2015年春季新版苏科版八年级数学下学期9.3、平行四边形教案2
- 格式:doc
- 大小:145.00 KB
- 文档页数:5
平行四边形一、学习目标1.理解平行四边形的概念,掌握平行四边形的性质定理和判定定理;2.能初步运用平行四边形的性质进行推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题.3. 能综合运用平行四边形的判定定理和平行四边形的性质定理进行证明和计算.4. 理解三角形的中位线的概念,掌握三角形的中位线定理.二、要点梳理要点一、平行四边形的定义平行四边形的定义:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“Y ABCD”,读作“平行四边形ABCD”.要点诠释:平行四边形的基本元素:边、角、对角线.相邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条.要点二、平行四边形的性质1.边的性质:平行四边形两组对边平行且相等;2.角的性质:平行四边形邻角互补,对角相等;3.对角线性质:平行四边形的对角线互相平分;4.平行四边形是中心对称图形,对角线的交点为对称中心.要点诠释:(1)平行四边形的性质中边的性质可以证明两边平行或两边相等;角的性质可以证明两角相等或两角互补;对角线的性质可以证明线段的相等关系或倍半关系.(2)由于平行四边形的性质内容较多,在使用时根据需要进行选择.(3)利用对角线互相平分可解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决.要点三、平行四边形的判定1.两组对边分别平行的四边形是平行四边形;2.两组对边分别相等的四边形是平行四边形;3.一组对边平行且相等的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.对角线互相平分的四边形是平行四边形.要点诠释:(1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个平行四边形时,应选择较简单的方法.(2)这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据. 要点四、三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系.(2)三角形的三条中位线把原三角形分成可重合的4个小三角形.因而每个小三角形的周长为原三角形周长的12,每个小三角形的面积为原三角形面积的1 4.(3)三角形的中位线不同于三角形的中线. 要点五、平行线间的距离1.两条平行线间的距离:(1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.注:距离是指垂线段的长度,是正值.(2)平行线间的距离处处相等任何两平行线间的距离都是存在的、唯一的,都是夹在这两条平行线间最短的线段的长度.两条平行线间的任何两条平行线段都是相等的.2.平行四边形的面积:平行四边形的面积=底×高;等底等高的平行四边形面积相等.三、例题精析【例题1】【题干】如图,D,E,F分别为△ABC三边的中点,则图中平行四边形的个数为().【答案】∵D,E,F分别为△ABC三边的中点∴DE∥AF,DF∥EC,DF∥BE且DE=AF,DF=EC,DF=BE∴四边形ADEF、DECF、DFEB分别为平行四边形故答案为3.【解析】根据三角形中位线的性质定理,可以推出DE∥AF,DF∥EC,DF∥BE且DE=AF,DF=EC,DF=BE,根据平行四边形的判定定理,即可推出有三个平行四边形.【题干】如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE= BC,连接DE,CF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE的长.(1)证明:在▱ABCD中,AD∥BC,且AD=BC.∵F是AD的中点,∴DF=.又∵CE=BC,∴DF=CE,且DF∥CE,∴四边形CEDF是平行四边形;(2)解:如图,过点D作DH⊥BE于点H.在▱ABCD中,∵∠B=60°,∴∠DCE=60°.∵AB=4,∴CD=AB=4,∴CH=2,DH=2.在▱CEDF中,CE=DF=AD=3,则EH=1.∴在Rt△DHE中,根据勾股定理知DE==.