash rack拦污栅Water sump and drainage equipment集水和排水设备on the left of the powerhouse. Operating oil tank操作油箱insulate oil system绝缘油系统sidewall边墙,侧壁overhead transmission line变送线sigle-busbar connection单母线接线The two units are directly connected with 6.3KV busbar, the voltage stepped up to 34.5KV through an transformer, and linked up with local power system through transformer lines.Hand-operated standby unit手动备用机组Dynamic water动态水prevent the aggravation of the accident防止事故恶化the state of overhauling大修状态hydraulic turbine-generator unit and auxiliary equipment水轮发电机组和附属设备synchronous generator同步发电机/ 配套发电机parameter参数runner diameter转轮直径efficiency效率guarantee保证range of steadyoperating稳定运行范围maximum guaranteed output最大保证出力in no-load以空载inlet pipe进水管distributor导水机构draft tube尾水管hydroenergy (potential energy and kinetic energy)水流的能量(位能和动能) transform into转换成mechanical energy机械能(pl) 用法说明Full directions inside内附详细说明书couples with同…联接can achieve to startup or stop unit, incorporate in power network, add or reduce load.能实现开机、并网、增减负荷和停机。
电力系统 power system 发电机 generator 励磁 excitation励磁器 excitor 电压 voltage 电流 current升压变压器 step-up transformer 母线 bus 变压器 transformer空载损耗:no—load loss 铁损:iron loss 铜损:copper loss空载电流:no—load current 无功损耗:reactive loss 有功损耗:active loss 输电系统 power transmission system高压侧 high side 输电线 transmission line高压: high voltage 低压:low voltage 中压:middle voltage功角稳定 angle stability 稳定 stability 电压稳定 voltage stability暂态稳定 transient stability 电厂 power plant 能量输送 power transfer交流 AC 直流 DC 电网 power system落点 drop point 开关站 switch station 调节 regulation高抗 high voltage shunt reactor 并列的:apposable 裕度 margin故障 fault 三相故障 three phase fault 分接头:tap切机 generator triping 高顶值 high limited value 静态 static (state)动态 dynamic (state) 机端电压控制 AVR 电抗 reactance电阻 resistance 功角 power angle 有功(功率) active power电容器:Capacitor 电抗器:Reactor 断路器:Breaker电动机:motor 功率因数:power-factor 定子:stator阻抗电压: 阻抗:impedance 功角:power-angle 电压等级:voltage grade有功负载: active load/PLoad 无功负载:reactive load 档位:tap position 电阻:resistor 电抗:reactance 电导:conductance电纳:susceptance 上限:upper limit 下限:lower limit正序阻抗:positive sequence impedance 负序阻抗:negative sequence impedance 零序阻抗:zero sequence impedance无功(功率) reactive power 功率因数 power factor 无功电流 reactive current斜率 slope 额定 rating 变比 ratio参考值 reference value 电压互感器 PT 分接头 tap仿真分析 simulation analysis 下降率 droop rate 传递函数 transfer function框图 block diagram 受端 receive—side 同步 synchronization保护断路器 circuit breaker 摇摆 swing 阻尼 damping无刷直流电机:Brusless DC motor 刀闸(隔离开关):Isolator 机端 generator terminal变电站 transformer substation永磁同步电机:Permanent-magnet Synchronism Motor异步电机:Asynchronous Motor三绕组变压器:three-column transformer ThrClnTrans双绕组变压器:double—column transformer DblClmnTrans固定串联电容补偿fixed series capacitor compensation双回同杆并架 double—circuit lines on the same tower单机无穷大系统 one machine - infinity bus system励磁电流:magnetizing current 补偿度 degree of compensation电磁场Electromagnetic fields 失去同步 loss of synchronization装机容量 installed capacity 无功补偿 reactive power compensation故障切除时间 fault clearing time 极限切除时间 critical clearing time强行励磁 reinforced excitation 并联电容器:shunt capacitor下降特性 droop characteristics 线路补偿器 LDC(line drop compensation)电机学 Electrical Machinery 自动控制理论 Automatic Control Theory电磁场 Electromagnetic Field微机原理 Principle of Microcomputer电工学 Electrotechnics电路原理Principle of circuits电机学Electrical Machinery电力系统稳态分析 Steady—State Analysis of Power System电力系统暂态分析 Transient—State Analysis of Power System电力系统继电保护原理 Principle of Electrical System's Relay Protection 电力系统元件保护原理 Protection Principle of Power System ’s Element电力系统内部过电压 Past Voltage within Power system模拟电子技术基础 Basis of Analogue Electronic Technique数字电子技术 Digital Electrical Technique电路原理实验Lab。
