14年高考真题——文科数学(辽宁卷)
- 格式:doc
- 大小:952.00 KB
- 文档页数:7
2014年普通高等学校招生全国统一考试(辽宁)数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2014年辽宁,文1,5分】已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合U ()A B =U ð( )(A ){|0}x x ≥ (B ){|1}x x ≤ (C ){|01}x x ≤≤ (D ){|01}x x << 【答案】D【解析】{}10A B x x x =≥≤U 或,∴{}U ()01A B x x =<<U ð,故选D .【点评】本题考查了集合的并集、补集运算,利用数轴进行数集的交、并、补运算是常用方法. (2)【2014年辽宁,文2,5分】设复数z 满足(2i)(2i)5z --=,则z =( )(A )23i + (B )23i - (C )32i + (D )32i - 【答案】A【解析】由(2i)(2i)5z --=,得:()()()52i 52i 2i 2i 2i 2i z +-===+--+,∴23i z =+,故选A . 【点评】本题考查了复数代数形式的除法运算,是基础的计算题.(3)【2014年辽宁,文3,5分】已知132a -=,21log 3b =,121log 3c =,则( )(A )a b c >> (B )a c b >> (C )c b a >> (D )c a b >>【答案】D【解析】∵1030221a -<=<=,221log log 103b =<=,12221log log 3log 213c ==>=,∴c a b >>,故选D .【点评】本题考查指数的运算性质和对数的运算性质,在涉及比较两个数的大小关系时,有时借助于0、1这样的特殊值能起到事半功倍的效果,是基础题.(4)【2014年辽宁,文4,5分】已知,m n 表示两条不同直线,α表示平面,下列说法正确的是( ) (A )若//m α,//n α,则//m n (B )若m α⊥,n α⊂,则m n ⊥(C )若m α⊥,m n ⊥,则//n α (D )若//m α,m n ⊥,则n α⊥ 【答案】B【解析】A :若//m α,//n α,则m ,n 相交或平行或异面,故A 错;B .若m α⊥,n α⊂,则m n ⊥,故B 正确;C .若m α⊥,m n ⊥,则//n α或n α⊂,故C 错;D .若//m α,m n ⊥,则//n α或n α⊂或n α⊥,故D 错,故选B .【点评】本题考查空间直线与平面的位置关系,考查直线与平面的平行、垂直的判断与性质,记熟这些定理是迅速解题的关键,注意观察空间的直线与平面的模型.(5)【2014年辽宁,文5,5分】设,,a b c 是非零向量,已知命题p :若0=g a b ,0=g b c ,则0=g a c ;命题q :若a b P ,b c P ,则a c P ,则下列命题中真命题是( )(A )p q ∨ (B )p q ∧ (C )()()p q ⌝∧⌝ (D )()p q ∨⌝ 【答案】A【解析】若0=g a b ,0=g b c ,则g g a b =b c ,即()0-=g a c b ,则0g a c =不一定成立,故命题p 为假命题,若a b P ,b c P ,则a c P ,故命题q 为真命题,则p q ∨,为真命题,p q ∧,()()p q ⌝∧⌝,()p q ∨⌝都为假命题,故选A .【点评】本题主要考查复合命题之间的判断,利用向量的有关概念和性质分别判断p ,q 的真假是解决本题的关键.(6)【2014年辽宁,文6,5分】若将一个质点随机投入如图所示的长方形ABCD 中,其中2AB =,1BC =,则质点落在以AB 为直径的半圆内的概率是( )(A )2π (B )4π (C )6π (D )8πA【答案】B【解析】2112()124P A ππ⋅==⨯,故选B . 【点评】本题主要考查几何槪型的概率的计算,求出对应的图形的面积是解决本题的关键,比较基础. (7)【2014年辽宁,文7,5分】某几何体三视图如图所示,则该几何体的体积为( )(A )84π-(B )82π-(C )8π- (D )82π-【答案】C【解析】由三视图知:几何体是正方体切去两个14圆柱,正方体的棱长为2,切去的圆柱的底面半径为1,高为2,∴几何体的体积321221284V ππ=-⨯⨯⨯⨯=-,故选C .【点评】本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.(8)【2014年辽宁,文8,5分】已知点(2,3)A -在抛物线C :22y px =的准线上,记C 的焦点为F ,则直线AF的斜率为( )(A )43- (B )1- (C )34- (D )12-【答案】C【解析】∵点(2,3)A -在抛物线C :22y px =的准线上,∴22p =,∴()2,0F ,∴直线AF 的斜率为33224=---,故选C .【点评】本题考查抛物线的性质,考查直线斜率的计算,考查学生的计算能力,属于基础题. (9)【2014年辽宁,文9,5分】设等差数列{}n a 的公差为d ,若数列{}12n a a 为递减数列,则( )(A )0d > (B )0d < (C )10a d > (D )10a d < 【答案】D【解析】∵等差数列{}n a 的公差为d ,∴1n n a a d +-=,又数列{}12na a 为递减数列,∴11112212n n a a a d a a +=<,∴10a d <,故选D .【点评】本题考查了等差数列的通项公式、数列的单调性、指数函数的运算法则等基础知识与基本技能方法,属于中档题.(10)【2014年辽宁,文10,5分】已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为( )(A )1247[,][,]4334U (B )3112[,][,]4343--U (C )1347[,][,]3434U (D )3113[,][,]4334--U【答案】A【解析】当10,2x ⎡⎤∈⎢⎥⎣⎦,由()12f x =,即1cos 2x π=,则3x ππ=,即13x =,当12x >时,由()12f x =,得1212x -=,解得34x =,则当0x ≥时,不等式()12f x ≤的解为1334x ≤≤,(如图)则由()f x 为偶函数,∴当0x <时,不等式()12f x ≤的解为3143x -≤≤-,即不等式()12f x ≤的解为1334x ≤≤或3143x -≤≤-,则由31143x -≤-≤-或13134x ≤-≤,解得1243x ≤≤或4734x ≤≤,即不等式1(1)2f x -≤的解集为1243x ≤≤或4734x ≤≤,故选A .【点评】本题主要考查不等式的解法,利用分段函数的不等式求出0x ≥时,不等式()12f x ≤的解是解决本题的关键.(11)【2014年辽宁,文11,5分】将函数3sin 23y x π⎛⎫=+ ⎪⎝⎭的图象向右平移2π个单位长度,所得图象对应的函数( )(A )在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递减 (B )在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递增(C )在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减 (D )在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递增【答案】B【解析】把函数3sin 23y x π⎛⎫=+ ⎪⎝⎭的图象向右平移2π个单位长度,得到的图象所对应的函数解析式为:3sin 223y x ππ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦.即23sin 23y x π⎛⎫=- ⎪⎝⎭.由2222232k x k πππππ-+≤-≤+, 得71212k x k ππππ+≤≤+,k ∈Z .取0k =,得71212x ππ≤≤. ∴所得图象对应的函数在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递增,故选B .【点评】本题考查了函数图象的平移,考查了复合函数单调性的求法,复合函数的单调性满足“同增异减”原则,是中档题.(12)【2014年辽宁,文12,5分】当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( )(A )[5,3]-- (B )9[6,]8-- (C )[6,2]-- (D )[4,3]--【答案】C【解析】当0x =时,不等式32430ax x x -++≥对任意a ∈R 恒成立;当01x <≤时,32430ax x x -++≥可化为23143a x x x ≥--,令()23143f x x x x=--,则()()()234491189x x f x x x x x -+'=-++=-(*),当01x <≤时,()0f x '>,()f x 在(]0,1上单调递增,()()max 16f x f ==-∴6a ≥-;当20x -≤<时,32430ax x x -++≥可化为23143a x x x≤--,由(*)式可知,当21x -≤≤-时,()0f x '<,()f x 单调递减,当10x -<<时,()0f x '>,()f x 单调递增,()()min 12f x f =-=-,∴2a ≤-;综上所述,实数a 的取值范围是62a -≤≤-,即实数a 的取值范围是[6,2]--,故选C .【点评】本题考查利用导数研究函数的最值,考查转化思想、分类与整合思想,按照自变量讨论,最后要对参数范围取交集;若按照参数讨论则取并集.第II 卷(共90分)二、填空题:本大题共4小题,每小题5分 (13)【2014年辽宁,文13,5分】执行右侧的程序框图,若输入3n =,则输出T = . 【答案】20【解析】由程序框图知:算法的功能是求()()()112123123T i =+++++++++++L L 的值, 当输入3n =时,跳出循环的i 值为4,∴输出1361020T =+++=.【点评】本题考查了当型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.(14)【2014年辽宁,文14,5分】.已知x ,y 满足条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则目标函数34z x y =+的最大值为 .【答案】18【解析】由约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩作出可行域如图,联立240330x y x y -+=⎧⎨--=⎩,解得23x y =⎧⎨=⎩,∴()2,3C .化目标函数34z x y =+为直线方程的斜截式,得:344zy x =-+.由图可知,当直线344zy x =-+过点C 时,直线在y 轴上的截距最大,即z 最大.∴max 324318z =⨯+⨯=.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.(15)【2014年辽宁,文15,5分】已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .【答案】12【解析】如图:MN 的中点为Q ,易得212QF NB =,112QF AN =,∵Q 在椭圆C 上,∴1226QF QF a +==,∴||||12AN BN +=.【点评】本题考查椭圆的定义,椭圆的基本性质的应用,基本知识的考查. (16)【2014年辽宁,文16,5分】对于0c >,当非零实数,a b 满足22420a ab b c -+-=,且使|2|a b +最大时,124a b c++的最小值为 .【答案】1-【解析】∵22420a ab b c -+-=,∴22221342416c b a ab b a b ⎛⎫=-+=-+ ⎪⎝⎭,由柯西不等式得,()22222233223223242b b a b a b a b ⎡⎤⎛⎫⎡⎤⎛⎫⎛⎫⎡⎤⎢⎥-++≥-+⋅=+ ⎪⎢⎥ ⎪ ⎪ ⎪⎢⎥⎣⎦⎢⎥⎝⎭⎝⎭⎝⎭⎣⎣⎦,故当2a b +最大时, 有344223b a b -=,∴12a b =,2c b =,∴22124224111142a b c b b b b ⎛⎫++=++=+- ⎪⎝⎭, 当2b =-时,取得最小值为1-.【点评】本题考查了柯西不等式,以及二次函数的最值问题,属于难题.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)【2014年辽宁,文17,12分】在ABC ∆中,内角A ,B ,C 的对边,,a b c ,且a c >,已知2BA BC ⋅=u u u r u u u r ,1cos 3B =,3b =,求:(1)a 和c 的值; (2)cos()B C -的值.解:(1)由2BA BC =u u u r u u u r g 得cos 2ac B ⋅=.又1cos 3B =,所以6ac =.由余弦定理得22a c +=22cos b ac B +⋅.又因为3b =,所以22a c +=21326133+⨯⨯=.解22613ac a c =⎧⎨+=⎩得23a c =⎧⎨=⎩或32a c =⎧⎨=⎩.因为a c >,32a c =⎧∴⎨=⎩. (2)在ABC ∆中,2sin 1cos B B =-21221()3=-=.由正弦定理得sin sin b cB C=, 所以222sin 3sin 3c B C b⨯==42=.因为a c >,所以角C 为锐角.2cos 1sin C C =-24271()99=-=.cos()B C -cos cos sin sin B C B C =+17224239=⨯+⨯2327=. 【点评】此题考查了正弦、余弦定理,平面向量的数量积运算,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.(18)【2014年辽宁,文18,12分】某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽喜欢甜品 不喜欢甜品 合计南方学生60 20 80 北方学生10 10 20 合计70 30 100 (1”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.附:21212211222112)(++++-=n n n n n n n n n χ,解:(1)由题意,()2210060102010 4.762 3.84170308020X ⨯⨯-⨯=≈>⨯⨯⨯,∴有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.(2)从这5名学生中随机抽取3人,共有3510C =种情况,有2名喜欢甜品,有133C =种情况, ∴至多有1人喜欢甜品的概率710.【点评】本题考查独立性检验的应用,考查古典概型及其概率计算公式,考查学生的计算能力,属于中档题. (19)【2014年辽宁,文19,12分】如图,ABC ∆和BCD ∆所在平面互相垂直,且AB BC =2BD ==,o 120ABC DBC ∠=∠=,E 、F 、G 分别为AC 、DC 、AD 的中点. (1)求证:EF ⊥平面BCG ; (2)求三棱锥D ﹣BCG 的体积.附:椎体的体积公式13V Sh =,其中S 为底面面积,h 为高.解:(1)∵2AB BC BD ===.120ABC DBC ∠=∠=︒,∴ABC DBC ∆∆≌,∴AC DC =,∵G 为AD 的中点,∴CG AD ⊥.同理BG AD ⊥,∵CG BG G =I ,∴AD ⊥平面BGC , ∵//EF AD ,∴EF ⊥平面BCG .(2)在平面ABC 内,作AO CB ⊥,交CB 的延长线于O ,∵ABC ∆和BCD ∆所在平面互相垂直,∴AO ⊥平面BCD ,∵G 为AD 的中点∴G 到平面BCD 的距离h 是AO 长度的一半.在AOB ∆中,sin 603AO AB =︒=,1111sin1203322D BCG D BCD DCB V V S h BD BC --∆===⋅⋅⋅⋅︒=.【点评】本题考查线面垂直,考查三棱锥体积的计算,正确转换底面是关键.(20)【2014年辽宁,文20,12分】圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图). (1)求点P 的坐标;(2)焦点在x 轴上的椭圆C 过点P ,且与直线l :3y x =+交于A 、B 两点,若PAB ∆ 的面积为2,求C 的标准方程.解:(1)解法一:设圆半径r ,P 点上下两段线段长分别为2,,4m n r =,由射影定理得:2r mn =,三角形面积22422422421111444()168168162222s m n r m n r m n r r =++=+++≥++=++,仅当2m n ==时,s 取最大值,这时(2,2)P .解法二:2()P k χ≥0.1000.050 0.010 k2.7063.841 6.635yxP O设切点P 的坐标为()00,x y ,且00x >,00y >.则切线的斜率为00x y -,故切线方程为()0000xy y x x y -=--, 即001x x y y +=.此时,切线与x 轴正半轴,y 轴正半轴围成的三角形的面积000014482S x y x y =⋅⋅=⋅.再根据22004x y +=≥00x y ==P的坐标为.(2)设椭圆方程22221x y a b +=,11(,)A x y ,22(,)B x y.椭圆过点P 得:22221a b+=,则P到直线y x =+的距离d =.由题得:Δ122ABP S d AB =⋅⋅=,解得AB =.由弦长公式得()()()2222121212123214243AB k x x x x x x x x ⎡⎤⎡⎤=++-=+-=⎣⎦⎣⎦,即2121216()-43x x x x +=.把点P 代入方程得:22221a b +=,由22221y x x y a b ⎧=+⎪⎨+=⎪⎩得2210x a +-=,整理得2102x -=,12x x ∴+=,212232b x x b-=⋅,代入上式得2424831683b b b --⋅=,即4263103b b -+=,解得23b =,26a =,或26b =,23a =(舍),所以椭圆方程为:22163x y +=.【点评】本题主要考查直线和圆相切的性质,直线和圆锥曲线的位置关系,点到直线的距离公式、弦长公式的应用,属于难题.(21)【2014年辽宁,文21,12分】已知函数()(cos )2sin 2f x x x x π=---,2()(1xg x x ππ=--.证 明:(1)存在唯一0(0,)2x π∈,使0()0f x =;(2)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的01x x π+<.解:(1)2ππ()π(cos )2sin 2(0)π20,()4022f x x x x f f =---∴=--<=->Q ,()f x 在π(0)2,上有零点,()π(1sin )2osx πsin (π2osx)0f x x c x c '=+-=+->Q ,()f x ∴在π(0)2,上单调递增.(2)()(21x g x x ππ=--Q ,,2x ππ⎛⎫∈ ⎪⎝⎭,()()cos 211sin x x g x x x ππ-∴=-⋅+-+cos π2π(π),(0,)1sin π2x x g x x x x -∴-=-+∈+,设cos π2()1sin πx x h x x x --=++,π(0,)2x ∈,则()g x 与()h x 的零点同.22cos sin (1sin )cos 2cos 2π(-cos )2(1sin )()1sin (1sin )π1sin 1sin ππ(1sin )x x x x x x x x x h x x x x x x x -++--+'=+-=+-=+++++()π(1sin )f x x =+,π(0,)2x ∈.由(1)知,()f x 在π(0,)2上只有一个零点0x ,且在点0x 左负右正.()h x ∴在0x 点左侧递减,在0x 点右侧递增,且(0)10h =>,π()02h =,故0()0h x <,存在唯一20(0,)x x ∈,使得()20h x =,即2(π)0g x -=,12πx x ∴=-,即1210πx x x x +=<+,01πx x ∴+>,所以()g x 在,2ππ⎛⎫⎪⎝⎭上存在唯一零点1x ,且01πx x +>.【点评】本题考查零点的判定定理,涉及导数法证明函数的单调性,属中档题. 请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑.(22)【2014年辽宁,文22,10分】(选修4-1:几何证明选讲)如图,EP 交圆于E 、C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F .(1)求证:AB 为圆的直径;(2)若AC BD =,求证:AB ED =.解:(1)PD PG PDG PGD PD =∴∠=∠Q Q 为圆的切线,PDA DBA ∴∠=∠又PGD EGA DBA EGA DBA BAD EGA BAD ∠=∠∴∠=∠∴∠+∠=∠+∠Q , 9090BDA PFA AF EP PFA BDA AB ∴∠=∠⊥∴∠=︒∴∠=︒∴Q 为直径.(2)连接,BC DC 90AB BDA ACB ∴∠=∠=︒Q 是直径,在Rt BDA Rt ACB ∆∆与中, ,AB BA AC BD ==,Rt BDA Rt ACB ∆≅∆,DAB CBA DCB DAB ∴∠=∠∠=∠Q//DAB CBA DC AB ∴∠=∠∴,90AB EP DC EP DCE ⊥∴⊥∠=︒Q ED ∴为直径, 由(1)AB ED =.【点评】本题考查圆的切线的性质,考查三角形全等的证明,考查直径所对的圆周角为直角,属于中档题. (23)【2014年辽宁,文23,10分】(选修4-4:坐标系与参数方程)将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12P P 的中点且与l 垂直的直线的极坐标方程.解:(1)设11(,)x y 为圆221x y +=上任意一点,按题中要求变换后的点(,)x y .根据题意得112x x y y =⎧⎨=⎩,所以112x x y y =⎧⎪⎨=⎪⎩.由22111x y +=得2214y x +=.故C 的参数方程为cos 2sin x y θθ=⎧⎨=⎩(θ为参数). (2)由2244220x y x y ⎧+=⎨+-=⎩解得10x y =⎧⎨=⎩或02x y =⎧⎨=⎩.不妨设1(1,0)P ,2(0,2)P,则线段中点坐标1(,1)2. 所求直线的斜率为12k =,于是所求直线方程为111()22y x -=-,即2430x y -+=.化为极坐标方程为2cos 4sin 30ρθρθ-+=,即34sin 2cos ρθθ=-.【点评】本题主要考查求点的轨迹方程的方法,极坐标和直角坐标的互化,用点斜式求直线的方程,属于中档题. (24)【2014年辽宁,文24,10分】(选修4-5:不等式选讲)设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N . (1)求M ;(2)当x M N ∈I 时,证明:221()[()]4x f x x f x +≤.解:(1)()2|1|1f x x x =-+-33,[1,)1,(,1)x x x x -∈+∞⎧=⎨-∈-∞⎩.当1x ≥时,()331f x x =-≤,解得413x ≤≤;当1x <时,()11f x x =-≤,解得01x ≤<.所以()1f x ≤的解集为4{|0}3M x x =≤≤.(2)2()16814g x x x =-+≤,解得13{|}44N x x =-≤≤.M N =I 3{|0}4x x ≤≤.当x M N ∈I 时,()1f x x =-. 22()[()]x f x x f x +=22(1)(1)x x x x -+-2x x =-211()42x =--,3{|0}4x x x ∈≤≤.221()[()]4x f x x f x ∴+≤.【点评】本题主要考查绝对值不等式的解法,体现了分类讨论、等价转化的数学思想,属于中档题.。