【解析】(1)由“平行四边形的对边平行且相等”的性质推知AD∥BC,且AD=BC;然后根据中点的定义、结合已知条件推知四边形CEDF的对边平行且相等(DF=CE,且DF∥CE),即四边形CEDF是平行四边形;(2)如图,过点D作DH⊥BE于点H,构造含30度角的直角△DCH和直角△DHE.通过解直角△DCH和在直角△DHE中运用勾股定理来求线段ED的长度.【题干】如图,平行四边形ABCD中,∠BAD的平分线交BC边于点M,而MD平分∠AMC,若∠MDC=45°,则∠BAD=_____,∠ABC=_____.【答案】平行四边形ABCD,∴BC∥AD,∠C=∠BAD,∴∠AMC+∠MAD=180°,∠B+∠BAD=180°∵∠BAD的平分线AM,MD平分∠AMC,∴∠C=∠BAD=2∠MAD,∠AMD=∠CMD,∵∠C+∠CMD+∠CDM=180°,∠MDC=45°,即:∠MAD+2∠CMD=180°,且∠CMD+2∠MAD=135°,解得:∠MAD=30°,∴∠BAD=60°,∠ABC=120°.故答案为:60°,120°.【解析】由平行四边形推出∠AMC+∠MAD=180°,∠B+∠BAD=180°,由三角形的内角和定理得到∠CMD+2∠MAD=135°,因为∠MAD+2∠CMD=180°,解方程组即可求出∠MAD,进一步求出∠BAD和∠ABC的度数.【例题4】【题干】如图,平行四边形ABCD中,E、F分别是对角线BD上的两点,且BE=DF,连接AE、AF、CE、CF.四边形AECF是什么样的四边形,说明你的道理.【答案】∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ABE=∠CDF,∵BE=DF,∴△ABE≌△CDF,∴AE=CF,同理:CE=AF,∴四边形AECF是平行四边形.【解析】由平行四边形的性质可得AB∥CD,AB=CD,已知BE=DF,从而可利用SAS判定△ABE≌△CDF,根据全等三角形的性质可得到AE=CF,同理可得到CE=AF,根据SSS判定△AEF≌△CFE,从而可推出AE∥CF,即可根据有一组对边平行且相等的四边形是平行四边形.【例题5】【题干】杨伯家小院子的四棵小树E、F、G、H刚好在其梯形院子ABCD各边的中点上,若在四边形EFGH种上小草,则这块草地的形状是( )A.平行四边形B.矩形C.正方形D.菱形【答案】A【解析】连接AC,BD.利用三角形的中位线定理可得EH∥FG,EH=FG.∴这块草地的形状是平行四边形.故选A.【例题6】【题干】如图,在▱ABCD中,∠DAB=60°,点E、F分别在CD、AB的延长线上,且AE=AD,CF=CB.(1)求证:四边形AFCE是平行四边形;(2)若去掉已知条件的“∠DAB=60°”,上述的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.【答案】(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠DCB=∠DAB=60°.∴∠ADE=∠CBF=60°.∵AE=AD,CF=CB,∴△AED,△CFB是正三角形.∴∠AEC=∠BFC=60°,∠EAF=∠FCE=120°.∴四边形AFCE是平行四边形.(2)解:上述结论还成立.证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠CDA=∠CBA,∠DCB=∠DAB,AD=BC,DC=AB.∴∠ADE=∠CBF.∵AE=AD,CF=CB,∴∠AED=∠ADE,∠CFB=∠CBF.∴∠AED=∠CFB.又∵AD=BC,在△ADE和△CBF中.,∴△ADE≌△CBF(AAS).∴∠AED=∠BFC,∠EAD=∠FCB.又∵∠DAB=∠BCD,∴∠EAF=∠FCE.∴四边形EAFC是平行四边形.【解析】(1)由已知条件可得△AED,△CFB是正三角形,可得∠AEC=∠BFC=60°,∠EAF=∠FCE=120°,所以四边形AFCE是平行四边形.(2)上述结论还成立,可以证明△ADE≌△CBF,可得∠AEC=∠BFC,∠EAF=∠FCE,所以四边形AFCE是平行四边形.【例题7】【题干】如图,△ABC中∠ACB=90°,点D、E分别是AC, AB的中点,点F在BC的延长线上,且∠CDF=∠A.求证:四边形DECF是平行四边形.【答案】∵D、E分别是AC,AB的中点,∴DE是△ABC的中位线∴DE=BC,DE∥BC 即DE∥CF∵△ABC中∠ACB=90°,E是AB的中点,∴CE=AB∴CE=AE,∴∠A=∠ECD∵∠CDF=∠A,∴∠CDF=∠ECD,∴CE∥DF∴四边形DECF是平行四边形.【解析】利用对边分别平行的四边形是平行四边形进行判定。