Analysis of Overvoltage on Motor Winding InsulationFed by PWM PulsesRomuald Włodek, Józef Roehrich and Paweł ZydrońAGH University of Science and TechnologyDepartment of Electrical and Power EngineeringKraków, PolandAbstract— The introduction of Adjustable/Variable Speed Drives (ASD/VSD) caused new exposures for motor insulation systems. Particularly the application of fast transistor switches and pulse-width modulated (PWM) train of pulses may result in the overvoltages on motor insulation. The mechanism of partial discharges in insulating system has been widely investigated for sinusoidal voltage shape. However, fast rising PWM pulses may result in another mechanism of partial discharges initiation and further evolution and thus the degradation of insulating material. The paper discuses the influence of PWM pulses shape on expected exposures on electric motor insulation. For this aim the voltage pulse shape may be represented generally as the trapezoidal one. Voltage pulse of such a shape is propagated through feeding cable to the motor insulation input. As the effect the time transient voltage response arises at this point and acts on the motor insulating system. The shape and value of such an overvoltage depend on the cable parameters, the equivalent impedance of the winding, and on the parameters of feeding voltage shape, i.e. the slope of voltage increase and decrease.I.I NTRODUCTIONMany modern electrical drives use pulse-width modulated voltage source inverters (PWM VSI) with very fast switching power semiconductor devices. Specific parameters of PWM pulses lead to arising of magnified electric stress problems for insulation in inverter-cable-motor setup (Fig. 1) [1-5]. They are discussed particularly from the point of view of partial discharges mechanism, which may be in these conditions of another form than in the case of AC voltage [2, 4, 6-9].PWM pulses are of theoretical rectangular shape however their rise time is of real non-zero value because of power electronic devices switching properties and electrical circuits parameters. Thus the shape of voltage pulse may be characterized by the rise time of the order of tens of nanoseconds since microseconds. Voltage pulses with very short rise times are produced by IGBT (Insulated Gate Bipolar Transistors) based voltage source inverters. Such pulses are propagated through feeding cable to the motor terminals [3-5, 9]. As the effect the time transient voltage response arises at this point and acts on the motor insulating system. The shape and value of such overvoltage depend on: feeding cables construction and transmission parameters, the equivalent impedance of the motor winding and on the parameters of voltage shape at voltage source inverter output, i.e. the rise/fall slope of voltage.idealized trapezoidalvoltage pulse atVSI outputvoltage pulse withovervoltage atmotor terminalFigure 1. Pulse voltages in inverter-cable-motor setupII.P ROPAGATION OF PWM PULSES FORCABLE-MOTOR SETUPMotor windings are fed by pulse-width modulated (PWM) voltage pulses in the shape of idealized rectangular- or trapezoidal one. These windings are connected to the voltage source inverter by three coaxial cables with cross-linked polyethylene (XLPE)- or ethylen-propylene rubber (EPR) insulation. In practical conditions rise time of voltage pulses is usually from hundreds nanoseconds up to several dozen microseconds. Taking into account, that the cable lengths in practical conditions is at least a dozen or so meters, it results, that the voltage on the input of motor winding should be treated according to the mechanism of wave propagation in a cable transmission line.Work presented in this paper was partly carried out in a project NR 01 0019 04 sponsored by the Polish Ministry of Science and Higher EducationFor trapezoidal pulses spectrum upper limit frequency f 3dB could be approximated as function of rise time t r :rdB t f 35.03=(1)TABLE I. S PECTRUM LIMIT FREQUENCY AND WAVELENGTH FOR INCREASED PULSE RISE TIME Rise time of voltage pulse t r[ns]Spectrum upper limitfrequency f 3dB [MHz]Wavelength at f 3dB forXLPE/EPR λ [m]1 350 0.57 / 0.46 10 35 5.7 / 4.6 100 3.5 57 / 46 1000 0.35 570 / 460 In the Table 1 there are given wavelengths of upper limitfrequency component for theoretical values of dielectric constant of XLPE (εr =2.25; v = 2·108m/s) and EPR (εr = 3.3;v = 1,65·108 m/s) insulated cables for assumed rise times ofvoltage pulse. Velocity of electromagnetic wave ν in dielectric is calculated as: rc v ε≅ (2)where:c – light speed in vacuum;εr – relative permittivity. Because of high motor impedance and cable transmission parameters in described setup arise overvoltages