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C A B = ( ) A .{|0}x x ≥ B .{|1}x x ≤ C .{|01}x x ≤≤ D .{|01}x x <<2.设复数z 满足(2)(2)5z i i --=,则z =( ) A .23i + B .23i - C .32i + D .32i -3.已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >>4.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥5.设,,a b c是非零向量,已知命题P :若0a b ⋅= ,0b c ⋅= ,则0a c ⋅=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝6.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( ) A .2π B .4π C .6π D .8π7. 某几何体三视图如图所示,则该几何体的体积为( ) A .82π- B .8π- C .82π-D .84π-8. 已知点(2,3)A -在抛物线C :22y px =的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .43-B .1-C .34-D .12- 【答案】C 【解析】9. 设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( ) A .0d < B .0d > C .10a d < D .10a d >10.已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为( ) A .1247[,][,]4334 B .3112[,][,]4343--C .1347[,][,]3434D .3113[,][,]4334--11. 将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( )A .在区间7[,]1212ππ上单调递减B .在区间7[,]1212ππ上单调递增 C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增12. 当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( )A .[5,3]--B .9[6,]8-- C .[6,2]-- D .[4,3]--第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 执行右侧的程序框图,若输入3n =,则输出T = .14.已知x,y满足条件220240330x yx yx y+-≥⎧⎪-+≥⎨⎪--≤⎩,则目标函数34z x y=+的最大值为.15. 已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .16. 对于0c >,当非零实数a ,b 满足22420a ab b c -+-=,且使|2|a b +最大时,124a b c++的最小值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ∙= ,1cos 3B =,3b =,求:(Ⅰ)a 和c 的值; (Ⅱ)cos()B C -的值.18. (本小题满分12分)某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:(Ⅰ)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”; (Ⅱ)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.19. (本小题满分12分)如图,ABC ∆和BCD ∆所在平面互相垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,E 、F 、G分别为AC、DC、AD的中点. (Ⅰ)求证:EF⊥平面BCG;(Ⅱ)求三棱锥D-BCG的体积.附:椎体的体积公式13V Sh=,其中S为底面面积,h为高.20. (本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图).(Ⅰ)求点P 的坐标;(Ⅱ)焦点在x 轴上的椭圆C 过点P ,且与直线:l y x =A ,B 两点,若PAB ∆的面积为2,求C 的标准方程.【考点定位】1、直线方程;2、椭圆的标准方程;3、弦长公式和点到直线的距离公式. 21. (本小题满分12分)已知函数()(cos )2sin 2f x x x x π=---,2()(1xg x x ππ=--.证明:(Ⅰ)存在唯一0(0,)2x π∈,使0()0f x =;(Ⅱ)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的01x x π+>.22. (本小题满分10分)选修4-1:几何证明选讲,连接DG并延长交圆于点A,作如图,EP交圆于E、C两点,PD切圆于D,G为CE上一点且PG PD弦AB垂直EP,垂足为F.(Ⅰ)求证:AB为圆的直径;(Ⅱ)若AC=BD,求证:AB=ED.23. (本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (Ⅰ)写出C 的参数方程;(Ⅱ)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12PP 的中点且与垂直的直线的极坐标方程.24. (本小题满分10分)选修4-5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N.(Ⅰ)求M ;(Ⅱ)当x M N ∈ 时,证明:221()[()]4x f x x f x +≤.。
2014年辽宁高考数学文科卷1. 已知集合,,,则集合A.B.C.D.2. 设复数满足,则A.B.C.D.3.已知,,,则A. B. C. D.4.已知,表示两条不同的直线,表示平面,下列说法正确的是 A.若,,则.B.若,,则. C.若,,则.D.若,,则. 5.设,,是非零向量.已知命题:若,,则.命题:若,,则.则下列命题中真命题是 A.B.C.D.6.将一个质点随机投入如图所示的长方形中,,,则质点落在以为直径的半圆内的概率是A. B. C. D.7.某几何体三视图如图所示,则该几何体的体积为A.B.C.D.8.已知点在抛物线的准线上,记的焦点为,则直线的斜率为主视图左视图俯视图A. B. C. D.9.设等差数列的公差为,若数列为递减数列,则A. B. C. D.10.已知为偶函数,当时,,则不等式的解集为A. B. C. D.11.将函数的图象向右平移个单位长度,所得图象对应的函数A.在区间上单调递减B.在区间上单调递增C.在区间上单调递减D.在区间上单调递增12.当时,不等式恒成立,则实数的取值范围是A. B. C. D.13. 执行下面的程序框图,若输入,则输出________的最大值为15.已知椭圆,点与的焦点不重合. 若关于的焦点的对称点分别为,,线段的中点在上,则________16.对于,当非零实数,满足且使最大时,的最小值为_______17. 在△中,内角的对边分别为,且.已知,,.求输入,,输出(Ⅰ)和的值; (Ⅱ)的值.18.调查结果如下表所示:(Ⅰ)根据表中数据,问是否有的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(Ⅱ)已知在被调查的北方学生中有名数学系的学生,其中名喜欢甜品,现在从这名学生中随机抽取人,求至多有人喜欢甜品的概率.,附:19. 如图,△和△所在平面互相垂直,且,,分别为的中点. (Ⅰ)求证:平面; (Ⅱ)求三棱锥的体积.附:锥体的体积公式,其中为底面面积,为高.20. 圆的切线与轴正半轴,轴正半轴围成一个三角形,当该三角形面积最小时,切点为.(Ⅰ)求点的坐标;(Ⅱ)焦点在轴上的椭圆过点,且与直线交于两点,若△的面积为,求的标准方程.21. 已知函数,.证明:(Ⅰ)存在唯一,使;(Ⅱ)存在唯一,使,且对(Ⅰ)中的,有.22. (选修4-1)如图,交圆于两点,切圆于,为上一点且,连接并延长交圆于点,作弦垂直,垂足为.(Ⅰ)求证:为圆的直径;(Ⅱ)若,求证:.23. (选修4-2)将圆上每一点横坐标保持不变,纵坐标变为原来的倍,得到曲线.(Ⅰ)写出的参数方程;(Ⅱ)设直线与的交点为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,求过线段的中点且与垂直的直线的极坐标方程.24. (选修4-5)设函数,.记的解集为,的解集为.(Ⅰ)求;(Ⅱ)当时,证明:.。
2014年普通高等学校招生全国统一考试(辽宁卷)文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分, 共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C AB =( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x << 2. 设复数z 满足(2)(2)5z i i --=,则z =( )A .23i +B .23i -C .32i +D .32i - 3. 已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >> 4. 已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n α D .若//m α,m n ⊥,则n α⊥5. 设,,a b c 是非零向量,已知命题P :若0=⋅b a ,0=⋅c b ,则0=⋅c a ;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝ 6. 若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( ) A .2π B .4π C .6π D .8π7. 某几何体三视图如图所示,则该几何体的体积为( ) A .84π-B . 82π-C .8π-D . 82π-8. 已知点(2,3)A -在抛物线C :22y px =的准线上,记C 的焦点为F ,则直线AF 的斜率为( ) A .43-B .-1C .34-D .12- 9. 设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( ) A .0d > B .0d < C .10a d > D . 10a d <10. 已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为( )A .1247[,][,]4334B .3112[,][,]4343--C .1347[,][,]3434D .3113[,][,]4334--11. 将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( )A .在区间7[,]1212ππ上单调递减B .在区间7[,]1212ππ上单调递增 C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增12. 当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( )A .[5,3]--B .9[6,]8-- C .[6,2]-- D .[4,3]--第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13. 执行右侧的程序框图,若输入3n =,则输出T = .14. 已知x ,y 满足条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则目标函数34z x y=+的最大值为 .15. 已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .16. 对于0c >,当非零实数a ,b 满足02422=-+-c b ab a ,且使|2|a b +最大时,cb a 421++的最小值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. (本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ∙=,1cos 3B =,3b =,求:(1)a 和c 的值; (2)cos()B C -的值.18. (本小题满分12分)某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率. 附:21212211222112)(++++-=n n n n n n n n n χ,19. (本小题满分12分)如图,ABC ∆和BCD ∆所在平面互相垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,E 、F 、G 分别为AC 、DC 、AD 的中点.(1)求证:EF ⊥平面BCG ; (2)求三棱锥D-BCG 的体积. 附:椎体的体积公式13V Sh=,其中S 为底面面积,h 为高.DC20. (本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图). (1)求点P 的坐标;(2)焦点在x 轴上的椭圆C 过点P ,且与直线:l y x =A ,B 两点,若PAB ∆的面积为2,求C 的标准方程.21. (本小题满分12分)已知函数()(cos )2sin 2f x x x x π=---,2()(1xg x x ππ=--.证明:(1)存在唯一0(0,)2x π∈,使0()0f x =;(2)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的01x x π+<.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22. (本小题满分10分)选修4-1:几何证明选讲 如图,EP 交圆于E 、C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F. (1)求证:AB 为圆的直径;A(2)若AC=BD ,求证:AB=ED.23. (本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12PP 的中点且与l 垂直的直线的极坐标方程.24. (本小题满分10分)选修4-5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N.(1)求M ; (2)当x M N ∈时,证明:221()[()]4x f x x f x +≤.2014高考辽宁卷文科数学参考答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. D A C B A B C C D A B C 1.【解析】).10()∪(∞).C 1[]0∞-(∴∞)1[],0-(R ,,,=+⋃=⋃+=∞=B A B A B A 2.【解析】..3225252-25,5)-2)(2-(A i i i i i z i i z 选)(+=++=+=∴= 3.【解析】.∴).2,1(∈log ),1-2-(∈log ),121(∈2312131231-b a c c b a >>===,, 4.【解析】对A, 平行同一平面的直线不一定平行,所以A 错;对B ,直线垂直平面,则必垂直平面内任意一条直线,所以B 对;同样C,D 均错. 5.【解析】命题p 为假,命题q 为真,所以A 正确. 选A6.【解析】 421121)(2ππ=⨯⋅=A P ,所以选B.7.【解析】几何体为直棱柱,体积π-82)21π-22(2=⨯⨯==sh V ,选C. 8.【解析】.4p 2,2,)3,2-(==pA 得在准线上..43-2-2-3),0,2(,8∴2C k F F x y AF 选从而的坐标为焦点===9. 【解析】由已知得n a a 1递减,所以n n a a a a 111<+,解得.00;0011><<>d a d a 且或且..01D d a 选<∴10.【解析】依题可以画出函数)(x f y =的图象如图,直线21=y 与函数)(x f y =的四个交点横坐标从左到右依次为43,31,31,43--,因此可得,43131≤-≤x 或31143-≤-≤-x ,解得]47,34[]32,41[ ∈x ,选A. 11.【解析】;一个增区间为的周期把]6π-4π,6π-4π-[π,)6π(2sin 3)3π2sin(3=+=+=T x x y.].127π,12π[]6π-4π2π,6π-4π-2π[2πB 选后,增区间为右移=+12.【解析】xt x x f x 10≠.0≥)(0.==时,令当成立时,当 ]1,2-[∈∀x ,0≥)341-()(323x x x a x x f ++=]21,-∞-(∈∀t ,0≤34-),∞,1[∈∀t ,0≥34-∴3232t t t a t t t a +++++且)1-9)(1(981-)(,34-)(232t t t t t g t t t a t g +=++='++=则令.)∞,1[]21,-1-(),-1∞-()(递增上递减,在上递增,在在+'t g.].-2,-6[∈a ∴-6≥-2≤.0≥)1(0≤)-1(∴C a a g g 选且解得,且二、填空题(每题5分,满分20分,将答案填在答题纸上) 13. 20 14. 18 15. 12 16. 1-16.【解析】设2a b t +=,则2b t a =-,代入到22420a ab b c -+-=中,得()()2242220a a t a t a c --+--=,即221260a ta t c -+-=………(*)因为关于a 的二次方程(*)有实根,所以0)(1243622≥-⨯-=∆c t t ,可得c t 42≤,所以当|2|b a +取最大值时,⎪⎩⎪⎨⎧==c b c a 2或⎪⎩⎪⎨⎧-=-=cb c a 2. (1) 当⎪⎩⎪⎨⎧==cb ca 2时,0422421>++=++c c c c b a , (2) 当⎪⎩⎪⎨⎧-=-=cb ca 2时,11)211(44224212-≥--=+--=++c c c c c b a ,当且仅当2,1,4-=-==b a c 时等号成立.综上可知,当2,1,4-=-==b a c 时,cb a 421++的最小值为1-.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.【解析】(1)由2BA BC ∙=得,2cos =B ca ,又1cos 3B =,所以6=ac .又3b =, ac b c a B 2-cos 222+=,得到13cos 2222=+=+B ca b c a ,2,3.2,3∴====>c a c a c a 所以,解得(2)322`cos 1sin 31cos 2=-=∴=B B B ,924sin ,972c -cos ,2,3,3222==+====C ab b a C c b a.2723)-cos(.2723sin sin cos cos )-cos(==+=∴C B C B C B C B 所以,18. 【解析】(1)841.376.4≈3710030702080)1020-1060(100χ22>∙=∙∙∙∙∙=面有差异”方的学生在甜品饮食方的把握认为“南方和北所以,有%95 (2)种;人,共有人中选从1035 1077611611==+p 所以,所求事件的概率种人喜欢甜品的情况有种,所以至多有学生喜欢甜品的情况有个种,只有品的情况有其中,没有学生喜欢甜19. 【解析】(1)︒====120∠∠,DBC ABC BD BC BA 且BCG⊥EF ∴∩BC ⊥EF EF ⊥BC EF⊥BC EFH,⊥BC ∴∩BC ⊥BC,⊥⊥EF ,⊥EF//AD ∴,ΔΔΔ∴面,且,即面,且根据对称性可知,上,且在设即分别是三边的中点,且,中在全等,与C CG CG H EH FH EH FH BC H CGCG DC AC G F E ACD DCAC DBC ABC ====(2)BCG,⊥Δ∴BCG ⊥面上的高底边面面BC ABC ABC21CG -21∴3120sin 22212331CG -3Δ.CD -CG -ΔΔCD -CG -的体积为所以,三棱锥的体积三棱锥上的高底边的高是它的一半即三棱锥B D V S S V V B D BC ABC B G B D BCD BCD B G B D ==︒∙∙∙=∙∙===20.