问题情境(1)回忆平行四边形的概念;(2)在方格纸上画两条互相平行并且相等的线段AD、BC,连接AB、DC.你能证明所画四边形ABCD是平行四边形吗?利用网格画图,学生能够容易得出结论.已知:如图,在四边形ABCD中,AD//BC,AD=BC.求证:四边形ABCD是平行四边形.证明:连接AC.∵AD∥BC,∴∠BCA=∠DAC.在ΔBCA和ΔDAC中,CB=AD,∠BCA=∠DAC,CA=AC,∴ΔBCA≌ΔDAC∴ ∠BAC= ∠DCA.∴ AB∥CD.∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).定理:一组对边平行且相等的四边形是平行四边形.几何语言:∵AD//BC,AD=BC,∴四边形ABCD是平行四边形.探索活动在四边形ABCD中,AB=CD,AD=BC.四边通过学生操作、思考,利念,进一步证明了一组对边平行且相等的四边形是平行四边形,从而加深学生的理解.使学生能够运用平行四边形的概念和定理证明四边形是平行四边形,从而得到两组对边分别相等的四边形是平行四边形.形ABCD是平行四边形吗?证明你的结论.证明:连结AC在△ABC和△CDA中AB=CD(已知)AD=CB (已知)AC=CA (公共边)∴△ABC≌△CDA(SSS)∴∠1=∠2,∠3=∠4(全等三角形的对应角相等)∴ AB∥CD,AD∥BC (内错角相等,两直线平行)∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形)定理:两组对边分别相等的四边形是平行四边形.几何语言:∵AB=CD,AD=BC,∴四边形ABCD是平行四边形.。
苏科版数学八年级下册教学设计9.3 平行四边形(3)一. 教材分析苏科版数学八年级下册第9.3节“平行四边形(3)”的内容,是在学生已经掌握了平行四边形的性质、平行四边形的判定、平行四边形的性质定理等知识的基础上进行的一节实践性较强的课程。
本节课主要让学生通过观察、操作、思考、交流等活动,探索并掌握平行四边形的对角相等的性质,培养学生的空间想象能力和逻辑思维能力。
二. 学情分析学生在学习本节课之前,已经具备了以下基础:1.掌握了平行四边形的定义、性质、判定等基本知识;2.具备一定的观察、操作、思考、交流的能力;3.了解平行四边形的性质定理。
但学生在解决实际问题时的应用能力和空间想象能力还有待提高。
三. 教学目标1.让学生掌握平行四边形的对角相等的性质;2.培养学生的空间想象能力和逻辑思维能力;3.提高学生解决实际问题的能力。
四. 教学重难点1.平行四边形的对角相等的性质的理解和应用;2.平行四边形性质定理在解决实际问题中的应用。
五. 教学方法1.采用问题驱动法,引导学生自主探究;2.运用操作验证法,让学生通过实际操作体验平行四边形的性质;3.利用交流讨论法,培养学生合作解决问题的能力。
六. 教学准备1.准备平行四边形的模型或图片;2.准备剪刀、彩纸等操作材料;3.准备与本节课相关的问题及解答。
七. 教学过程1. 导入(5分钟)教师通过展示一些平行四边形的图片,让学生观察并思考:平行四边形有哪些性质?你能发现哪些规律?从而引出本节课的主题——平行四边形的对角相等的性质。
2. 呈现(10分钟)教师通过PPT或黑板,呈现平行四边形的性质定理,让学生阅读并理解定理的内容。
同时,教师可以举例说明性质定理的应用。
3. 操练(10分钟)教师分发操作材料,让学生分组进行实际操作,验证平行四边形的对角相等的性质。
学生在操作过程中,可以互相交流、讨论,共同解决问题。
4. 巩固(10分钟)教师提出一些与本节课相关的问题,让学生独立思考并解答。
苏科版数学八年级下册教学设计9.3 平行四边形(2)一. 教材分析苏科版数学八年级下册第9.3节“平行四边形(2)”的内容,是在学生已经掌握了平行四边形的性质和判定基础上进行授课。
本节课的主要内容有:平行四边形的对角线的性质,以及平行四边形的判定方法。
教材通过丰富的图片和实例,激发学生的学习兴趣,培养学生的空间想象能力和抽象思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了平行四边形的性质,对平行四边形的概念和特点有一定的了解。