when voltagepulse rise time is enough small. Critical length of feeding cable l cr evaluated from transmission line phenomena point of view could be estimated as a half of the distance reached by wave during pulse rise time:2vt l r cr ⋅= (3) where:t r – pulse rise (fall) timev – velocity of impulse in cable.TABLE II.C RITICAL LENGTH OF CABLE L CR FOR XLPE AND EPRCABLES WITHOUT SEMICONDUCTING SCREENS VS . PULSE RISE TIMERise timeof voltage pulse t r[ns] Critical length of feeding cable l cr [m] XLPE EPR 1 0.1 0.08310 1 0.83100 10 8.31000 100 83 For higher voltage applications where in construction ofcable semiconducting screens are present on conductor and oninsulation cable, real values of velocity are smaller (e.g. forXLPE cable usually v ≅ 1.5·108[m/s] and for EPR cable v = 1.2·108 [m/s] or even smaller). In this case critical length of cable is shorter: for XLPE cable is equal to 7.5 [m] and for EPR cable 6 [m].In real conditions pulse voltage of the trapezoidal shape is applied (Fig. 1). Front time of voltage pulses depends on the type of inverter being used and is in the range of about 50 ns since about 5000 ns.U i (t U 0 a b tFigure 2. Description of trapezoidal pulse According to the Fig. 1, front time of the voltage pulsemay be expressed approximately as: ()t a U t U 11= for 0 < t < a (4) Voltage shape on motor terminals in time domain is expressed by the following formula: ()()()∫⋅⋅−=ti i d U t U dt d t U 011τττ(5) where: U i1(τ) – shape of the voltage on motor terminals, if the unit step voltage arises on the cable input. The U i1(τ) voltage is thus the inverse Laplace transform L -1of : ⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡=−−)()()(21)(1)(111s Z s Z s Z s L s s L t U i c i i α (6) where: α(s) - the penetrating coefficient Z c (s) – surge impedance of cable Z i (s) –equivalent impedance of motor insulating system.If the motor insulating system is of relative small dimensions, its equivalent scheme may be presented by the coupled elements R, L and C . Taking into account the simplified approximation that the front of the voltage pulse has the essential influence on the shape of voltage acting on the motor insulating system, its shape according formula (5) may be expressed in the form: ∑=)exp()(1t s A aU t U n n i (7) where: A n– constants, depending on the type of equivalent scheme R, L, C s n – roots of the penetrating coefficient α(s). Thus the values of R , L and C influence the time transient of the voltage acting on the motor insulating system. Particularly, if - as in practical cases - the values of the inductance L are of the range of 10-3[H] and the values of thecapacitance C is of the range of 10-9[F], it may result in the relation:CL R Z c 2<+ (8)and condition of the appearing of oscillating components in (7) is fulfilled and such components in this formula are to be expected. When we take into account the skin effect in cable, it leads to the effect of additional attenuation of the voltage on winding terminals. The reflection phenomenon on the winding terminal may complicate the voltage pulse shape. The last two problems are discussed e.g. in [10].III. N UMERICAL S IMULATION AND EXPERIMANTALMEASUREMENTSFor numerical simulations a model of inverter-cable-motorequivalent setup was built in EMTP-ATP program. The PVCand XLPE cable lines were modeled using Semlyen cable model. Cable line load was virtually set as induction motormodel consisting of parallel circuit with inductance,capacitance and resistance. Parameters of the model werecalculated from measurement data obtained in laboratory for 2.2kW induction motor. Inductance of motor was measured by means of RLC meter. Resistance of windings has been evaluated from impedance data measured for resonance stateand also capacitance used in motor model was calculatedbearing in mind value of resonant frequency. As a stimulus in the model a trapezoidal-type voltage was used because it provides a possibility to adjust the rise time of voltage pulseon the input of cable.Results of simulations confirm the theoretical conclusionsin two points. At first, the pulse rise time influences the maximal value of overvoltage (Fig. 