【解析】(1),4,,,2=r n m P r 为点上下两段线段长分别设圆半径三角形面积由射影定理得,2mn r =16)(421442122422+++=++=n m r n m s ,168211682124224++=++≥r r n m r ).2,2(2P s n m 取最大值,这时时,仅当==(2)).,(),(122112222y x B y x A b y a x ,,设椭圆方程为=+122)2,2(22=+b a P 得:椭圆过点.233=+=d x y P 的距离到直线则324221Δ==∙∙=AB AB d S ABP ,解得由题得,由弦长公式得332]4-)[(2]4-))[(1(212212122122=+=++=x x x x x x x x k AB 136)(3,66,30313-6,316-38-48-32,34-∴01-3322,01-33213122.3164-)(22222224224222122122222222222221221=+=====+=∙∙==+=++=+++⎪⎩⎪⎨⎧=++==+=+y x a b a b bb b b b b b x x b x x b x x b x x a x b y ax x y ba P x x x x 所以,椭圆方程为舍,或解得即代入上式得整理得得由代入方程得:把点即21.【解析】(1)04-2π)2π(,02-π-)0(∴2-sin 2-)cos -(π)(2>=<==f f x x x x f 上仅有一个零点,在所以,上单调递增,在上有零点,在)2π0()()2π0()(∴0osx)2-π(sin πosx 2-)sin 1(π)()2π0()(∴x f x f c x c x x f x f >+=+='(2) π),,2π(∈,1-π2sinx 1sinx -1π)-()(x x x x g ++=1-π2sinx 1cosx -π)-()(∴x x x g ++=)2π(0,∈,π2-πsin 1cos -)-π(∴x x x x x x g ++=.h(x)g(x))2π(0,∈,π2-πsin 1cos -h(x)的零点相同与,则设x x x x x ++=π2-sin 1sin 1cos -π2-)sin (1cos )sin 1(sin sin 1cos -(x)h 22x x x x x x x x x x x +++=+++++=')2π(0,∈,)sin 1(π)()sin 1(π)sin 1(2-)cos -π(x x x x f x x x +=++=,上只有一个零点在知,由0)2π(0,)()1(x x f .(x)h ,00左负右正在点即左负右正且在点x x ' π.,),2()(π∴π,-π∴0)-π(,0)h()0(∈,0)(0)2πh(,01)0(h(x)∴101100121212202000>+>++<=+===<=>=x x x x g x x x x x x x x x g x x x x h h x x 且上存在唯一零点在所以,即即,使得,存在唯一故点右侧递增,且点左侧递减,在在ππ22.【解析】(1)PG PD D PD =' .到延长, AG ∠∠∴∠∠∠∴F DB D PD FGA PGD ADP ='==为切线 π∠∠BDA AG ∠∴π∠ADP ∠BDA ∠=++=++'FGA F DB D.,2π∠BDA ∴π2π∠BDA ∴为直径所以AB ==+(2)EC ∠AG ∠AD ∠∴A F B AC BD ===为直径中,在三角形ED EG AF ACE ∴2π∠EAD ⇒2π∠EAG ∴⊥== .,AB ED =所以 23. 【解析】(1).],π∈[0,t sin 2cos 为参数,的参数方程:曲线t t y t x C ⎩⎨⎧== (2)02-θsin 2θcos 2θ)sin 2θ,(cos =+在直线上,则上的点设曲线P C0.3θsin ρ4-cos θ 2ρ,23-4)21-(211-∴).1,21(),2,0(),0,1(.2π0θ.1)4πθsin(2=+====+是所求直线的极坐标方程所以即的中垂线方程是垂直中点所以,,或即解得x y x y AB AB B A24. 【解析】(1).1≤1-|1-|2)(x x x f += .1≤01;34≤≤11≥<<x x x x 时,解得当时,解得当 }.34≤≤0|{].34,0[1≤)(∴x x M x f =所以,的解集为(2)由41816)(2≤+-=x x x g ,解得4341≤≤-x .因此},4341|{≤≤-=x x N 故 }430|{≤≤=x x N M ,于是当N M x ∈时,x x f -=1)(.于是.41)1()()]()[()]([)(22≤-=⋅=+=⋅+x x x f x x f x x xf x f x x f x。
2014年辽宁省高考数学试卷(文科)一、选择题(共12小题,每小题5分)1.(5分)(2014•辽宁)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A ∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}【分析】先求A∪B,再根据补集的定义求C U(A∪B).【解答】解:A∪B={x|x≥1或x≤0},∴C U(A∪B)={x|0<x<1},故选:D.2.(5分)(2014•辽宁)设复数z满足(z﹣2i)(2﹣i)=5,则z=()A.2+3i B.2﹣3i C.3+2i D.3﹣2i【分析】把给出的等式两边同时乘以,然后利用复数代数形式的除法运算化简,则z可求.【解答】解:由(z﹣2i)(2﹣i)=5,得:,∴z=2+3i.故选:A.3.(5分)(2014•辽宁)已知a=,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>b>a D.c>a>b【分析】利用指数式的运算性质得到0<a<1,由对数的运算性质得到b<0,c >1,则答案可求.【解答】解:∵0<a=<20=1,b=log2<log21=0,c=log=log23>log22=1,∴c>a>b.故选:D.4.(5分)(2014•辽宁)已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α【分析】A.运用线面平行的性质,结合线线的位置关系,即可判断;B.运用线面垂直的性质,即可判断;C.运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;D.运用线面平行的性质和线面垂直的判定,即可判断.【解答】解:A.若m∥α,n∥α,则m,n相交或平行或异面,故A错;B.若m⊥α,n⊂α,则m⊥n,故B正确;C.若m⊥α,m⊥n,则n∥α或n⊂α,故C错;D.若m∥α,m⊥n,则n∥α或n⊂α或n⊥α,故D错.故选:B.5.(5分)(2014•辽宁)设,,是非零向量,已知命题p:若•=0,•=0,则•=0;命题q:若∥,∥,则∥,则下列命题中真命题是()A.p∨q B.p∧q C.(¬p)∧(¬q)D.p∨(¬q)【分析】根据向量的有关概念和性质分别判断p,q的真假,利用复合命题之间的关系即可得到结论.【解答】解:若•=0,•=0,则•=•,即(﹣)•=0,则•=0不一定成立,故命题p为假命题,若∥,∥,则∥平行,故命题q为真命题,则p∨q,为真命题,p∧q,(¬p)∧(¬q),p∨(¬q)都为假命题,故选:A.6.(5分)(2014•辽宁)若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()A.B.C.D.【分析】利用几何槪型的概率公式,求出对应的图形的面积,利用面积比即可得到结论.【解答】解:∵AB=2,BC=1,∴长方体的ABCD的面积S=1×2=2,圆的半径r=1,半圆的面积S=,则由几何槪型的概率公式可得质点落在以AB为直径的半圆内的概率是,故选:B.7.(5分)(2014•辽宁)某几何体三视图如图所示,则该几何体的体积为()A.8﹣B.8﹣C.8﹣πD.8﹣2π【分析】几何体是正方体切去两个圆柱,根据三视图判断正方体的棱长及切去的圆柱的底面半径和高,把数据代入正方体与圆柱的体积公式计算.【解答】解:由三视图知:几何体是正方体切去两个圆柱,正方体的棱长为2,切去的圆柱的底面半径为1,高为2,∴几何体的体积V=23﹣2××π×12×2=8﹣π.故选:C.8.(5分)(2014•辽宁)已知点A(﹣2,3)在抛物线C:y2=2px的准线上,记C的焦点为F,则直线AF的斜率为()A.﹣B.﹣1C.﹣D.﹣【分析】利用点A(﹣2,3)在抛物线C:y2=2px的准线上,确定焦点F的坐标,即可求出直线AF的斜率.【解答】解:∵点A(﹣2,3)在抛物线C:y2=2px的准线上,∴﹣=﹣2,∴F(2,0),∴直线AF的斜率为=﹣.故选:C.9.(5分)(2014•辽宁)设等差数列{a n}的公差为d,若数列{2}为递减数列,则()A.d>0B.d<0C.a1d>0D.a1d<0【分析】由数列递减可得<1,由指数函数的性质和等差数列的通项公式化简可得.【解答】解:∵数列{2}为递减数列,∴<1,即<1,∴<1,∴a1(a n+1﹣a n)=a1d<0故选:D.10.(5分)(2014•辽宁)已知f(x)为偶函数,当x≥0时,f(x)=,,,,,则不等式f(x﹣1)≤的解集为()A.[,]∪[,]B.[﹣,﹣]∪[,]C.[,]∪[,]D.[﹣,﹣]∪[,]【分析】先求出当x≥0时,不等式f(x)≤的解,然后利用函数的奇偶性求出整个定义域上f(x)≤的解,即可得到结论.【解答】解:当x∈[0,],由f(x)=,即cosπx=,则πx=,即x=,当x>时,由f(x)=,得2x﹣1=,解得x=,则当x≥0时,不等式f(x)≤的解为≤x≤,(如图)则由f(x)为偶函数,∴当x<0时,不等式f(x)≤的解为﹣≤x≤﹣,即不等式f(x)≤的解为≤x≤或﹣≤x≤﹣,则由≤x﹣1≤或﹣≤x﹣1≤﹣,解得≤x≤或≤x≤,即不等式f(x﹣1)≤的解集为{x|≤x≤或≤x≤},故选:A.11.(5分)(2014•辽宁)将函数的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递增B.在区间[,]上单调递减C.在区间[﹣,]上单调递减D.在区间[﹣,]上单调递增【分析】直接由函数的图象平移得到平移后的图象所对应的函数解析式,然后利用复合函数的单调性的求法求出函数的增区间,取k=0即可得到函数在区间[,]上单调递增,则答案可求.【解答】解:把函数y=3sin(2x+)的图象向右平移个单位长度,得到的图象所对应的函数解析式为:y=3sin[2(x﹣)+].即y=3sin(2x﹣).当函数递增时,由,得,.取k=0,得.∴所得图象对应的函数在区间[,]上单调递增.故选:A.12.(5分)(2014•辽宁)当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是()A.[﹣5,﹣3]B.[﹣6,﹣]C.[﹣6,﹣2]D.[﹣4,﹣3]【分析】分x=0,0<x≤1,﹣2≤x<0三种情况进行讨论,分离出参数a后转化为函数求最值即可,利用导数即可求得函数最值,注意最后要对a取交集.【解答】解:当x=0时,不等式ax3﹣x2+4x+3≥0对任意a∈R恒成立;当0<x≤1时,ax3﹣x2+4x+3≥0可化为a≥,令f(x)=,则f′(x)==﹣(*),当0<x≤1时,f′(x)>0,f(x)在(0,1]上单调递增,f(x)max=f(1)=﹣6,∴a≥﹣6;当﹣2≤x<0时,ax3﹣x2+4x+3≥0可化为a≤,由(*)式可知,当﹣2≤x<﹣1时,f′(x)<0,f(x)单调递减,当﹣1<x<0时,f′(x)>0,f(x)单调递增,f(x)min=f(﹣1)=﹣2,∴a≤﹣2;综上所述,实数a的取值范围是﹣6≤a≤﹣2,即实数a的取值范围是[﹣6,﹣2].故选:C.二、填空题(共4小题,每小题5分)13.(5分)(2014•辽宁)执行如图的程序框图,若输入n=3,则输出T=20.【分析】算法的功能是求T=1+(1+2)+(1+2+3)+…+(1+2+3+…+i)的值,根据条件确定跳出循环的i值,计算输出的T值.【解答】解:由程序框图知:算法的功能是求T=1+(1+2)+(1+2+3)+...+(1+2+3+ (i)的值,当输入n=3时,跳出循环的i值为4,∴输出T=1+3+6++10=20.故答案为:20.14.(5分)(2014•辽宁)已知x,y满足约束条件,则目标函数z=3x+4y的最大值为18.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得,∴C(2,3).化目标函数z=3x+4y为直线方程的斜截式,得:.由图可知,当直线过点C时,直线在y轴上的截距最大,即z最大.∴z max=3×2+4×3=18.故答案为:18.15.(5分)(2014•辽宁)已知椭圆C:+=1,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A、B,线段MN的中点在C上,则|AN|+|BN|= 12.【分析】画出图形,利用中点坐标以及椭圆的定义,即可求出|AN|+|BN|的值.【解答】解:如图:MN的中点为Q,易得,,∵Q在椭圆C上,∴|QF1|+|QF2|=2a=6,∴|AN|+|BN|=12.故答案为:12.16.(5分)(2014•辽宁)对于c>0,当非零实数a,b满足4a2﹣2ab+b2﹣c=0且使|2a+b|最大时,++的最小值为﹣1.【分析】首先把:4a2﹣2ab+b2﹣c=0,转化为=,再由柯西不等式得到|2a+b|2,分别用b表示a,c,在代入到++得到关于b的二次函数,求出最小值即可.【解答】解:∵4a2﹣2ab+b2﹣c=0,∴=由柯西不等式得,[][]≥[2(a﹣)+×2]2=|2a+b|2故当|2a+b|最大时,有∴,c=b2∴++==当b=﹣2时,取得最小值为﹣1.故答案为:﹣1三、解答题17.(12分)(2014•辽宁)在△ABC中,内角A、B、C的对边分别为a,b,c,且a>c,已知•=2,cosB=,b=3,求:(Ⅰ)a和c的值;(Ⅱ)cos(B﹣C)的值.【分析】(Ⅰ)利用平面向量的数量积运算法则化简•=2,将cosB的值代入求出ac=6,再利用余弦定理列出关系式,将b,cosB以及ac的值代入得到a2+c2=13,联立即可求出ac的值;(Ⅱ)由cosB的值,利用同角三角函数间基本关系求出sinB的值,由c,b,sinB,利用正弦定理求出sinC的值,进而求出cosC的值,原式利用两角和与差的余弦函数公式化简后,将各自的值代入计算即可求出值.【解答】解:(Ⅰ)∵•=2,cosB=,∴c•acosB=2,即ac=6①,∵b=3,∴由余弦定理得:b2=a2+c2﹣2accosB,即9=a2+c2﹣4,∴a2+c2=13②,联立①②得:a=3,c=2;(Ⅱ)在△ABC中,sinB===,由正弦定理=得:sinC=sinB=×=,∵a=b>c,∴C为锐角,∴cosC===,则cos(B﹣C)=cosBcosC+sinBsinC=×+×=.18.(12分)(2014•辽宁)某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如表所示:(Ⅰ)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(Ⅱ)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.附:X2=【分析】(Ⅰ)根据表中数据,利用公式,即可得出结论;(Ⅱ)利用古典概型概率公式,即可求解.【解答】解:(Ⅰ)由题意,X2=≈4.762>3.841,∴有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(Ⅱ)从这5名学生中随机抽取3人,共有=10种情况,有2名喜欢甜品,有=3种情况,∴至多有1人喜欢甜品的概率.19.(12分)(2014•辽宁)如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E、F、G分别为AC、DC、AD的中点.(Ⅰ)求证:EF⊥平面BCG;(Ⅱ)求三棱锥D﹣BCG的体积.附:锥体的体积公式V=Sh,其中S为底面面积,h为高.【分析】(Ⅰ)先证明AD⊥平面BGC,利用EF∥AD,可得EF⊥平面BCG;(Ⅱ)在平面ABC内,作AO⊥CB,交CB的延长线于O,G到平面BCD的距离h=V G﹣BCD=,即可求三棱锥D﹣BCG的是AO长度的一半,利用V D﹣BCG体积.【解答】(Ⅰ)证明:∵AB=BC=BD=2.∠ABC=∠DBC=120°,∴△ABC≌△DBC,∴AC=DC,∵G为AD的中点,∴CG⊥AD.同理BG⊥AD,∵CG∩BG=G,∴AD⊥平面BGC,∵EF∥AD,∴EF⊥平面BCG;(Ⅱ)解:在平面ABC内,作AO⊥CB,交CB的延长线于O,∵△ABC和△BCD所在平面互相垂直,∴AO⊥平面BCD,∵G为AD的中点,∴G到平面BCD的距离h是AO长度的一半.在△AOB中,AO=ABsin60°=,∴V D=V G﹣BCD==×=.﹣BCG20.(12分)(2014•辽宁)圆x2+y2=4的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图).(Ⅰ)求点P的坐标;(Ⅱ)焦点在x轴上的椭圆C过点P,且与直线l:y=x+交于A、B两点,若△PAB的面积为2,求C的标准方程.【分析】(Ⅰ)设切点P的坐标为(x0,y0),求得圆的切线方程,根据切线与x 轴正半轴,y轴正半轴围成的三角形的面积S=.再利用基本不等式求得S取得最小值,求得点P的坐标.(Ⅱ)设椭圆的标准方程为+=1,a>b>0,则+=1.把直线方程和椭圆的方程联立方程组,转化为关于x的一元二次方程,利用韦达定理、弦长公式求出弦长AB以及点P到直线的距离d,再由△PAB的面积为S=•AB•d=2,求出a2、b2的值,从而得到所求椭圆的方程.【解答】解:(Ⅰ)设切点P的坐标为(x0,y0),且x0>0,y0>0.则切线的斜率为﹣,故切线方程为y﹣y0=﹣(x﹣x0),即x0x+y0y=4.此时,切线与x轴正半轴,y轴正半轴围成的三角形的面积S=••=.再根据+=4≥2x0•y0,可得当且仅当x0=y0=时,x0•y0取得最大值为2,即S取得最小值为=4,故此时,点P的坐标为(,).(Ⅱ)设椭圆的标准方程为+=1,a>b>0,∵椭圆C过点P,∴+=1.由求得b2x2+4x+6﹣2b2=0,∴x1+x2=﹣,x1•x2=.由y1=x1+,y2=x2+,可得AB=|x2﹣x1|=•=•=.由于点P(,)到直线l:y=x+的距离d=,△PAB的面积为S=•AB•d=2,可得b4﹣9b2+18=0,解得b2=3,或b2=6,当b2=6 时,由+=1求得a2=3,不满足题意;当b2=3时,由+=1求得a2=6,满足题意,故所求的椭圆的标准方程为+=1.21.(12分)(2014•辽宁)已知函数f(x)=π(x﹣cosx)﹣2sinx﹣2,g(x)=(x﹣π)+﹣1.证明:(Ⅰ)存在唯一x0∈(0,),使f(x0)=0;(Ⅱ)存在唯一x1∈(,π),使g(x1)=0,且对(Ⅰ)中的x0,有x0+x1>π.【分析】(Ⅰ)导数法可判f(x)在(0,)上为增函数,又可判函数有零点,故必唯一;(Ⅱ)化简可得g(x)=(π﹣x)+﹣1,换元法,令t=π﹣x,记u(t)=g(π﹣t)=﹣﹣t+1,t∈[0,],由导数法可得函数的零点,可得不等式.【解答】解:(Ⅰ)当x∈(0,)时,f′(x)=π+πsinx﹣2cosx>0,∴f(x)在(0,)上为增函数,又f(0)=﹣π﹣2<0,f()=﹣4>0,∴存在唯一x0∈(0,),使f(x0)=0;(Ⅱ)当x∈[,π]时,化简可得g(x)=(x﹣π)+﹣1=(π﹣x)+﹣1,令t=π﹣x,记u(t)=g(π﹣t)=﹣﹣t+1,t∈[0,],求导数可得u′(t)=,由(Ⅰ)得,当t∈(0,x0)时,u′(t)<0,当t∈(x0,)时,u′(t)>0,∴函数u(t)在(x0,)上为增函数,由u()=0知,当t∈[x0,)时,u(t)<0,∴函数u(t)在[x0,)上无零点;函数u(t)在(0,x0)上为减函数,由u(0)=1及u(x0)<0知存在唯一t0∈(0,x0),使u(t0)=0,于是存在唯一t0∈(0,),使u(t0)=0,设x1=π﹣t0∈(,π),则g(x1)=g(π﹣t0)=u(t0)=0,∴存在唯一x1∈(,π),使g(x1)=0,∵x1=π﹣t0,t0<x0,∴x0+x1>π四、选考题,请考生在22-24三题中任选一题作答,多做则按所做的第一题给分选修4-1:几何证明选讲22.(10分)(2014•辽宁)如图,EP交圆于E,C两点,PD切圆于D,G为CE 上一点且PG=PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.(Ⅰ)求证:AB为圆的直径;(Ⅱ)若AC=BD,求证:AB=ED.【分析】(Ⅰ)证明AB为圆的直径,只需证明∠BDA=90°;(Ⅱ)证明Rt△BDA≌Rt△ACB,再证明∠DCE为直角,即可证明AB=ED.【解答】证明:(Ⅰ)∵PG=PD,∴∠PDG=∠PGD,∵PD为切线,∴∠PDA=∠DBA,∵∠PGD=∠EGA,∴∠DBA=∠EGA,∴∠DBA+∠BAD=∠EGA+∠BAD,∴∠BDA=∠PFA,∵AF⊥EP,∴∠PFA=90°.∴∠BDA=90°,∴AB为圆的直径;(Ⅱ)连接BC,DC,则∵AB为圆的直径,∴∠BDA=∠ACB=90°,在Rt△BDA与Rt△ACB中,AB=BA,AC=BD,∴Rt△BDA≌Rt△ACB,∴∠DAB=∠CBA,∵∠DCB=∠DAB,∴∠DCB=∠CBA,∴DC∥AB,∵AB⊥EP,∴DC⊥EP,∴∠DCE为直角,∴ED为圆的直径,∵AB为圆的直径,∴AB=ED.选修4-4:坐标系与参数方程23.(2014•辽宁)将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(Ⅰ)写出C的参数方程;(Ⅱ)设直线l:2x+y﹣2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.【分析】(Ⅰ)在曲线C上任意取一点(x,y),再根据点(x,)在圆x2+y2=1上,求出C的方程,化为参数方程.(Ⅱ)解方程组求得P1、P2的坐标,可得线段P1P2的中点坐标.再根据与l垂直的直线的斜率为,用点斜式求得所求的直线的方程,再根据x=ρcosα、y=ρsinα 可得所求的直线的极坐标方程.【解答】解:(Ⅰ)在曲线C上任意取一点(x,y),由题意可得点(x,)在圆x2+y2=1上,∴x2+=1,即曲线C的方程为x2+=1,化为参数方程为(0≤θ<2π,θ为参数).(Ⅱ)由,可得,,不妨设P1(1,0)、P2(0,2),则线段P1P2的中点坐标为(,1),再根据与l垂直的直线的斜率为,故所求的直线的方程为y﹣1=(x﹣),即x ﹣2y+=0.再根据x=ρcosα、y=ρsinα 可得所求的直线的极坐标方程为ρcosα﹣2ρsinα+=0,即ρ=.选修4-5:不等式选讲24.(2014•辽宁)设函数f(x)=2|x﹣1|+x﹣1,g(x)=16x2﹣8x+1.记f(x)≤1的解集为M,g(x)≤4的解集为N.(Ⅰ)求M;(Ⅱ)当x∈M∩N时,证明:x2f(x)+x[f(x)]2≤.<②,分别求得【分析】(Ⅰ)由所给的不等式可得①,或①、②的解集,再取并集,即得所求.(Ⅱ)由g(x)≤4,求得N,可得M∩N=[0,].当x∈M∩N时,f(x)=1﹣x,不等式的左边化为﹣,显然它小于或等于,要证的不等式得证.<②.【解答】解:(Ⅰ)由f(x)=2|x﹣1|+x﹣1≤1 可得①,或解①求得1≤x≤,解②求得0≤x<1.综上,原不等式的解集为[0,].(Ⅱ)证明:由g(x)=16x2﹣8x+1≤4,求得﹣≤x≤,∴N=[﹣,],∴M∩N=[0,].∵当x∈M∩N时,f(x)=1﹣x,∴x2f(x)+x[f(x)]2 =xf(x)[x+f(x)]=﹣≤,故要证的不等式成立.。