但部分学生在理解和运用方面还存在一定的困难,如对角线的性质和判定方法的掌握。
因此,在教学过程中,教师需要关注这部分学生的学习情况,通过合理的教学方法,帮助他们理解和掌握本节课的内容。
三. 教学目标1.知识与技能目标:使学生掌握平行四边形的对角线的性质,能够运用性质解决相关问题;引导学生掌握平行四边形的判定方法,能够运用判定方法判断一个四边形是否为平行四边形。
2.过程与方法目标:通过观察、分析、推理等方法,培养学生的空间想象能力和抽象思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神,使学生在学习过程中体验到成功的喜悦。
四. 教学重难点1.教学重点:平行四边形的对角线的性质,平行四边形的判定方法。
2.教学难点:对角线性质的证明,以及平行四边形判定方法的灵活运用。
五. 教学方法1.情境教学法:通过丰富的图片和实例,激发学生的学习兴趣,培养学生的空间想象能力和抽象思维能力。
2.问题驱动法:教师提出问题,引导学生思考和探究,从而达到理解掌握知识的目的。
3.合作学习法:学生分组讨论,共同解决问题,培养学生的团队合作精神和沟通能力。
4.归纳总结法:教师引导学生总结本节课的知识点,帮助学生巩固记忆。
六. 教学准备1.教学课件:制作精美的课件,展示平行四边形的对角线性质和判定方法。
2.教学素材:准备相关的图片和实例,用于引导学生观察和分析。
3.学案:为学生准备学习指导案,帮助学生梳理学习思路。
《平行四边形(1)》教学设计(教材:苏科版数学八年级下册)【教学内容分析】平行四边形是我们常见的一种基本图形,它具有和谐的对称美,它也是矩形、菱形、正方形的基础,同时它与梯形又有所区别,本节课教参的要求是以中心对称为主线,让学生通过:操作——观察——探索——交流、归纳——有条理地表达,从而获得平行四边形的性质;让学生通过经历知识的形成与应用过程,从而更好地理解数学知识的意义,掌握必要的基础知识与基本技能,发展应用数学知识的意识与能力,增强学好数学的愿望和信心。
【教学目标分析】1、知识与技能:结合现实生活中的具体情境,以中心对称为主线,了解平行四边形的概念及其基本性质。
2、过程与方法:经历探索平行四边形的概念、性质的过程,通过操作、观察、探索等活动,发展主动探究意识和有条理的表达能力,培养观察、分析、归纳、概括、判断的能力以及动手操作的能力。
3、情感、态度和价值观:在对平行四边形性质的探索过程中,理解特殊与一般的关系,领会特殊事物的本质属性与其特殊性质的关系。
在数学学习活动中获得成功的体验,建立自信心,认识数学与人类生活的密切联系,感受数学的严谨性以及数学结论的确定性,形成实事求是的态度及独立思考的习惯。
【重难点分析】重点:平行四边形的概念、性质及其简单应用。
难点:发展主动探究意识和有条理的表达能力。
设计意图:本课课前通过预习导学案的指导让学生充分预习,让学生对本课的重难点在自学过程中作一定程度的探索和学习。
本课对于平行四边形性质的探索从两方面入手,一是操作验证,二是理论论证,让学生从直观感知过渡到说理论证,加强了学生对性质的理解和记忆。
课件中生活情境的创设以及直观动态的演示也帮助了本课重难点的突破。
【教学过程】一、课堂导入,检查预习:(一)让学生从图片中寻找“平行四边形”,感受平行四边形在生活中的应用。
设计意图:苏科版教材强调“生活数学”和“做数学”,本课导入环节从生活出发,激发学生的兴趣,让学生感受到数学源于生活用于生活。
A D CB A DC B9.3 平行四边形(2)学习目标:1.探索并掌握平行四边形的判定条件;2.能利用平行四边形的判定方法解决有关问题. 重点、难点:探索平行四边形成立的条件;掌握平行四边形的判定方法并会 简单应用。
学习过程一.【预学指导】初步感知、激发兴趣 对于四边形ABCD ,如果从条件①AB ∥CD ;②AD ∥BC ;③AB =CD ;④BC =AD 中选出2个,那么能说明四边形ABCD 是平行四边形的有___ (填序号,填出符合条件的所有情况。