3). In the case of 20 [m] cable for pulse with "slow" 500 [ns] rise time overvoltage is of no meaning, while the "fast" rise time of 50 ns results in the overvoltage coefficient of almost 1.8. At second, the appearance of the oscillating component in the overvoltage on motor terminal could be observed. This component is attenuated and disappears in the time interval of about 2,5 μs. In laboratory conditions measurements in setup consists of pulse source, 10 meters XLPE cable and induction motor was used for transient voltages acquisition. Result of numerical simulation is presented in Fig. 4a and example of voltages registered during laboratory measurements for similar rise times (defined as time from 10% to 90% of voltage) is compared in Fig. 4b. In real situation rising slope of the switching pulse is distorted by very fast and narrow transient changing conditions of signal propagation. As result ringing much greater than expected from simulations are observed.IV. CONCLUSIONSTheoretical analysis shows the essential parametersinfluencing the shape and value of overvoltage on the motorwinding terminal. The simulation technique enables howeverto take into account more factors and relatively quick analysisof their effects.1234t [μs]00.511.52U [p.u.]1 2a) 012 3 400.511.52t [μs]U [p.u.]1 2b) Figure 3. Results of simulation of voltages at PWM inverter output (1) and at motor terminal (2) for 20 m XLPE cable for pulses with different rise time: a) pulse rise time 50 [ns], b) pulse rise time 500 [ns] 0123400.511.52t [μs]U [p.u.] 12 a)1234500.511.5t [μs]U [p.u.]12b)Figure 4. Results of simulations (a) and measurements (b) for inverter-cable-motor setup with 10 [m] XLPE cable – voltages at inverter output (1) and motor terminal (2)Verification on real object delivers more information,however additional effects may disturb the expected results.Particularly the effect of the type of cable screen earthconnection should be further recognized.Though the maximal value of the overvoltage does not exceed the theoretical 2 times rated pulse height, the appearance of attenuated oscillating component may influence the sustaining of the initiated partial discharge. It is the problem recommended for further investigation.R EFERENCES[1]L. Werner, “Control of electrical drives”, Springer-Verlag, Berlin, 2001[2]G. C. Stone, E. A. Boulter, I. Culbert, H. Dhirani, “Electrical insulationfor rotating machines”, IEEE Press Series on Power Engineering, Wiley Interscience, 2004[3]J. C. G. Wheeler, “Effects of converter pulses on the electricalinsulation in low and medium voltage motors”, IEEE Electr. Insul.Mag., Vol. 21, No. 2, pp. 22-29, 2005[4] B. Florkowska, M. Florkowski, J. Furgal, J. Roehrich, P. Zydron,“Impact of high frequency switching phenomena on low voltage motorinsulation”, INDUCTICA 2009 Conf. Proc. CWIEME’2009 – Coil Winding, Insulations & Electrical Manufacturing Int. Conf. and Exhibition, Berlin, Germany, May 5-7, 2009 [5]R. J. Kerkman, D. Leggate, D. Schlegel, and G. Skibinski, “PWMinverters and their influence on motor overvoltage” Conference Proceedings of Applied Power Electronics Conference and Exposition APEC '97, Vol. 1, pp. 103 – 113, 1997[6] D. Fabiani, G. C. Montanari, “The effect of voltage distortion on ageingacceleration of insulation system under partial discharge activity”, IEEE Electrical Insulation Magazine, No. 3, pp. 24-32, 2001[7]S. Grzybowski, C.D. Taylor, S.R. Chalise, “Electrical degradationstudy of machine winding insulation”, Proc. ICHVE 2008, pp. 321-325[8] B. Florkowska, M. Florkowski, J. Furgał, P. Zydron, “Influence ofdifferent voltage waveforms on PD formation in HV insulation systems”, Proc. of 2009 IEEE Electrical Insulation Conference, pp.51-54, Montreal, Canada, 31 May - 3 June 2009[9] B. Florkowska, M. Florkowski, J. Furgal, P. Pajak, J. Roehrich,P. Zydroń, “Influence of fast switching phenomena on electrical insulation systems”, Przegląd Elektrotechniczny – Electrical Review, vol. 86, No 4, pp. 158-161, Warsaw, 2010[10]S. Moriyasu, Y. Okuyama, “Surge propagation and overvoltages forPWM-inverter-driven motors”, Electrical Engineering in Japan, Vol.132, No 2, 2000, pp. 65 – 72。