数学试卷 第1页(共18页)数学试卷 第2页(共18页)数学试卷 第3页(共18页)绝密★启用前2014年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,{|0}A x x =≤,{|}B x x =≥1,则集合()U A B =ð( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x << 2.设复数z 满足(2i)(2i)5z --=,则z =( )A .23i +B .23i -C .32i +D .32i - 3.已知132a -=,21log 3b =,121log 3c =,则( )A .b a c >>B .a c b >>C .c b a >>D .c a b >>4.已知m ,n 表示两条不同直线,α表示平面.下列说法正确的是( )A .若m α∥,n α∥,则m n ∥B .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则n α∥D .若m α∥,m n ⊥,则n α⊥5.设a ,b ,c 是非零向量.已知命题p :若a b 0=,b c 0=,则a c 0=; 命题q :若a ∥b ,b ∥c ,则a ∥c .则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝6.若将一个质点随机投入如图所示的长方形ABCD 中,其中2AB =,1BC =,则质点落在以AB 为直径的半圆内的概率是( )A .π2B .π4C .π6D .π87.某几何体三视图如图所示,则该几何体的体积为( )A .π84-B .π82-C .8π-D .82π-8.已知点(2,3)A -在抛物线C :22y px =的准线上,记C的焦点为F ,则直线AF 的斜率为( )A .43-B .1-C .34-D .12-9.设等差数列{}n a 的公差为d .若数列1{2}n aa 为递减数列,则( )A .0d >B .0d <C .10a d >D .10a d <10.已知()f x 为偶函数,当0x ≥时,1cos π,[0,],2()121,(,),2x x f x x x ⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩则不等式1(1)2f x -≤的解集为( ) A .1247[,][,]4334B .3112[,][,]4343--C .1347[,][,]3434D .3113[,][,]4334--11.将函数π3sin(2)3y x =+的图象向右平移π2个单位长度,所得图象对应的函数( ) A .在区间π7π[,]1212上单调递减 B .在区间π7π[,]1212上单调递增C .在区间ππ[,]63-上单调递减D .在区间ππ[,]63-上单调递增12.当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是 ( )A .[5,3]--B .9[6,]8--C .[6,2]--D .[4,3]--第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分,共20分. 13.执行右侧的程序框图,若输入3n =,则输出T =________. 14.已知x ,y 满足约束条件220240330x y x y x y +-⎧⎪-+⎨⎪--⎩≥≥≤ 则目标函数34z x y =+的最大值为________.15.已知椭圆C :22194x y +=,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN +=________.16.对于0c >,当非零实数a ,b 满足22420a ab b c -+-=且使|2|a b +最大时,124a b c++的最小值为________. --------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共18页)数学试卷 第5页(共18页) 数学试卷 第6页(共18页)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,且a c >.已知2BA BC =,1cos 3B =,3b =.求:(Ⅰ)a 和c 的值; (Ⅱ)cos()B C -的值.18.(本小题满分12分)某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查(Ⅰ)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(Ⅱ)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.19.(本小题满分12分)如图,ABC △和BCD △所在平面互相垂直,且2AB BC BD ===,120ABC DBC ∠=∠=,E ,F ,G 分别为AC ,DC ,AD 的中点.(Ⅰ)求证:EF ⊥平面BCG ; (Ⅱ)求三棱锥D BCG -的体积.附:锥体的体积公式13V Sh =,其中S 为底面面积,h 为高.20.(本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图). (Ⅰ)求点P 的坐标;(Ⅱ)焦点在x 轴上的椭圆C 过点P ,且与直线l : y x =+交于A ,B 两点.若PAB △的面积为2,求C 的标准方程.21.(本小题满分12分)已知函数()π(cos )2sin 2f x x x x =---,2()(π1πxg x x =--.证明:(Ⅰ)存在唯一0π(0,)2x ∈,使0()0f x =;(Ⅱ)存在唯一1π(,π)2x ∈,使1()0g x =,且对(Ⅰ)中的0x ,有01πx x +>.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,EP 交圆于E ,C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F . (Ⅰ)求证:AB 为圆的直径;(Ⅱ)若AC BD =,求证:AB ED =.23.(本小题满分10分)选修4—4:坐标系与参考方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(Ⅰ)写出C 的参数方程;(Ⅱ)设直线l :220x y +-=与C 的交点为1P ,2P ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段12P P 的中点且与l 垂直的直线的极坐标方程.24.(本小题满分10分)选修4—5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+.记()1f x ≤的解集为M ,()4g x ≤的解集为N .(Ⅰ)求M; (Ⅱ)当x M N ∈时,证明:221()[()]4x f x x f x +≤.附:22112212211212()+n n n n n n n n n χ++-=+,数学试卷 第7页(共18页)数学试卷 第8页(共18页)2014年普通高等学校招生全国统一考试(辽宁卷)数学(供文科考生使用)答案解析{|AB x x =){|0AB x =【提示】先求AB ,再根据补集的定义求()AB U ð.【考点】交、并、补集的混合运算【解析】(2i)(2z -【提示】把给出的等式两边同时乘以质,即可判断;C 运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;D 运用线面平行的性质和线面垂直的判定,即可判断.A【解析】若0a b =,0b c =,则a b b c =,即()0a c b -=,则0a c =不一定成立,故命题为假命题.若a b ∥,b c ∥,则a c ∥,故命题q 为真命题.则p q ∨,为真命题,p q ∧,【提示】根据向量的有关概念和性质分别判断【解析】等差数列数学试卷 第10页(共18页)数学试卷 第11页(共18页)数学试卷 第12页(共18页)(123i)++++++的(123i)++++++的值,根据条件44,Q 在椭圆12||||26QF QF a ∴+==,||||12AN BN ∴+=.【解析】242a ab -23232b ⎛⎫⎤=⎥⎦(Ⅰ)由2BA BC =得cos ac B .所以22a c +=2sin c Bb ⨯=27=. 【提示】(Ⅰ)利用平面向量的数量积运算法则化简2BA BC =,将cos 3B =代入求出6ac =,再利用余弦定理列出关系式,将b ,cos B 以及ac 的值代入得到2213a c +=,联数学试卷 第13页(共18页)数学试卷 第14页(共18页)数学试卷 第15页(共18页)(Ⅰ)AB BC =G 为AD 的中点,CG ∴⊥AD .CGBG G =,EF AD ∥EF ∴⊥平面(Ⅱ)在平面,∆.G 6B =11sin1203322BD BC ︒=000014482x y x y =P 的坐标为(2122d AB =,解得()(21k ⎡=+⎣2232b b -,代入上式得2231683b b -=6=,2a =,所以椭圆方程为:00轴正半轴围成的三角形的面积008S x y =.再利用基本不等式求得S 取得最小值,求得点P 的122d AB =,求出(Ⅰ)()πf x =0,π2f ⎛⎫ ⎪⎝⎭上有零点.()πf x '=上单调递增.(Ⅱ)()(g x =cos (π)1sin x x x -=-++cos 1sin x x ++cos )1sin x x -++由导数法可得函数的零点,可得不等式(Ⅰ)PD PG PDG PGD PD =∴∠=∠为切线,PDA ∴∠PGD EGA DBA EGA DBA BAD EGA BAD ∠=∠∴∠=∠∴∠+∠=∠+∠,NDA PFA ∴∠=∠.9090AF EP PFA BDA AB ⊥∴∠=︒∴∠=︒∴为圆的直径.(Ⅱ)连接BC ,DC .数学试卷 第16页(共18页) 数学试卷 第17页(共18页) 数学试卷 第18页(共18页)90AB BDA ACB ∴∠=∠=︒是直径,在Rt BDA △与Rt ACB △中,AB BA AC BD ==,,Rt BDA Rt ACB ∴△≌△,DAB CBA DCB DAB ∴∠=∠∠=∠,DCB CBA ∴∠=∠,DC AB ∴∥.AB EP DC EP DCE ⊥∴⊥∠,为直角,∴ED 为圆的直径,AB 为圆的直径,AB ED ∴=.(Ⅱ)由214220x x y ⎧+=⎪⎨⎪+-=⎩,可得10x y =⎧⎨=⎩,02x y =⎧⎨=⎩,不妨设1(1,0)P 、2(0,2)P ,则线段12P P 的中点坐标为1,12⎛⎫⎪⎝⎭,再根据与l 垂直的直线的斜率为12, 故所求的直线的方程为111y x ⎛⎫-=- ⎪,即3220x y -+=.【提示】(Ⅰ)在曲线C 上任意取一点(,)x y ,再根据点,2y x ⎛⎫⎪⎝⎭在圆22111x y+=上,求出C的方程,化为参数方程.(Ⅱ)解方程组求得1P 、2P 的坐标,可得线段12P P 的中点坐标.再根据与l 垂直的直线的斜(Ⅱ)由2()16814g x x x =-+≤,求得1344x -≤≤,13,44N ⎡⎤∴=-⎢⎥⎣⎦,M N ∴=30,4⎡⎤⎢⎥⎣⎦.当x MN ∈时,()1f x x =-,22()[()]()[x ()]x f x x f x xf x f x +=+2111424x ⎛⎫=--≤ ⎪⎝⎭,故要证的不等式成立.【提示】(Ⅰ)由所给的不等式可得1331x x ≥⎧⎨-≤⎩①,或111x x <⎧⎨-≤⎩②,分别求得①、②的解集,N =30,4⎡⎢⎣N 时,f ,显然它小于或等于14,要证的不等式得证.。
数学试卷 第1页(共21页)数学试卷 第2页(共21页)数学试卷 第3页(共21页)绝密★启用前2014年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集U =R ,{|0}A x x =≤,{|}B x x =≥1,则集合()UAB =ð( ) A .{|0}x x ≥ B .{|1}x x ≤ C .{|01}x x ≤≤ D .{|01}x x <<2.设复数z 满足(2i)(2i)5z --=,则z =( ) A .23i +B .23i -C .32i +D .32i - 3.已知132a -=,21log 3b =,121log 3c =,则( ) A .b a c >>B .a c b >>C .c b a >>D .c a b >>4.已知m ,n 表示两条不同直线,α表示平面.下列说法正确的是( )A .若m α∥,n α∥,则m n ∥B .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则n α∥D .若m α∥,m n ⊥,则n α⊥5.设a ,b ,c 是非零向量.已知命题p :若a b 0=,b c 0=,则a c 0=; 命题q :若a ∥b ,b ∥c ,则a ∥c .则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝6.若将一个质点随机投入如图所示的长方形ABCD 中,其中2AB =,1BC =,则质点落在以AB 为直径的半圆内的概率是( )A .π2B .π4C .π6D .π87.某几何体三视图如图所示,则该几何体的体积为( )A .π84-B .π82-C .8π-D .82π-8.已知点(2,3)A -在抛物线C :22ypx =的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .43-B .1-C .34-D .12-9.设等差数列{}n a 的公差为d .若数列1{2}na a 为递减数列,则( )A .0d >B .0d <C .10a d >D .10a d <10.已知()f x 为偶函数,当0x ≥时,1cos π,[0,],2()121,(,),2x x f x x x ⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩则不等式1(1)2f x -≤的解集为( )A .1247[,][,]4334B .3112[,][,]4343--C .1347[,][,]3434D .3113[,][,]4334--11.将函数π3sin(2)3y x =+的图象向右平移π2个单位长度,所得图象对应的函数( )A .在区间π7π[,]1212上单调递减B .在区间π7π[,]1212上单调递增C .在区间ππ[,]63-上单调递减D .在区间ππ[,]63-上单调递增12.当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是 ( ) A .[5,3]--B .9[6,]8--C .[6,2]--D .[4,3]--第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分,共20分.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共21页)数学试卷 第5页(共21页)数学试卷 第6页(共21页)13.执行右侧的程序框图,若输入3n =,则输出T =________. 14.已知x ,y 满足约束条件220240330x y x y x y +-⎧⎪-+⎨⎪--⎩≥≥≤ 则目标函数34z x y =+的最大值为________.15.已知椭圆C :22194x y +=,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN +=________.16.对于0c >,当非零实数a ,b 满足22420a ab b c -+-=且使|2|a b +最大时,124a bc++的最小值为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,且a c >.已知2BA BC =,1cos 3B =,3b =.求:(Ⅰ)a 和c 的值; (Ⅱ)cos()B C -的值.18.(本小题满分12分)某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进(Ⅰ)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(Ⅱ)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.19.(本小题满分12分)如图,ABC △和BCD △所在平面互相垂直,且2AB BC BD ===,120ABC DBC ∠=∠=,E ,F ,G 分别为AC ,DC ,AD 的中点.(Ⅰ)求证:EF ⊥平面BCG ; (Ⅱ)求三棱锥D BCG -的体积.附:锥体的体积公式13V Sh =,其中S 为底面面积,h 为高.20.(本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图). (Ⅰ)求点P 的坐标;(Ⅱ)焦点在x 轴上的椭圆C 过点P ,且与直线l :y x =+交于A ,B 两点.若PAB △的面积为2,求C 的标准方程.21.(本小题满分12分)已知函数()π(cos )2sin 2f x x x x =---,2()(π1πxg x x =--. 证明:(Ⅰ)存在唯一0π(0,)2x ∈,使0()0f x =; (Ⅱ)存在唯一1π(,π)2x ∈,使1()0gx =,且对(Ⅰ)中的0x ,有01πx x +>.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目对应题附:22112212211212()+n n n n n n n n n χ++-=+,数学试卷 第7页(共21页)数学试卷 第8页(共21页)数学试卷 第9页(共21页)号下方的方框涂黑.22.(本小题满分10分)选修4—1:几何证明选讲如图,EP 交圆于E ,C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F . (Ⅰ)求证:AB 为圆的直径; (Ⅱ)若AC BD =,求证:AB ED =.23.(本小题满分10分)选修4—4:坐标系与参考方程 将圆221xy +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(Ⅰ)写出C 的参数方程;(Ⅱ)设直线l :220x y +-=与C 的交点为1P ,2P ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段12P P 的中点且与l 垂直的直线的极坐标方程.24.(本小题满分10分)选修4—5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+.记()1f x ≤的解集为M ,()4g x ≤的解集为N .(Ⅰ)求M ; (Ⅱ)当x M N ∈时,证明:221()[()]4x f x x f x +≤.2014年普通高等学校招生全国统一考试(辽宁卷){|AB x x =){|0AB x =【提示】先求A B ,再根据补集的定义求)AB ð.【考点】交、并、补集的混合运算【解析】(2i)(2z -【提示】把给出的等式两边同时乘以B 运用线面垂直的性质,即可判断;C 运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;D 运用线面平行的性质和线面垂直的判定,即可判断.【考点】空间中直线与直线之间的位置关系A【解析】若0a b =,0b c =,则a b b c =,即()0a c b -=,则0a c =不一定成立,故命题p 为假命题.若a b ∥,b c ∥,则a c ∥,故命题q 为真命题.则p q ∨,命题,故选A.的真假,利用复合命题之间的关系即可得到结论.数学试卷 第10页(共21页)数学试卷 第11页(共21页)数学试卷 第12页(共21页)【解析】等差数列(123)++++++的值,当输入(123i)++++++的值,距最大,即最大.max .,Q数学试卷 第13页(共21页)数学试卷 第14页(共21页)数学试卷 第15页(共21页)【解析】242a ab -不等式得,23232b ⎤⎛⎫⎤=⎥⎦(Ⅰ)由2B A B C =得2cos ac B .2c =232+2sin c B b ⨯=C 1⎛=- 2BA BC =1cos 3B =代入求出6ac =,再利用余弦定理列出关系式,将b ,cos B 以及ac 的值代入得到22(Ⅱ)利用古典概型概率公式,即可求解.【考点】独立性检验的应用,古典概型及其概率计算公式Ⅰ)AB BC =G 为AD 的中点,CG ∴.CG BG G =,BGC .EF AD ∥EF ∴⊥平面BCG (Ⅱ)在平面,∆.G 6B=11sin1203322BD BC ︒=00014482x y x y =再根据2200x y +=数学试卷 第16页(共21页)数学试卷 第17页(共21页)数学试卷 第18页(共21页)122d AB =,解得()221k ⎡=+⎣2232b b -,代入上式得2231683b b -= 或26b =,所以椭圆方程为:P 00(,)x y 切线与x 轴正半轴,y 轴正半轴围成的三角形的面积008S x y =.再利用基122d AB =,求出【考点】直线与圆锥曲线的综合问题(Ⅰ)()πf x =.()πf x '=上单调递增.(Ⅱ)()(g x =cos (π)1sin x x x --++cos 1sin x x ++cos )1sin x x -++由导数法可得函数的零点,可得不等式【考点】函数零点的判定定理 )PD PG PDG PGD PD=∴∠=∠为切线,PDA DBA ∴∠=∠,PGD EGA DBA EGA DBA BAD EGA BAD ∠=∠∴∠=∠∴∠+∠=∠+∠,NDA PFA ∴∠=∠.9090AF EP PFA BDA AB ⊥∴∠=︒∴∠=︒∴为圆的直径.(Ⅱ)连接BC ,DC .90AB BDA ACB ∴∠=∠=︒是直径,在Rt BDA △与Rt ACB △中,AB BA AC BD ==,, Rt BDA Rt ACB ∴△≌△,DAB CBA DCB DAB ∴∠=∠∠=∠,DCB CBA ∴∠=∠,DC AB ∴∥.AB EP DC EP DCE ⊥∴⊥∠,为直角,∴ED 为圆的直径,AB 为圆的直径,AB ED ∴=.(Ⅱ)由214220x x y ⎧+=⎪⎨⎪+-=⎩,可得10x y =⎧⎨=⎩,02x y =⎧⎨=⎩,不妨设1(1,0)P 、2(0,2)P , 则线段12P P 的中点坐标为1,12⎛⎫ ⎪⎝⎭,再根据与l 垂直的直线的斜率为12, 故所求的直线的方程为111y x ⎛⎫-=- ⎪,即3220x y -+=.数学试卷 第19页(共21页) 数学试卷 第20页(共21页) 数学试卷 第21页(共21页)【提示】(Ⅰ)在曲线C 上任意取一点(,)x y ,再根据点,2y x ⎛⎫⎪⎝⎭在圆221x y +=上,求出C 的方程,化为参数方程.(Ⅱ)由2()16814g x x x =-+≤,求得1344x -≤≤,,44N ⎡⎤∴=-⎢⎥⎣⎦,M N ∴=30,4⎡⎤⎢⎥⎣⎦. 当x MN ∈时,()1f x x =-,22()[()]()[x ()]x f x x f x xf x f x +=+2111424x ⎛⎫=--≤ ⎪⎝⎭,故要证的不等式成立.【提示】(Ⅰ)由所给的不等式可得1331x x ≥⎧⎨-≤⎩①,或111x x <⎧⎨-≤⎩②,分别求得①、②的解集,再取并集,即得所求.N =30,4⎡⎢⎣MN 时,f ,显然它小于或等于14,要证的不等式。
2014年辽宁省高考数学试卷(文科)一、选择题(共12小题,每小题5分)1.(5分)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}2.(5分)设复数z满足(z﹣2i)(2﹣i)=5,则z=()A.2+3i B.2﹣3i C.3+2i D.3﹣2i3.(5分)已知a=,b=log 2,c=log,则()A.a>b>c B.a>c>b C.c>b>a D.c>a>b4.(5分)已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α5.(5分)设,,是非零向量,已知命题p :若•=0,•=0,则•=0;命题q :若∥,∥,则∥,则下列命题中真命题是()A.p∨q B.p∧q C.(¬p)∧(¬q)D.p∨(¬q)6.(5分)若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()1A .B .C .D .7.(5分)某几何体三视图如图所示,则该几何体的体积为()A.8﹣B.8﹣C.8﹣πD.8﹣2π8.(5分)已知点A(﹣2,3)在抛物线C:y2=2px的准线上,记C的焦点为F,则直线AF的斜率为()A .﹣ B.﹣1 C .﹣ D .﹣9.(5分)设等差数列{a n}的公差为d,若数列{2}为递减数列,则()A.d>0 B.d<0 C.a1d>0 D.a1d<010.(5分)已知f(x)为偶函数,当x≥0时,f(x)=,2则不等式f(x﹣1)≤的解集为()A.[,]∪[,]B.[﹣,﹣]∪[,]C.[,]∪[,]D.[﹣,﹣]∪[,]11.(5分)将函数的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递增B.在区间[,]上单调递减C.在区间[﹣,]上单调递减D.在区间[﹣,]上单调递增12.(5分)当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是()A.[﹣5,﹣3]B.[﹣6,﹣] C.[﹣6,﹣2]D.[﹣4,﹣3]二、填空题(共4小题,每小题5分)13.(5分)执行如图的程序框图,若输入n=3,则输出T=.314.(5分)已知x,y 满足约束条件,则目标函数z=3x+4y的最大值为.15.(5分)已知椭圆C:+=1,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A、B,线段MN的中点在C上,则|AN|+|BN|=.16.(5分)对于c>0,当非零实数a,b满足4a2﹣2ab+b2﹣c=0且使|2a+b|最大时,++的最小值为.三、解答题417.(12分)在△ABC中,内角A、B、C的对边分别为a,b,c,且a>c ,已知•=2,cosB=,b=3,求:(Ⅰ)a和c的值;(Ⅱ)cos(B﹣C)的值.18.(12分)某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如表所示:喜欢甜品不喜欢甜品合计南方学生602080北方学生101020合计7030100(Ⅰ)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(Ⅱ)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.附:X2=P(x2>k)0.1000.0500.010k 2.706 3.841 6.63519.(12分)如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E、F、G分别为AC、DC、AD的中点.5。
2014年辽宁省高考数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分)把给出的等式两边同时乘以3.(5分)(2014•辽宁)已知a=,b=log2,c=log,则()2<c=log5.(5分)(2014•辽宁)设,,是非零向量,已知命题p:若•=0,•=0,则•=0;命题q:若∥,∥,则∥,则下列命题中真命题是()•=0•=0,则••,即()=0,则•∥,∥,则∥平行,故命题6.(5分)(2014•辽宁)若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()BS=为直径的半圆内的概率是7.(5分)(2014•辽宁)某几何体三视图如图所示,则该几何体的体积为()﹣﹣圆柱,根据三视图判断正方体的棱长及切去的圆柱的底面圆柱,×8.(5分)(2014•辽宁)已知点A(﹣2,3)在抛物线C:y2=2px的准线上,记C的焦点为﹣=的斜率为=.9.(5分)(2014•辽宁)设等差数列{a n}的公差为d,若数列{2}为递减数列,则()<}∴<∴10.(5分)(2014•辽宁)已知f(x)为偶函数,当x≥0时,f(x)=,则不等式f(x﹣1)≤的解集为(),]∪[,],﹣]∪[,],]∪[,],﹣]∪[,]的解,然后利用函数的奇偶性求出整个定义域上≤],即x=x=,时,由,得,x=≤的解为,≤的解为﹣≤,的解为或﹣≤≤或≤,≤或≤,≤{x|≤或≤的11.(5分)(2014•辽宁)将函数y=3sin(2x+)的图象向右平移个单位长度,所得图[,][,,],[,]2x+)的图象向右平移个单位长度,)]﹣当函数递增时,由,得,]12.(5分)(2014•辽宁)当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取,﹣]≥=﹣二、填空题(共4小题,每小题5分)13.(5分)(2014•辽宁)执行如图的程序框图,若输入n=3,则输出T=20.14.(5分)(2014•辽宁)已知x,y满足约束条件,则目标函数z=3x+4y 的最大值为18.作出可行域如图,,解得,为直线方程的斜截式,得:由图可知,当直线15.(5分)(2014•辽宁)已知椭圆C:+=1,点M与C的焦点不重合,若M关于C 的焦点的对称点分别为A、B,线段MN的中点在C上,则|AN|+|BN|=12.,易得,,16.(5分)(2014•辽宁)对于c>0,当非零实数a,b满足4a2﹣2ab+b2﹣c=0且使|2a+b|最大时,++的最小值为﹣1.,转化为=++∴=[][]∴∴++=三、解答题17.(12分)(2014•辽宁)在△ABC中,内角A、B、C的对边分别为a,b,c,且a>c,已知•=2,cosB=,b=3,求:(Ⅰ)a和c的值;(Ⅱ)cos(B﹣C)的值.)利用平面向量的数量积运算法则化简•=2)∵=2cosB=,sinB===由正弦定理=sinB=×==,×+×.18.(12分)(2014•辽宁)某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进(Ⅰ)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(Ⅱ)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.附:X2=≈人,共有名喜欢甜品,有人喜欢甜品的概率19.(12分)(2014•辽宁)如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E、F、G分别为AC、DC、AD的中点.(Ⅰ)求证:EF⊥平面BCG;(Ⅱ)求三棱锥D﹣BCG的体积.附:锥体的体积公式V=Sh,其中S为底面面积,h为高.====×=20.(12分)(2014•辽宁)圆x2+y2=4的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图).(Ⅰ)求点P的坐标;(Ⅱ)焦点在x轴上的椭圆C过点P,且与直线l:y=x+交于A、B两点,若△PAB的面积为2,求C的标准方程..再利用基本不等式求得=1+S=则切线的斜率为﹣••==4=的坐标为(,=1,∴=1,=+|x=•.,y=x+,•时,由+=1+=121.(12分)(2014•辽宁)已知函数f(x)=π(x﹣cosx)﹣2sinx﹣2,g(x)=(x﹣π)+﹣1.证明:(Ⅰ)存在唯一x0∈(0,),使f(x0)=0;(Ⅱ)存在唯一x1∈(,π),使g(x1)=0,且对(Ⅰ)中的x0,有x0+x1>π.,)﹣﹣t+1,,)上为增函数,)﹣,[﹣+﹣﹣],)时,)上为增函数,))时,,,,,四、选考题,请考生在22-24三题中任选一题作答,多做则按所做的第一题给分选修4-1:几何证明选讲22.(10分)(2014•辽宁)如图,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.(Ⅰ)求证:AB为圆的直径;(Ⅱ)若AC=BD,求证:AB=ED.选修4-4:坐标系与参数方程23.(2014•辽宁)将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(Ⅰ)写出C的参数方程;(Ⅱ)设直线l:2x+y﹣2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.,线的斜率为,,=1=1)由,的中点坐标为(垂直的直线的斜率为1=﹣=0.选修4-5:不等式选讲24.(2014•辽宁)设函数f(x)=2|x﹣1|+x﹣1,g(x)=16x2﹣8x+1.记f(x)≤1的解集为M,g(x)≤4的解集为N.(Ⅰ)求M;(Ⅱ)当x∈M∩N时,证明:x2f(x)+x[f(x)]2≤.)由所给的不等式可得,﹣,解②,,求得﹣≤,,],=﹣。
2014年全国普通高等学校招生统一考试文科(辽宁卷)数学答案解析1、【答案】D【解析】试题分析:由已知得,或,故.考点:集合的运算.2、【答案】A【解析】试题分析:由已知得,.考点:复数的运算.3、【答案】C【解析】试题分析:因为,,,故.考点:指数函数和对数函数的图象和性质.4、【答案】B【解析】试题分析:若则或相交或异面,故A错;若,,,由直线和平面垂直的定义知,,故B正确;若,,则或,故C错;若,,则与位置关系不确定,故D错.考点:空间直线和平面的位置关系.5、【答案】A【解析】试题分析:若,,则,故,故命题是假命题;若,则,故命题是真命题,由复合命题真假判断知,是真命题,选A.考点:1、平面向量的数量积运算;2、向量共线.6、【答案】B【解析】试题分析:将一个质点随机投入长方形ABCD中,基本事件总数有无限多个,故可考虑几何概型求概率.由已知得,以AB为直径的半圆的面积为.又长方形ABCD的面积为,故质点落在以AB为直径的半圆内的概率是,选B.考点:几何概型.7、【答案】B【解析】试题分析:由三视图还原几何体,得该几何体是棱长为2的正方体,切去底面半径为1、高为4的两个四分之一圆柱得到的几何体,故体积为,选B.考点:三视图.8、【答案】C【解析】试题分析:由已知得,抛物线的准线方程为,且过点,故,则,,则直线AF的斜率,选C.考点:1、抛物线的标准方程和简单几何性质;2、直线的斜率.9、【答案】C【解析】试题分析:由已知得,,即,,又,故,从而,选C.考点:1、等差数列的定义;2、数列的单调性.10、【答案】A【解析】试题分析:先画出当时,函数的图象,又为偶函数,故将轴右侧的函数图象关于轴对称,得轴左侧的图象,如下图所示,直线与函数的四个交点横坐标从左到右依次为,由图象可知,或,解得,选A.考点:1、分段函数;2、函数的图象和性质;3、不等式的解集.11、【答案】B【解析】试题分析:将函数的图象向右平移个单位长度,得到,令,解得,故递增区间为(),当时,得递增区间为,选B.考点:1、三角函数图象变换;2、三角函数的单调性.12、【答案】C【解析】试题分析:不等式变形为.当时,,故实数a的取值范围是;当时,,记,,故函数递增,则,故;当时,,记,令,得或(舍去),当时,;当时,,故,则.综上所述,实数a的取值范围是.考点:利用导数求函数的极值和最值.13、【答案】【解析】试题分析:输入,在程序执行过程中,的值依次为;;;;,程序结束.输出.考点:程序框图.14、【答案】【解析】试题分析:画出可行域,如下图所示,将目标函数变形为,当取到最大值时,直线的纵截距最大,故将直线向上平移到过点C时,目标函数取到最大值,,得,故.考点:线性规划.15、【答案】【解析】试题分析:如图所示,由已知条件得,点分布是椭圆的左、右焦点,且,分别是线段的中点,则在和中,,,又由椭圆定义得,,故.16、【答案】【解析】试题分析:设,则,代入到中,得,即……①因为关于的二次方程①有实根,所以,可得,取最大值时,或,当时,,当时,,综上可知当时,的最小值为.考点:1、一元二次方程根的判别式;2、二次函数求值域.17、【答案】(1);(2)【解析】试题分析:(1)由及向量数量积的定义,得,从而,故再寻求关于的等式是解题关键.由,不难想到利用余弦定理,得,进而联立求;(2)利用差角余弦公式将展开,涉及的正弦值和余弦值.由可求,因为三角形三边确定,故可利用正弦定理或余弦定理求值,代入即可求的值.(1)由得,.又.所以.由余弦定理,得.又.所以.解得或.因为.所以.(2)在中,.由正弦定理得,.因,所以为锐角.因此.于是.考点:1、平面向量数量积定义;2、正弦定理;3、余弦定理.18、【答案】(1)有的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(2)【解析】试题分析:(1)将列联表中的数据代入公式计算,得的值,然后与表格中的比较,若小于,则有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(2)从5名学生中随机抽取3人,有10种结果,构成基本事件空间,其中“至多有1人喜欢甜品”这个事件包含7个基本事件,代入古典概型的概率计算公式即可.(1)将列联表中的数据代入公式计算.得.由于.所以有的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.(2)从5名数学系的学生任取3人的一切可能结果所组成的基本事件空间,,,.其中表示喜欢甜品的学生,.表示不喜欢甜品的学生,.由10个基本事件组成,切这些基本事件出现是等可能的.用A表示“3人中至多有1人喜欢甜品”这一事件,则.事件A是由7个基本事件组成.因而.考点:1、独立性检验;2、古典概型.19、【答案】(1)详见解析;(2)【解析】试题分析:(1)由已知得,是的中位线,故,则可转化为证明平面BCG.易证,则有,则在等腰三角形和等腰三角形中,且是中点,故,.从而平面BCG,进而平面BCG;(2)求四面体体积,为了便于计算底面积和高,往往可采取等体积转化法.由平面平面,利用面面垂直的性质,易作出面的垂线,同时求出点到面的距离,从而可求出点到平面距离,即四面体的高,进而求四面体体积.(1)证明:由已知得.因此.又为中点,所以;同理;因此平面.又.所以平面BCG.(2)在平面内.作.交延长线于.由平面平面.知平面.又为中点,因此到平面距离是长度的一半.在中,.所以.考点:1、直线和平面垂直的判定;2、面面垂直的性质;3、四面体的体积.20、【答案】(1);(2)【解析】试题分析:(1)首先设切点,由圆的切线的性质,根据半径的斜率可求切线斜率,进而可表示切线方程为,建立目标函数.故要求面积最小值,只需确定的最大值,由结合目标函数,易求;(2)设椭圆标准方程为,点在椭圆上,代入点得①,利用弦长公式表示,利用点到直线距离公式求高,进而表示的面积,与①联立,可确定,进而确定椭圆的标准方程.(1)设切点坐标为.则切线斜率为.切线方程为.即.此时,两个坐标轴的正半轴于切线围成的三角形面积.由知当且仅当时,有最大值.即有最小值.因此点的坐标为.(2)设的标准方程为.点.由点在上知.并由得.又是方程的根,因此,由,,得.由点到直线的距离为及得.解得或.因此,(舍)或,.从而所求的方程为.考点:1、直线方程;2、椭圆的标准方程;3、弦长公式和点到直线的距离公式.21、【答案】(1)详见解析;(2)详见解析【解析】试题分析:(1)依题意,只需证明函数在区间上存在唯一零点.往往转化为利用导数判断函数单调性、极值点,从而判断函数大致图象,进而说明零点分布情况.本题当时,,故在上为增函数,再说明端点函数值异号;(2)与(1)类似,只需证明函数在区间上存在唯一零点.但是不易利用导数判断函数大致图象,考虑到结论中,故需考虑第二问与第一问的关系,利用(1)的结论,设,则,,根据第一问中的符号,从而可判断函数的单调性,进而判断函数大致图象,确定函数的零点,寻求函数的零点与零点的关系,从而证明不等式.证明:(1)当时,,所以在上为增函数.又..所以存在唯一,使.(2)当时,化简得.令.记..则.由(1)得,当时,;当时,.从而在上为增函数,由知,当时,,所以在上无零点.在上为减函数,由及知存在唯一,使得.于是存在唯一,使得.设..因此存在唯一的,使得.由于,,所以.考点:1、函数的零点;2、利用导数判断函数单调性;3、利用导数求函数的最值.22、【答案】(1)详见解析;(2)详见解析【解析】试题分析:(1)要证明为圆的直径,只需证明,结合,在和中,只需证明,从而转化为证明,由弦切角定理以及很容易证明;(2)要证明,由(1)得,只需证明为圆的直径.连接,只需证明.只需证明.因为,故,根据同弧所对的圆周角相等得,故,从而.得证(1)因为.所以.由于为切线,所以.又由于,所以.由于,所以,.故为圆的直径.(2)连接.由于是直径,故.在和中,,.从而.于是.又因为,所以.又因为,所以.故.由于,所以,为直角.于是为直径.由(1)得,.考点:1、三角形全等;2、弦切角定理;3、圆的性质.23、【答案】(1)(为参数);(2)【解析】试题分析:(1)由平面直角坐标系中的伸缩变换得变换前后对应的坐标关系.即,反解并代入圆中,得曲线C的普通方程.进而写出参数方程;(2)将直线与圆联立,求的交点的坐标,从而可确定与垂直的直线方程.再利用化直线的直角坐标方程为极坐标方程.(1)设为圆上的点,经变换为上点.依题意,得由得.即曲线的方程为.故C的参数方程为(为参数).(2)由解得或不妨设.则线段的中点坐标为.所求直线的斜率为.于是所求直线方程为.化为极坐标方程为,即.考点:1、伸缩变换;2、曲线的参数方程;2、曲线的极坐标方程.24、【答案】(1);(2)详见解析.【解析】试题分析:(1)不等式变形为,然后分类讨论去绝对号解不等式得不等式解集;(2)解不等式,得.故.当时,,此时.代入中为二次函数,求其最大值即可.(1)当时,由得.故;当时,由得,故.所以的解集为.(2)由得.,故.当时,,故.考点:1、绝对值不等式解法;2、二次函数最值.。
2014年普通高等学校招生全国统一考试(辽宁卷)数学(文科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2014辽宁,文1)已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合U (A ∪B )=( ). A .{x |x ≥0} B .{x |x ≤1} C .{x |0≤x ≤1} D .{x |0<x <1} 答案:D解析:∵A ∪B ={x |x ≤0或x ≥1},∴U (A ∪B )={x |0<x <1}.故选D.2.(2014辽宁,文2)设复数z 满足(z -2i)(2-i)=5,则z =( ). A .2+3i B .2-3i C .3+2i D .3-2i 答案:A解析:∵(z -2i)(2-i)=5,∴52i 2i 2iz -==+-. ∴z =2+3i.故选A.3.(2014辽宁,文3)已知132a -=,21log 3b =,121log 3c =,则( ). A .a >b >c B .a >c >b C .c >b >a D .c >a >b 答案:D解析:∵1030221a -<=<=,221log log 103b =<=,112211log log 132c =>=,∴c >a >b .故选D.4.(2014辽宁,文4)已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ). A .若m ∥α,n ∥α,则m ∥n B .若m ⊥α,n ⊂α,则m ⊥n C .若m ⊥α,m ⊥n ,则n ∥α D .若m ∥α,m ⊥n ,则n ⊥α 答案:B解析:对A :m ,n 还可能异面、相交,故A 不正确.对C :n 还可能在平面α内,故C 不正确.对D :n 还可能在α内,故D 不正确.对B :由线面垂直的定义可知正确.5.(2014辽宁,文5)设a ,b ,c 是非零向量,已知命题p :若a·b =0,b·c =0,则a·c =0;命题q :若a ∥b ,b ∥c ,则a ∥c.则下列命题中真命题是( ).A .p ∨qB .p ∧qC .(p )∧(q )D .p ∨(q ) 答案:A解析:对命题p 中的a 与c 可能为共线向量,故命题p 为假命题.由a ,b ,c 为非零向量,可知命题q 为真命题.故p ∨q 为真命题.故选A.6.(2014辽宁,文6)若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( ).A .π2 B .π4 C .π6 D .π8答案:B解析:所求概率为21π1π2==214S S ⋅⨯半圆长方形,故选B. 7.(2014辽宁,文7)某几何体三视图如图所示,则该几何体的体积为( ).A .π84-B .π82- C .8-π D .8-2π答案:C解析:由几何体的三视图可知,原几何体为棱长是2的正方体挖去两个底面半径为1,高为2的14圆柱,故该几何体的体积是正方体的体积减去半个圆柱,即V =23-21π122⋅⋅=8-π.故选C.8.(2014辽宁,文8)已知点A (-2,3)在抛物线C :y 2=2px 的准线上,记C 的焦点为F ,则直线AF 的斜率为( ).A .43-B .-1C .34-D .12- 答案:C解析:由已知,得准线方程为x =-2, ∴F 的坐标为(2,0). 又A (-2,3),∴直线AF 的斜率为303224k -==---.故选C.9.(2014辽宁,文9)设等差数列{a n }的公差为d .若数列{12n a a}为递减数列,则( ).A .d >0B .d <0C .a 1d >0D .a 1d <0 答案:D解析:∵{12n a a}为递减数列, ∴111111()111222212n n n n a a a a a a a a d n na a a a +===<++--.∴a 1d <0.故选D.10.(2014辽宁,文10)已知f (x )为偶函数,当x ≥0时,()1cos π,0,,2121,,,2x x f x x x ⎧⎡⎤∈⎪⎢⎥⎪⎣⎦=⎨⎛⎫⎪-∈+∞ ⎪⎪⎝⎭⎩则不等式1(1)2f x ≤-的解集为( ).A .1247,,4334⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦B .3112,,4343⎡⎤⎡⎤--⎢⎥⎢⎥⎣⎦⎣⎦C .1347,,3434⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦D .3113,,4334⎡⎤⎡⎤--⎢⎥⎢⎥⎣⎦⎣⎦答案:A解析:令t =x -1.当10,2t ⎡⎤∈⎢⎥⎣⎦时,ππ0,2t ⎡⎤∈⎢⎥⎣⎦,由()12f t ≤,即1cos π2t ≤,得πππ32t ≤≤,解得1132t ≤≤. 当1,2t ⎛⎫∈+∞ ⎪⎝⎭时,由()12f t ≤,即1212t ≤-, 解得1324t <≤.综上,t ∈[0,+∞)时,()12f t ≤的解集为13,34⎡⎤⎢⎥⎣⎦.∵f (x )为偶函数,∴f (|x |)=f (x ).故t ∈R 时,由()12f t ≤可得1334t ≤≤, 即3143t -≤≤-或1334t ≤≤.∴由1(1)2f x ≤-得31143x -≤≤--或13134x ≤-≤,解得1243x ≤≤或4734x ≤≤.故选A.11.(2014辽宁,文11)将函数π3sin 23y x ⎛⎫=+ ⎪⎝⎭的图象向右平移π2个单位长度,所得图象对应的函数( ).A .在区间π7π,1212⎡⎤⎢⎥⎣⎦上单调递减B .在区间π7π,1212⎡⎤⎢⎥⎣⎦上单调递增 C .在区间ππ,63⎡⎤-⎢⎥⎣⎦上单调递减D .在区间ππ,63⎡⎤-⎢⎥⎣⎦上单调递增答案:B解析:由题意知,平移后的函数f (x )ππ3sin 223x ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦ππ3sin 2π+3sin 233x x ⎛⎫⎛⎫=-=-+ ⎪ ⎪⎝⎭⎝⎭.令πππ2π22π+232k x k -≤+≤,k ∈Z ,解得f (x )的递减区间为5πππ,π+1212k k ⎡⎤-⎢⎥⎣⎦,k ∈Z .令ππ32π+22π+π232k x k ≤+≤(k ∈Z ),解得f (x )的递增区间为π7π+,π+π1212k k ⎡⎤⎢⎥⎣⎦,k ∈Z .从而可判断选项B 正确.12.(2014辽宁,文12)当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( ).A .[-5,-3]B .96,8⎡⎤--⎢⎥⎣⎦C .[-6,-2]D .[-4,-3] 答案:C解析:∵当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,即当x ∈[-2,1]时,不等式ax 3≥x 2-4x -3(*)恒成立.(1)当x =0时,a ∈R .(2)当0<x ≤1时,由(*)得232343143x x a x x x x--≥=--恒成立. 设()23143f x x x x =--,则()2234441898991x x x x f x x x x x x -++-(-)(+)'=-++==.当0<x ≤1时,x -9<0,x +1>0,∴f ′(x )>0,∴f (x )在(0,1]上单调递增.当0<x ≤1时,可知a ≥f (x )max =f (1)=-6. (3)当-2≤x <0时,由(*)得23143a x x x ≤--. 令f ′(x )=0,得x =-1或x =9(舍).∴当-2≤x <-1时,f ′(x )<0,当-1<x <0时,f ′(x )>0,∴f (x )在[-2,-1)上递减,在(-1,0)上递增.∴x ∈[-2,0)时,f (x )min =f (-1)=-1-4+3=-2.∴可知a ≤f (x )min =-2. 综上所述,当x ∈[-2,1]时,实数a 的取值范围为-6≤a ≤-2.故选C.第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2014辽宁,文13)执行下面的程序框图,若输入n =3,则输出T =__________.答案:20解析:由程序框图可知,当i =0≤3时,i =1,S =1,T =1; 当i =1≤3时,i =2,S =3,T =4; 当i =2≤3时,i =3,S =6,T =10; 当i =3≤3时,i =4,S =10,T =20; 可知i =4>3,退出循环. 故输入n =3时,输出T =20.14.(2014辽宁,文14)已知x ,y 满足约束条件220,240,330,x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩则目标函数z =3x +4y的最大值为__________.答案:18解析:画出x ,y 满足约束条件的可行域如图阴影部分.由330,240,x y x y --=⎧⎨-+=⎩得2,3,x y =⎧⎨=⎩∴A 点坐标为(2,3).作直线l 0:3x +4y =0,可知当平移l 0到l (l 过点A )时,目标函数有最大值,此时z max =3×2+4×3=18.15.(2014辽宁,文15)已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=__________.答案:12解析:如图,设MN 的中点为P ,则由F 1是AM 的中点,可知|AN |=2|PF 1|.同理可得可知|BN |=2|PF 2|.∴|AN |+|BN |=2(|PF 1|+|PF 2|).根据椭圆定义得|PF 1|+|PF 2|=2a =6, ∴|AN |+|BN |=12.16.(2014辽宁,文16)对于c >0,当非零实数a ,b 满足4a 2-2ab +b 2-c =0且使|2a +b |最大时,124a b c++的最小值为__________. 答案:-1解析:要求|2a +b |的最大值,只需求(2a +b )2的最大值. ∵4a 2-2ab +b 2-c =0, ∴4a 2+b 2=c +2ab ,∴(2a +b )2=4a 2+b 2+4ab =c +2ab +4ab =c +6ab ≤c +2232a b +⎛⎫ ⎪⎝⎭,即(2a +b )2≤4c ,当且仅当2a =b 时,取得等号,即(2a +b )2取到最大值,即2a =b 时,|2a +b |取到最大值.把2a =b 代入4a 2-2ab +b 2-c =0,可得c =4a 2.∴2221241242111124a b c a a a a a a ⎛⎫++=++=+=+- ⎪⎝⎭. ∴当11a =-时,124a b c++取到最小值-1.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)(2014辽宁,文17)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c .已知BA BC ⋅=2,cos B =13,b =3,求: (1)a 和c 的值; (2)cos(B -C )的值.分析:(1)由数量积定义及余弦定理,可列出a ,c 的方程组,解方程组即可求出a ,c 的值.(2)由已知及正弦定理可分别求出B ,C 角的正、余弦值,再利用两角差的余弦公式可求出cos(B -C )的值.解:(1)由BA BC ⋅=2得c ·a cos B =2. 又cos B =13,所以ac =6. 由余弦定理,得a 2+c 2=b 2+2ac cos B . 又b =3,所以a 2+c 2=9+2×2=13. 解22613ac a c =⎧⎨+=⎩得a =2,c =3或a =3,c =2. 因为a >c ,所以a =3,c =2.(2)在△ABC 中,sin B=由正弦定理,得2sin sin 339c C B b ==⋅=. 因为a =b >c ,所以C 为锐角,因此7cos 9C ===. 于是cos(B -C )=cos B cos C +sin B sin C1723393927=⨯+=. 18.(本小题满分12分)(2014辽宁,文18)某大学餐饮中心为了解新生的饮食习惯,在全(1)惯方面有差异”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.附:221122122112n n n n n n n n n χ+(-)=.分析:(1)(2)可用列举法写出基本事件总数及“3人中至多有1人喜欢甜品”的基本事件数.再由古典概型的概率公式计算即可.解:(1)将2×2列联表中的数据代入公式计算,得22112212211212n n n n n n n n n χ++++(-)==21006010201070308020⨯(⨯-⨯)⨯⨯⨯=10021≈4.762.由于4.762>3.841,所以有95%的把握认为南方学生和北方学生在选用甜品的饮食习惯方面有差异.(2)从5名数学系学生中任取3人的一切可能结果所组成的基本事件空间Ω={(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 2,b 3),(a 1,b 1,b 2),(a 1,b 2,b 3),(a 1,b 1,b 3),(a 2,b 1,b 2),(a 2,b 2,b 3),(a 2,b 1,b 3),(b 1,b 2,b 3)}.其中a i 表示喜欢甜品的学生,i =1,2,b j 表示不喜欢甜品的学生,j =1,2,3.Ω由10个基本事件组成,且这些基本事件的出现是等可能的.用A 表示“3人中至多有1人喜欢甜品”这一事件,则A ={(a 1,b 1,b 2),(a 1,b 2,b 3),(a 1,b 1,b 3),(a 2,b 1,b 2),(a 2,b 2,b 3),(a 2,b 1,b 3),(b 1,b 2,b 3)}.事件A 是由7个基本事件组成,因而P (A )=710. 19.(本小题满分12分)(2014辽宁,文19)如图,△ABC 和△BCD 所在平面互相垂直,且AB =BC =BD =2,∠ABC =∠DBC =120°,E ,F ,G 分别为AC ,DC ,AD 的中点.(1)求证:EF ⊥平面BCG ; (2)求三棱锥D -BCG 的体积. 附:锥体的体积公式13V Sh =,其中S 为底面面积,h 为高. 分析:(1)由三角形全等证出AC =DC ,再由等腰三角形的性质(三线合一)得线线垂直,最后由线面垂直的判定定理及推论可证得结论.(2)由面面垂直得线面垂直,从而确定出点到平面的距离,即三棱锥G -BCD 的高,由等体积法可求三棱锥D -BCG 的体积.(1)证明:由已知得△ABC ≌△DBC ,因此AC =DC .又G 为AD 中点,所以CG ⊥AD ; 同理BG ⊥AD ;因此AD ⊥面BGC . 又EF ∥AD ,所以EF ⊥面BCG .(2)解:在平面ABC 内,作AO ⊥CB ,交CB 延长线于O . 由平面ABC ⊥平面BCD ,知AO ⊥面BDC .又G 为AD 中点,因此G 到平面BDC 距离h 是AO 长度的一半.在△AOB 中,AO =AB ·sin 60°所以V D -BCG =V G -BCD =1111·sin 1203322DBC S h BD BC ∆⋅=⋅⋅⋅⋅=. 20.(本小题满分12分)(2014辽宁,文20)圆x 2+y 2=4的切线与x 轴正半轴、y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图).(1)求点P 的坐标;(2)焦点在x 轴上的椭圆C 过点P ,且与直线l :y x =A ,B 两点.若△P AB的面积为2,求C 的标准方程.分析:(1)设出切点P 的坐标,用此坐标表示三角形的面积.又由切点P 在圆上,利用基本不等式求最值的方法,可求出点P 的坐标.(2)设出椭圆C 的标准方程,由点P 在椭圆C 上,及直线l 与C 相交于A ,B 两点且S △P AB =2,可求出a ,b 的值.解:(1)设切点坐标为(x 0,y 0)(x 0>0,y 0>0),则切线斜率为00x y -,切线方程为0000()xy y x x y -=--, 即x 0x +y 0y =4,此时,两个坐标轴的正半轴与切线围成的三角形面积为000014482S x y x y =⋅⋅=, 由22000042x y x y +=≥知当且仅当x 0=y 0x 0y 0有最大值,即S 有最小值,因此点P的坐标为.(2)设C 的标准方程为22221x y a b +=(a >b >0),点A (x 1,y 1),B (x 2,y 2).由点P 在C 上知22221a b+=,并由2222=1=x y a by x ⎧+⎪⎨⎪+⎩,得222620b x b ++-=, 又x 1,x 2是方程的根,因此122122=62=,x x b x x b ⎧+⎪⎪⎨-⎪⎪⎩由11y x =22y x =得122|AB x x b ==-.由点P 到直线l及S △P AB=122=得b 4-9b 2+18=0,解得b 2=6或3,因此b 2=6,a 2=3(舍)或b 2=3,a 2=6.从而所求C 的方程为22163x y +=. 21.(本小题满分12分)(2014辽宁,文21)已知函数f (x )=π(x -cos x )-2sin x -2,g (x )=2(π1πx x --,证明:(1)存在唯一x 0∈π0,2⎛⎫⎪⎝⎭,使f (x 0)=0;(2)存在唯一x 1∈π,π2⎛⎫⎪⎝⎭,使g (x 1)=0,且对(1)中的x 0,有x 0+x 1>π.分析:(1)利用求导数方法判断函数f (x )在π0,2⎛⎫⎪⎝⎭上的单调性,再利用函数零点的存在性定理进行判断,证出结论.(2)先化简函数g (x )在π,π2⎡⎤⎢⎥⎣⎦上的解析式,再用求导法判断函数单调性,结合函数零点的存在性定理,即可证明.证明:(1)当x ∈π0,2⎛⎫⎪⎝⎭时,f ′(x )=π+πsin x -2cos x >0, 所以f (x )在π0,2⎛⎫⎪⎝⎭上为增函数,又f (0)=-π-2<0,2ππ4022f ⎛⎫=-> ⎪⎝⎭,所以存在唯一x 0∈π0,2⎛⎫⎪⎝⎭,使f (x 0)=0.(2)当x ∈π,π2⎡⎤⎢⎥⎣⎦时,化简得()cos 2(π)11sin πx x g x x x =-⋅+-+. 令t =π-x ,记()cos 2(π)11sin πt t u t g t t t =-=--++,t ∈π0,2⎡⎤⎢⎥⎣⎦, 则()π1sin f t u t t ()'=(+).由(1)得,当t ∈(0,x 0)时,u ′(t )<0, 当t ∈0π,2x ⎛⎫⎪⎝⎭时,u ′(t )>0. 在0π,2x ⎛⎫⎪⎝⎭上u (t )为增函数, 由π02u ⎛⎫= ⎪⎝⎭知,当t ∈0π,2x ⎡⎫⎪⎢⎣⎭时,u (t )<0,所以u (t )在0π,2x ⎡⎫⎪⎢⎣⎭上无零点.在(0,x 0)上u (t )为减函数,由u (0)=1及u (x 0)<0知存在唯一t 0∈(0,x 0),使u (t 0)=0. 于是存在唯一t 0∈π0,2⎛⎫⎪⎝⎭,使u (t 0)=0. 设x 1=π-t 0∈π,π2⎛⎫⎪⎝⎭, 则g (x 1)=g (π-t 0)=u (t 0)=0, 因此存在唯一的x 1∈π,π2⎛⎫⎪⎝⎭,使g (x 1)=0, 由于x 1=π-t 0,t 0<x 0,所以x 0+x 1>π.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22.(本小题满分10分)(2014辽宁,理22)选修4—1:几何证明选讲如图,EP 交圆于E ,C 两点,PD 切圆于D ,G 为CE 上一点且PG =PD ,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F .(1)求证:AB 为圆的直径;(2)若AC =BD ,求证:AB =ED .分析:(1)证明AB 是直径,即证明∠BDA =90°.由∠PF A =90°,从而寻求∠BDA =∠PF A 就可证明.(2)要证AB =DE ,即证DE 为直径,连DC ,即证∠DCE =90°,从而只需证明AB ∥DC 即可.证明:(1)因为PD =PG ,所以∠PDG =∠PGD .由于PD 为切线,故∠PDA =∠DBA .又由于∠PGD =∠EGA ,故∠DBA =∠EGA ,所以∠DBA +∠BAD =∠EGA +∠BAD ,从而∠BDA =∠PF A .由于AF ⊥EP ,所以∠PF A =90°.于是∠BDA =90°.故AB 是直径.(2)连接BC ,DC .由于AB 是直径,故∠BDA =∠ACB =90°.在Rt △BDA 与Rt △ACB 中,AB =BA ,AC =BD ,从而Rt △BDA ≌Rt △ACB .于是∠DAB =∠CBA .又因为∠DCB =∠DAB ,所以∠DCB =∠CBA ,故DC ∥AB .由于AB ⊥EP ,所以DC ⊥EP ,∠DCE 为直角.于是ED 为直径.由(1)得ED =AB .23.(本小题满分10分)(2014辽宁,理23)选修4—4:坐标系与参数方程将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.分析:(1)利用相关点法先求出直角坐标方程,再写出参数方程.(2)先联立方程求出P 1,P 2两点的坐标,进而求出P 1P 2的中点坐标,得到与l 垂直的直线方程,再化为极坐标方程.解:(1)设(x 1,y 1)为圆上的点,在已知变换下变为C 上点(x ,y ),依题意,得11,2.x x y y =⎧⎨=⎩由22111x y +=,得2212y x ⎛⎫+= ⎪⎝⎭,即曲线C 的方程为2214y x +=. 故C 的参数方程为cos 2sin x t y t =⎧⎨=⎩(t 为参数). (2)由221,4220,y x x y ⎧+=⎪⎨⎪+-=⎩解得1,0,x y =⎧⎨=⎩或0,2.x y =⎧⎨=⎩ 不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为1,12⎛⎫⎪⎝⎭, 所求直线斜率为12k =, 于是所求直线方程为111=22y x ⎛⎫-- ⎪⎝⎭, 化为极坐标方程,并整理得 2ρcos θ-4ρsin θ=-3,即34sin 2cos ρθθ=-. 24.(本小题满分10分)(2014辽宁,理24)选修4—5:不等式选讲设函数f (x )=2|x -1|+x -1,g (x )=16x 2-8x +1.记f (x )≤1的解集为M ,g (x )≤4的解集为N .(1)求M ;(2)当x ∈M ∩N 时,证明:x 2f (x )+x [f (x )]2≤14. 分析:(1)分类讨论去绝对值符号即可.(2)在x ∈M ∩N 的条件下,先化简x 2f (x )+x [f (x )]2,再配方求其最大值即可. 解:(1)()[)()33,1,,1,,1,x x f x x x ⎧-∈+∞⎪=⎨-∈-∞⎪⎩ 当x ≥1时,由f (x )=3x -3≤1得43x ≤, 故413x ≤≤; 当x <1时,由f (x )=1-x ≤1得x ≥0,故0≤x <1.所以f (x )≤1的解集为403M x x ⎧⎫=≤≤⎨⎬⎩⎭. (2)证明:由g (x )=16x 2-8x +1≤4, 得211644x ⎛⎫-≤ ⎪⎝⎭,解得1344x -≤≤. 因此1344N x x ⎧⎫=-≤≤⎨⎬⎩⎭. 故304M N x x ⎧⎫=≤≤⎨⎬⎩⎭. 当x ∈M ∩N 时,f (x )=1-x ,于是x 2f (x )+x ·[f (x )]2=xf (x )[x +f (x )]=x·f(x)=x(1-x)=2111 424x⎛⎫--≤⎪⎝⎭.。
数学试卷 第1页(共36页)数学试卷 第2页(共36页)数学试卷 第3页(共36页)绝密★启用前2014年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,{|0}A x x =≤,{|}B x x =≥1,则集合()U A B =ð( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x <<2.设复数z 满足(2i)(2i)5z --=,则z =( )A .23i +B .23i -C .32i +D .32i - 3.已知132a -=,21log 3b =,121log 3c =,则( )A .b a c >>B .a c b >>C .c b a >>D .c a b >>4.已知m ,n 表示两条不同直线,α表示平面.下列说法正确的是( )A .若m α∥,n α∥,则m n ∥B .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则n α∥D .若m α∥,m n ⊥,则n α⊥5.设a ,b ,c 是非零向量.已知命题p :若a b 0=,b c 0=,则a c 0=; 命题q :若a ∥b ,b ∥c ,则a ∥c .则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝6.若将一个质点随机投入如图所示的长方形ABCD 中,其中2AB =,1BC =,则质点落在以AB 为直径的半圆内的概率是( )A .π2B .π4C .π6D .π87.某几何体三视图如图所示,则该几何体的体积为( )A .π84-B .π82-C .8π-D .82π-8.已知点(2,3)A -在抛物线C :22y px =的准线上,记C的焦点为F ,则直线AF 的斜率为( )A .43-B .1-C .34-D .12-9.设等差数列{}n a 的公差为d .若数列1{2}n aa 为递减数列,则( )A .0d >B .0d <C .10a d >D .10a d <10.已知()f x 为偶函数,当0x ≥时,1cos π,[0,],2()121,(,),2x x f x x x ⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩则不等式1(1)2f x -≤的解集为( ) A .1247[,][,]4334B .3112[,][,]4343--C .1347[,][,]3434D .3113[,][,]4334--11.将函数π3sin(2)3y x =+的图象向右平移π2个单位长度,所得图象对应的函数( ) A .在区间π7π[,]1212上单调递减 B .在区间π7π[,]1212上单调递增C .在区间ππ[,]63-上单调递减D .在区间ππ[,]63-上单调递增12.当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是 ( )A .[5,3]--B .9[6,]8--C .[6,2]--D .[4,3]--第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分,共20分. 13.执行右侧的程序框图,若输入3n =,则输出T =________. 14.已知x ,y 满足约束条件220240330x y x y x y +-⎧⎪-+⎨⎪--⎩≥≥≤ 则目标函数34z x y =+的最大值为________.15.已知椭圆C :22194x y +=,点M 与C 的焦点不重合. 若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN +=________.16.对于0c >,当非零实数a ,b 满足22420a ab b c -+-=且使|2|a b +最大时,124a b c++的最小值为________. --------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共36页)数学试卷 第5页(共36页) 数学试卷 第6页(共36页)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,且a c >.已知2BA BC =,1cos 3B =,3b =.求:(Ⅰ)a 和c 的值; (Ⅱ)cos()B C -的值.18.(本小题满分12分)某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查(Ⅰ)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(Ⅱ)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.19.(本小题满分12分)如图,ABC △和BCD △所在平面互相垂直,且2AB BC BD ===,120ABC DBC ∠=∠=,E ,F ,G 分别为AC ,DC ,AD 的中点.(Ⅰ)求证:EF ⊥平面BCG ; (Ⅱ)求三棱锥D BCG -的体积.附:锥体的体积公式13V Sh =,其中S 为底面面积,h 为高.20.(本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图). (Ⅰ)求点P 的坐标;(Ⅱ)焦点在x 轴上的椭圆C 过点P ,且与直线l : y x =A ,B 两点.若PAB △的面积为2,求C 的标准方程.21.(本小题满分12分)已知函数()π(cos )2sin 2f x x x x =---,2()(π1πxg x x =--.证明:(Ⅰ)存在唯一0π(0,)2x ∈,使0()0f x =;(Ⅱ)存在唯一1π(,π)2x ∈,使1()0g x =,且对(Ⅰ)中的0x ,有01πx x +>.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,EP 交圆于E ,C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F . (Ⅰ)求证:AB 为圆的直径; (Ⅱ)若AC BD =,求证:AB ED =.23.(本小题满分10分)选修4—4:坐标系与参考方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (Ⅰ)写出C 的参数方程;(Ⅱ)设直线l :220x y +-=与C 的交点为1P ,2P ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段12P P 的中点且与l 垂直的直线的极坐标方程.24.(本小题满分10分)选修4—5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+.记()1f x ≤的解集为M ,()4g x ≤的解集为N.(Ⅰ)求M ; (Ⅱ)当x M N ∈时,证明:221()[()]4x f x x f x +≤.附:22112212211212()+n n n n n n n n n χ++-=+,3 / 122014年普通高等学校招生全国统一考试(辽宁卷)数学(供文科考生使用)答案解析{|AB x x =){|0AB x =【提示】先求AB ,再根据补集的定义求()A B U ð.【考点】交、并、补集的混合运算【解析】(2i)(2z -【提示】把给出的等式两边同时乘以【提示】A 运用线面平行的性质,结合线线的位置关系,即可判断;B 运用线面垂直的性质,即可判断;C 运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;D 运用线面平行的性质和线面垂直的判定,即可判断.【考点】空间中直线与直线之间的位置关系 5.【答案】A【解析】若0a b =,0b c =,则a b b c =,即()0a c b -=,则0a c =不一定成立,故命题p 为假命题.若a b ∥,b c ∥,则a c ∥,故命题q 为真命题.则p q ∨,为真命题,p q ∧,()()p q ⌝∧⌝,()p q ∨⌝都为假命【解析】等差数列数学试卷第10页(共36页)数学试卷第11页(共36页)数学试卷第12页(共36页)5 / 12数学试卷 第16页(共36页) 数学试卷 第17页(共36页)数学试卷 第18页(共36页)(123i)++++++的值,当输入(123i)++++++的值,根据条件确定跳出循环的在轴上的截距最大,即最大.max 324318z ∴=⨯+⨯=.,Q 在椭圆7 / 12【解析】242a ab -23232b b ⎛⎫⎤+= ⎪⎥⎦24++=2B A B C =得cos ac B .3=,所以2sin c B b ⨯=cos cos B C数学试卷 第22页(共36页) 数学试卷 第23页(共36页)数学试卷 第24页(共36页)【提示】(Ⅰ)利用平面向量的数量积运算法则化简2BA BC =,将1cos 3B =代入求出6ac =,再利用余弦22【提示】(Ⅰ)根据表中数据,利用公式,即可得出结论.(Ⅰ)AB BC =G 为AD 的中点,CG ∴⊥.CG BG G =,.EF AD ∥EF ∴⊥平面BCG .(Ⅱ)在平面的延长线于O ,∆所在平面互相垂直,.G 11sin1203322BD BC ︒=9 / 1200014482x y x y =P 的坐标为(122d AB =,解得()(21k ⎡=+⎣2232b b -,代入上式得2231683b b -=6=,2a =,所以椭圆方程为:00三角形的面积008S x y =.再利用基本不等式求得S 取得最小值,求得点P 的坐标. 122d AB =,求出【考点】直线与圆锥曲线的综合问题数学试卷 第28页(共36页) 数学试卷 第29页(共36页)数学试卷 第30页(共36页)(Ⅰ)()πf x =0,π2f ⎛⎫ ⎪⎝⎭上有零点.()πf x '=上单调递增.(Ⅱ)()(g x =cos (π)1sin x x x -=-++cos 1sin x x ++cos )1sin x x -++导数法可得函数的零点,可得不等式.11 / 12【考点】函数零点的判定定理22.【答案】证明:(Ⅰ)PD PG PDG PGD PD =∴∠=∠为切线,PD A D BA ∴∠=∠,PGD EGA DBA EGA DBA BAD EGA BAD ∠=∠∴∠=∠∴∠+∠=∠+∠,NDA PFA ∴∠=∠.9090AF EP PFA BDA AB ⊥∴∠=︒∴∠=︒∴为圆的直径.(Ⅱ)连接BC ,DC .90AB BDA ACB ∴∠=∠=︒是直径,在Rt BDA △与Rt ACB △中,AB BA AC BD ==,,Rt BDA Rt ACB ∴△≌△,DAB CBA DCB DAB ∴∠=∠∠=∠,DCB CBA ∴∠=∠,DC AB ∴∥.AB EP DC EP DCE ⊥∴⊥∠,为直角,∴ED 为圆的直径,AB 为圆的直径,AB ED ∴=.(Ⅱ)由214220x x y ⎧+=⎪⎨⎪+-=⎩,可得10x y =⎧⎨=⎩,02x y =⎧⎨=⎩,不妨设1(1,0)P 、2(0,2)P , 则线段12P P 的中点坐标为1,12⎛⎫ ⎪⎝⎭,再根据与l 垂直的直线的斜率为12, 故所求的直线的方程为11122y x ⎛⎫-=- ⎪⎝⎭,即32202x y -+=.数学试卷 第34页(共36页) 数学试卷 第35页(共36页)数学试卷 第36页(共36页) 【提示】(Ⅰ)在曲线C 上任意取一点(,)x y ,再根据点,2y x ⎛⎫ ⎪⎝⎭在圆22111x y +=上,求出C 的方程,化为参(Ⅱ)由2()16814g x x x =-+≤,求得1344x -≤≤,13,44N ⎡⎤∴=-⎢⎥⎣⎦,M N ∴=30,4⎡⎤⎢⎥⎣⎦. 当x M N ∈时,()1f x x =-,22()[()]()[x ()]x f x x f x xf x f x +=+2111424x ⎛⎫=--≤ ⎪⎝⎭,故要证的不等式成立.【提示】(Ⅰ)由所给的不等式可得1331x x ≥⎧⎨-≤⎩①,或111x x <⎧⎨-≤⎩②,分别求得①、②的解集,再取并集,即N =30,4⎡⎢⎣N 时,f ,要证的不等式得证。
2014年普通高等学校招生全国统一考试(辽宁卷)文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C A B =( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x <<2.设复数z 满足(2)(2)5z i i --=,则z =( )A .23i +B .23i -C .32i +D .32i -3.已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >>4.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( )A .若//,//,m n αα则//m nB .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥5.设,,a b c 是非零向量,已知命题P :学科 网若0a b ∙=,0b c ∙=,则0a c ∙=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝6.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( )A .2πB .4πC .6πD .8π 7. 某几何体三视图如图所示,则该几何体的体积为( )A .82π-B .8π-C .82π-D .84π-8. 已知点(2,3)A -在抛物线C :22y px =的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .43-B .-1C .34-D .12- 9. 设等差数列{}n a 的公差为d ,若数列1{2}n a a 为递减数列,则( )A .0d <B .0d >C .10a d <D .10a d >10.已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为( )A .1247[,][,]4334B .3112[,][,]4343-- C .1347[,][,]3434 D .3113[,][,]4334-- 11. 将函数3sin(2)3y x π=+的图象向右平移2π个单位长度, 所得图象对应的函数( ) A .在区间7[,]1212ππ上单调递减 B .在区间7[,]1212ππ上单调递增 C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增 12. 当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( )A .[5,3]--B .9[6,]8-- C .[6,2]-- D .[4,3]-- 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 执行右侧的程序框图,若输入3n =,则输出T = .14.已知x ,y 满足条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则目标函数34z x y =+的最大值为 .15. 已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .16. 对于0c >,当非零实数a ,b 满足224240a ab b c -+-=,且使|2|a b +最大时,345a b c-+的最小值为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)在ABC ∆中,学 科网内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ∙=,1cos 3B =,3b =,求:(1)a 和c 的值;(2)cos()B C -的值.18. (本小题满分12分)某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.19. (本小题满分12分) 如图,ABC ∆和BCD ∆所在平面互相垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,E 、F 、G 分别为AC 、DC 、AD 的中点.(1)求证:EF ⊥平面BCG ;(2)求三棱锥D-BCG 的体积. 附:椎体的体积公式13V Sh =,其中S 为底面面积,h 为高.20. (本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图).(1)求点P 的坐标;(2)焦点在x 轴上的椭圆C 过点P ,且与直线:l y x =A ,B 两点,若PAB ∆的面积为2,求C 的标准方程.21. (本小题满分12分)已知函数()(cos )2sin 2f x x x x π=---,2()(1x g x x ππ=--. 证明:(1)存在唯一0(0,)2x π∈,使0()0f x =; (2)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的01x x π+<.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22. (本小题满分10分)选修4-1:几何证明选讲如图,EP 交圆于E 、C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F.(1)求证:AB 为圆的直径;(2)若AC=BD ,求证:AB=ED.23. (本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12PP 的中点且与l 垂直的直线的极坐标方程.24. (本小题满分10分)选修4-5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N.(1)求M ;(2)当x M N ∈时,证明:221()[()]4x f x x f x +≤.。
2014年普通高等学校招生全国统一考试(辽宁卷)文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()A B =U U ð( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x << 2.设复数z 满足(2)(2)5z i i --=,则z =( )A .23i +B .23i -C .32i +D .32i - 3.已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c b a >> D . c a b >> 4.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( )A .若//,//,m n αα则//m nB .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥5. 设,,a b c r r r 是非零向量,已知命题p :若0a b •=r r ,0b c •=r r ,则0a c •=r r ;命题q :若//,//a b b c r r r r,则//a c r r,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝6. 若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( ) A .2π B .4π C .6π D .8π7. 某几何体三视图如图所示,则该几何体的体积为( )A .84π-B .82π-C .8π-D .82π-8. 已知点(2,3)A -在抛物线C :22y px =的准线上,记C 的焦点为F ,则直线AF 的斜率为( ) A .43-B .-1C .34-D .12- 9. 设等差数列{}n a 的公差为d ,若数列1{2}na a 为递减数列,则( )A .0d >B .0d <C .10a d >D . 10a d <10. 已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为( )A .1247[,][,]4334UB .3112[,][,]4343--UC .1347[,][,]3434UD .3113[,][,]4334--U11. 将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( )A .在区间7[,]1212ππ上单调递减B .在区间7[,]1212ππ上单调递增C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增 12. 当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( )A .[5,3]--B .9[6,]8-- C .[6,2]-- D .[4,3]--第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 执行右侧的程序框图,若输入3n =,则输出T = .14.已知x ,y 满足条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则目标函数34z x y =+的最大值为 .15. 已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .16. 对于0c >,当非零实数a ,b 满足224240a ab b c -+-=,且使|2|a b +最大时,345a b c-+的最小值为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC •=u u u r u u u r ,1cos 3B =,3b =,求:(1)a 和c 的值;(2)cos()B C -的值. 18. (本小题满分12分)某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:喜欢甜品 不喜欢甜品合计 南方学生 60 20 80 北方学生 10 10 20 合计7030100(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.附:22112212211212()n n n n n n n n n χ++++-=,19. (本小题满分12分)如图,ABC ∆和BCD ∆所在平面互相垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,E 、F 、G 分别为AC 、DC 、AD 的中点.(1)求证:EF ⊥平面BCG ; (2)求三棱锥D-BCG 的体积. 附:椎体的体积公式13V Sh =,其中S 为底面面积,h 为高. 20. (本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图).(1)求点P 的坐标;(2)焦点在x 轴上的椭圆C 过点P ,且与直线:+3l y x =2()P k χ≥0.100 0.050 0.010 k2.7063.8416.635交于A ,B 两点,若PAB ∆的面积为2,求C 的标准方程.21.(本小题满分12分)已知函数()(cos )2sin 2f x x x x π=---,1sin 2()()11sin x xg x x x ππ-=-+-+.证明:(1)存在唯一0(0,)2x π∈,使0()0f x =;(2)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的01x x π+<.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22. (本小题满分10分)选修4-1:几何证明选讲如图,EP 交圆于E 、C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F.(1)求证:AB 为圆的直径; (2)若AC=BD ,求证:AB=ED.23. (本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12P P 的中点且与l 垂直的直线的极坐标方程.24. (本小题满分10分)选修4-5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N.(1)求M ;(2)当x M N ∈I 时,证明:221()[()]4x f x x f x +≤.参考答案一、选择题1.D2.A3.D4.B5.A6.B7.C8.C9.D10.A11.B12.C二、填空题13. 20 14. 1815. 1216. -1三、解答题 17.解:(Ⅰ)由2BA BC ⋅=u u u r u u u r 得cos 2c a B ⋅=,又1cos 3B =,所以6ac =由余弦定理,得2222cos a c b ac B +=+ 又3b =,所以2292213a c +=+⨯= 解22613ac a c =⎧⎨+=⎩,得2,3a c ==或3,2a c ==因为a c >,所以3,2a c ==(Ⅱ)在ABC ∆中,sin B ===由正弦定理,得2sin sin 3c C B b ===因为a b c =>,所以C 为锐角,因此7cos 9C === 于是cos()cos cos sin sin B C B C B C -=-1723393927=⋅+⋅= 18.解:(Ⅰ)将22⨯列联表中的数据代入公式计算,得222112212211212()100(60102010)100 4.7627030802021n n n n n n n n n χ++++-⨯⨯-⨯===≈⨯⨯⨯由于4.762 > 3.841,所以由95%的把握认为南方学生和北方学生在选用甜品的饮食习惯方面有差异。
-------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- --------⎨ + = 2绝密★启用前在2014 年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用)此注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.卷2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑. 如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3. 回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4. 考试结束后,将本试卷和答题卡一并交回.上第Ⅰ卷一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只答有一项是符合题目要求的.5. 设 a ,b ,c 是非零向量.已知命题 p :若 a b = 0 ,b c = 0 ,则 a c = 0 ;命题q :若 a ∥b ,b ∥c ,则 a ∥c .则下列命题中真命题是()A . p ∨ qB . p ∧ qC . (⌝p ) ∧ (⌝q )D . p ∨ (⌝q )6. 若将一个质点随机投入如图所示的长方形 ABCD 中,其中AB = 2 , BC =1,则质点落在以 AB 为直径的半圆内的概率是( )A . π2 B . π4 C . π6D . π87. 某几何体三视图如图所示,则该几何体的体积为()A . 8 - π4 B . 8 - π2C . 8 - πD . 8 - 2π8. 已知点 A (-2,3) 在抛物线C : y 2= 2 px 的准线上,记C11.将函数 y = 3sin(2x + π) 的图象向右平移 π个单位长度,所得图象对应的函数()12.当 x ∈[-2,1] 时,不等式ax 3 - x 2 + 4x + 3≥0 恒成立,则实数a 的取值范围是 ()A .[-5, -3]B .[-6, - 9] 8C .[-6, -2]D .[-4, -3]第Ⅱ卷本卷包括必考题和选考题两部分.第 13 题~第 21 题为必考题,每个试题考生都必须 做答.第 22 题~第 24 题为选考题,考生根据要求做答.二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.13.执行右侧的程序框图,若输入n = 3 , 则输出T = .14.已知 x , y 满足约束条件1.已知全集U = R , A ={x |x ≤0}, B ={x | x ≥1} ,则集合 ( )的焦点为 F ,则直线 AF 的斜率为( )⎧2x + y - 2≥0 ⎪x - 2 y + 4≥0 ⎪3x - y - 3≤0 2.设复数 z 满足(z - 2i)(2 -i) = 5 ,则 z =()9.设等差数列{a } 的公差为d .若数列{2a 1 a n} 为递减数列,则( )⎩n题则目标函数 z = 3x + 4y 的最大值为 .- 11 12 15.已知椭圆C : x y1,点 M 与C 的焦点不重合.3. 已知a = 2 3, b = log 2 , c = log 1 ,则() ⎧1 9 43 2 3⎪cos πx , x ∈[0, 2], 110.已知 f (x ) 为偶函数,当 x ≥0 时, f (x ) = ⎨ 则不等式 f (x -1)≤ 的解 1 2 若 M 关于C 的焦点的对称点分别为 A , B ,线段 MN⎪2x -1, x ∈( , +∞),的中点在C 上,则| AN | + | BN |= . 无⎪⎩24. 已知m , n 表示两条不同直线,α 表示平面.下列说法正确的是()集为()16.对于c >0 ,当非零实数a ,b 满足4a 2 - 2ab + b 2 - c = 0 且使| 2a + b | 最大时, 1 + 2 + 4的最小值为 .a b c效数学试卷 第 1 页(共 6 页)数学试卷 第 2 页(共 6 页)数学试卷 第 3 页(共 6 页)U ( A B ) =姓名准考证号A .{x | x ≥0}B .{x | x ≤1}C .{x | 0≤x ≤1}D .{x | 0<x <1}A . 2 + 3iB . 2 - 3iC . 3 + 2iD . 3 - 2iA . a >b >cB . a >c >bC . c >b >aD . c >a >bA .若m ∥α , n ∥α ,则m ∥nB .若m ⊥α , n ⊂ α ,则m ⊥nC .若m ⊥α , m ⊥n ,则n ∥αD .若m ∥α , m ⊥n ,则n ⊥αA . - 43B . -1C . - 3 4D . - 12A . d >0B . d <0C . a 1d >0D . a 1d <0A .[1 , 2] [ 4 , 7]4 3 3 4 B .[- 3 , - 1] [1 , 2]4 3 4 3 C .[1 , 3] [ 4 , 7]3 4 3 4 D .[- 3 , - 1] [1 , 3]4 3 3 43 A .在区间[π , 7π] 上单调递减12 12 2 B .在区间[π , 7π] 上单调递增12 12 C .在区间[- π , π] 上单调递减6 3D .在区间[- π , π] 上单调递增6 3三、解答题:本大题共 6 小题,共 70 分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分 12 分)在△ABC 中,内角 A , B ,C 的对边分别为a ,b ,c ,且 a >c .已知 BA BC = 2 ,cos B = 1, b = 3 .求:3 (Ⅰ) a 和c 的值; (Ⅱ) cos(B - C ) 的值.18.(本小题满分 12 分)某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查19.(本小题满分 12 分)如图, △ABC 和△BCD 所在平面互相垂直,且AB = BC = BD = 2 , ∠ABC = ∠DBC =120, E ,F ,G 分别为 AC , DC , AD 的中点.(Ⅰ)求证: EF ⊥平面 BCG ;(Ⅱ)求三棱锥 D - BCG 的体积.附:锥体的体积公式V = 1Sh ,其中 S 为底面面积, h 为高.320.(本小题满分 12 分)圆 x 2+ y 2= 4 的切线与 x 轴正半轴, y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为 P (如图). (Ⅰ)求点 P 的坐标;(Ⅱ)焦点在 x 轴上的椭圆C 过点 P ,且与直线l :请考生在第 22、23、24 三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22.(本小题满分 10 分)选修 4—1:几何证明选讲如图,EP 交圆于 E ,C 两点,PD 切圆于 D ,G 为CE 上一点且 PG = PD ,连接 DG 并延长交圆于点 A ,作弦 AB 垂直 EP ,垂足为 F . (Ⅰ)求证: AB 为圆的直径;(Ⅱ)若 AC = BD ,求证: AB = ED .23.(本小题满分 10 分)选修 4—4:坐标系与参考方程将圆 x 2+ y 2=1上每一点的横坐标保持不变,纵坐标变为原来的 2 倍,得曲线C . (Ⅰ)写出C 的参数方程;y = x + 3 交于 A ,B 两点.若△PAB 的面积为 2,求C(Ⅱ)设直线l :2x + y - 2 = 0 与C 的交点为 P 1 , P 2 ,以坐标原点为极点, x 轴正半轴的标准方程.为极轴建立极坐标系,求过线段 P 1P 2 的中点且与l 垂直的直线的极坐标方程.(Ⅰ)根据表中数据,问是否有 95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(Ⅱ)已知在被调查的北方学生中有 5 名数学系的学生,其中 2 名喜欢甜品,现在从 这 5 名学生中随机抽取 3 人,求至多有 1 人喜欢甜品的概率.21.(本小题满分 12 分)已知函数 f (x ) = π(x - cos x ) - 2sin x - 2 , g (x ) = (x - π) 证明:(Ⅰ)存在唯一 x ∈(0, π) ,使 f (x ) = 0 ;0 2 0+ 2x-1 .π24.(本小题满分 10 分)选修 4—5:不等式选讲设函数 f (x ) = 2 | x -1| +x -1 ,g (x ) =16x 2 - 8x +1 .记的解集为 N .f (x ) ≤1的解集为 M ,g (x )≤4(Ⅱ)存在唯一 x 1 ∈ π( 2, π) ,使 g (x 1 ) = 0 ,且对(Ⅰ)中的 x 0 ,有 x 0 + x 1>π .(Ⅰ)求 M ; (Ⅱ)当 x ∈ MN 时,证明: x 2 f (x ) + x [ f (x )]2≤1.4数学试卷 第 4 页(共 6 页)数学试卷 第 5 页(共 6 页)数学试卷 第 6 页(共 6 页)1- sin x 1+ sin x喜欢甜品不喜欢甜品合计 南方学生60 20 80 北方学生 10 10 20 合计7030100χ 2n (n n - n n )2附:= 11 2212 21,n 1 +n 2 + n +1n +2P (χ 2≥k )0.100 0.050 0.010 k2.7063.8416.635。
2014年普通高等学校招生全国统一考试(辽宁)卷一.选择题(本大题共12小题,每小题5分,共60分。
在每小题给也的四个选项中,只有一项是符合题目要求的)1.已知全集U R =,{}|0A x x =≤,{}|1B x x =≥,则集合()U AB =ð( )(A ){}|0x x ≥ (B ){}|1x x ≤ (C ){}|01x x ≤≤ (D ){}|01x x <<2.设复数z 满足()()225z i i --=,则z =( )(A )23i + (B )23i - (C )32i + (D )32i -3.已知132a -=,21211log ,log 33b c ==,则( ) (A )a b c >> (B )a c b >> (C )c b a >> (D )c a b >>4.已知,m n 表示两条不同直线,α表示平面,下列说法正确的是( ) (A )若//m α,//n α,则//m n (B )若m α⊥,n α⊂,则m n ⊥ (C )若m α⊥,m n ⊥,则//n α (D )若//m α,m n ⊥,则n α⊥5.设,,a b c 是非零向量,已知命题p :若0a b ⋅=,0b c ⋅=,则0a c ⋅=;命题q :若//a b ,//b c ,则//a c ,则下列命题中真命题是 ( )(A )p q ∨ (B )p q ∧ (C )()()p q ⌝∧⌝ (D )()p q ∨⌝6.若将一个质点随机投入如图所示的长方形ABCD 中,其中2AB =,1BC =,则质点落在以AB 为直径的半圆内的概率是( ) (A )2π (B )4π (C )6π (D )8π 7.某几何体三视图如图所示,则该几何体的体积为( )(A )84π-(B )82π-(C )8π- (D )82π-8.已知点()2,3A -在抛物线C :22y px =的准线上,记C 的焦点为F ,则直线AF 的斜率为( )(A )43- (B )1- (C )34- (D )12-9.设等差数列{}n a 的公差为d ,若数列{}12na a 为递减数列,则( )(A )0d > (B )0d < (C )10a d > (D )10a d <10.已知()f x 为偶函数,当0x ≥时,()()()cos 0122112x x f x x x π≤≤⎧⎪=⎨->⎪⎩,则不等式()112f x -≤的解集为( ) (A )1247,,4334⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦(B )3112,,4343⎡⎤⎡⎤--⎢⎥⎢⎥⎣⎦⎣⎦ (C )1347,,3434⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦(D )3113,,4334⎡⎤⎡⎤--⎢⎥⎢⎥⎣⎦⎣⎦11.将函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移2π个单位长度,所得图象对应函数( ) (A )在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递减 (B )在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递增 (C )在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减 (D )在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递增 12.当[]2,1x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( ) (A )[]5,3-- (B )[]6,98-- (C )[]6,2-- (D )[]4,3--二.填空题(本大题共4小题,每小题5分,共20分)13.执行右侧的程序框图,若输入3n =,则输出T = 。
14.已知,x y 满足条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则目标函数34z x y=+的最大值为 。
15.已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为,A B ,线段MN 的中点在C 上,则||||AN BN += 。
16.对于0c >,当非零实数,a b 满足22420a ab b c -+-=,且使|2|a b +最大时,124a b c++的最小值为 。
三.解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)在ABC ∆中,内角,,A B C 的对边,,a b c ,且a c >,已知2BA BC ⋅=,1cos 3B =,3b =,求:⑴a 和c 的值;⑵()cos BC -的值。
18.(本小题满分12分)某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示。
⑴根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”; ⑵已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率。
附:()21122122121212n n n n n n n n n χ++++-=,19.(本小题满分12分)如图,ABC ∆和BCD ∆所在平面互相垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,,,E F G 分别为,,AC DC AD 的中点。
⑴求证:EF ⊥平面BCG ;⑵求三棱锥D BCG -的体积。
附:椎体的体积公式13V Sh =,其中S 为底面面积,h 为高。
20.(本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图)。
⑴求点P 的坐标;⑵焦点在x 轴上的椭圆C 过点P,且与直线:l y x =,A B 两点,若PAB ∆的面积为2,求C 的标准方程。
21.(本小题满分12分)已知函数()()cos 2sin 2f x x x x π=---,()(21x g x x ππ=--。
证明:⑴存在唯一00,2x π⎛⎫∈ ⎪⎝⎭,使()00f x =;⑵存GFEDB CA在唯一1,2x ππ⎛⎫∈⎪⎝⎭,使()10g x =,且对⑴中的0x 有01x x π+>。
请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分。
作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑。
22.(本小题满分10分)如图,EP 交圆于,E C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG并延长交圆于点A ,作弦AB 垂直EP ,垂足为F 。
⑴求证:AB 为圆的直径;⑵若AC BD =,求证:AB ED =。
23.(本小题满分10分)将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C 。
⑴写出C 的参数方程;⑵设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段12PP 的中点且与l 垂直的直线的极坐标方程。
24.(本小题满分10分)设函数()2|1|1f x x x =-+-,()21681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N 。
⑴求M ;⑵当x MN ∈时,证明:()()2214x f x x f x +≤⎡⎤⎣⎦。
2013年普通高校招生全国统考数学试卷(辽宁卷)解答一.DADBA BCCDA BC二.13.20;14.18;15.12;16.1-。
17.解:⑴因2221cos 32a c b B ac +-==,3b =,cos 2BA BC ca B ⋅==,故6ac =,5a c +=。
又a c >,故3a =,2c =;⑵因1cos 3B =,故sin B =。
因3a b ==,2c =,故2227cos 29a b c C ab +-==,有sin C =。
所以()cos cos cos sin sin 2327B C B C B C -=+=。
18.解:⑴将22⨯列联表中的数据代入公式得()22100601020101007030802021χ⨯-⨯==⨯⨯⨯。
因1004.672 3.84121≈>,所以有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;⑵从5名数学系的学生任取3人的一切可能结果所组成的基本事件空间为()()()()()()(){121122123112113123212,,,,,,,,,,,,,,,,,,,,,a ab a a b a a b a b b a b b a b b a b b Ω=()()()}213223123,,,,,,,,a b b a b b b b b ,其中()1,2i a i =表示喜欢甜品的学生,()1,2,3j b j =表示不喜欢甜品的学生。
Ω由10个基本事件组成,且这些基本事件出现是等可能的。
用A 表示“3人中至多有1人喜欢甜品”这一事件,则()()()()()()(){}112113123212213223123,,,,,,,,,,,,,,,,,,,,A a b b a b b a b b a b b a b b a b b b b b =,事件A 是由7个基本事件组成,因此()710P A =。
19.解:⑴由题ABC DBC ∆≅∆,故AC DC =。
又G 为AD 中点,故CG AD ⊥。
同理BG AD ⊥。
因此AD ⊥平面BGC 。
又//EF AD ,所以EF ⊥平面BGC ;⑵在平面ABC 内作AO BC ⊥,交CB 的延长线于O 。
由平面ABC ⊥平面BCD ,知AO ⊥平面BCD 。
又G 为AD 中点,故G 到平面BCD 的距离2h AD =。
在AOB ∆中,0sin60AO AB ==故01111sin1203322D BCG G BCD DBC V V S h BD BC --∆===⋅⋅=。
20.解:⑴设()(),0,0P m n m n >>,则mn =≥8mn ≥,从而三角形面积142S mn =≥,当且仅当m n ==P ;⑵设C :()222210x y a b a b +=>>,点()()1122,,,A x y B x y 。
由点P 在C 上知22221a b +=,并由22221y x x y ab ⎧=⎪⎨+=⎪⎩得222620b x b ++-=。
又12,x x是方程的根,因此()212221262x x x x b b⎧+=-⎪⎨=-⎪⎩。
由1122y x y x ⎧=+⎪⎨=+⎪⎩12|||AB x x =-=。
由点P 到直线l及1||22PAB S AB ∆==得429180b b -+=,解得26b =或23b =。