)二.【问题探究】问题1:在方格纸上画两条互相平行且相等的线段AD 、BC ,并连结AB 、DC , AB ∥CD 平行吗?你能用实际操作(一副三角板)验证吗?你能说明所画四边形ABCD 是平行四边形吗?探究:你能用不同的方法借助网格画平行四边形吗?已知:如图,在四边形ABCD 中,AD//BC ,AD =BC .求证:四边形ABCD 是平行四边形.定理: 的四边形是平行四边形.几何语言:∵∴问题2:在四边形ABCD 中,AB =CD ,AD =BC . 四边形A BCD 是平行四边形吗?证明你的结论.定理: 的四边形是平行四边形.几何语言:∵∴个人复备E F B A D CC问题3:已知:如图,在□ABCD 中,点E 、F 分别在AD 、BC 上,且AE =CF . 求证:四边形BFDE 是平行四边形.三.【拓展提升】如图,在□ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别是E 、F ,求证:四边形AECF 是平行四边形.四.【课堂小结】通过这节课的学习,你有什么感受呢?【板书设计】【教学反思】个人复备 个人复备。
苏科版数学八年级下册9.3《平行四边形》教学设计2一. 教材分析《平行四边形》是苏科版数学八年级下册第9章第3节的内容,本节课主要让学生掌握平行四边形的性质。
教材通过生活实例引入平行四边形的概念,接着引导学生探究平行四边形的性质,最后通过巩固练习,使学生熟练掌握平行四边形的性质。
二. 学情分析学生在学习本节课之前,已经掌握了多边形的基本概念,如四边形、五边形等,并了解了四边形的分类。
同时,学生已经学习了平行线的性质,对于平行线有一定的认识。
但是,学生对于平行四边形的性质还不够了解,需要在课堂上进行探究和学习。
三. 教学目标1.知识与技能:使学生掌握平行四边形的性质,能够识别和判断平行四边形。
2.过程与方法:通过观察、操作、探究等方法,培养学生的动手能力和思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:平行四边形的性质。
2.难点:如何证明平行四边形的性质。
五. 教学方法1.情境教学法:通过生活实例引入平行四边形的概念,激发学生的学习兴趣。
2.探究教学法:引导学生动手操作,自主探究平行四边形的性质。
3.合作学习法:分组讨论,培养学生的团队合作精神。
六. 教学准备1.教具:多媒体课件、平行四边形模型、彩笔、黑板。
2.学具:学生手册、练习题、剪刀、彩纸。
七. 教学过程1.导入(5分钟)利用多媒体课件展示生活实例,如篮球场、教室窗户等,引导学生观察并提问:“这些图形是什么图形?它们有什么共同的特点?”从而引入平行四边形的概念。
2.呈现(5分钟)教师展示平行四边形的模型,引导学生观察并提问:“平行四边形有哪些性质?你能找出它们的特征吗?”学生回答后,教师进行总结。
3.操练(10分钟)学生分组讨论,利用彩纸剪出平行四边形,并观察其性质。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)学生完成学生手册上的练习题,教师及时批改,指出错误并讲解。
5.拓展(10分钟)教师提出拓展问题:“平行四边形和矩形、菱形有什么关系?你能举例说明吗?”学生分组讨论,教师巡回指导。
学段学科初二数学主备人课题§9.3-2 平行四边形(2)教学目标1.以中心对称为主线,探索四边形是平行四边形的条件;2.能应用平行四边形的判定方法解决简单的问题;3. 经历探索四边形是平行四边形的条件过程,在活动中发展探究意识和有条理的表达能力.教学重点探索平行四边形成立的条件.教学难点掌握平行四边形的判定方法并会简单应用.教学过程(教师)学生活动设计意图【情境引入】1、回忆:平行四边形的概念,平行四边形有哪些性质?2、在四边形ABCD中,∠1=∠2,∠3=∠4,四边形ABCD是平行四边形吗?学生观察图形,回答问题,复习平行四边形的概念与性质.通过具体题目复习,让学生体会平行四边形的相关概念.自然导入本节课的教学,并且揭示课题.【合作探究】活动一:在方格纸上画两条互相平行且相等的线段AD、BC、,检验线段AB与DC是否互相平行?判断四边形ABCD是否是平行四边形?为什么?归纳:平行四边形判定方法1:一组对边平行且相等的四边形是平行四边形。
活动二:在四边形ABCD中,AB=CD,AD=BC,四边形ABCD是平行四边形吗?证明你的结论。
归纳:平行四边形判定方法2:两组对边分别平行的四边形是平行四边形。
活动三:操作1:画2条相交直线a,b,设交点为O2:在直线a上截取OA=OC,在直线b上截取OB=OD,连接AB,BC,CD,DA。
思考所画的四边形ABCD是平行四边形吗?归纳:平行四边形判定方3:两条对角线互相平分的四边形是平行四边形。
学生自己画图独立思考.1.学生利用全等证明结论成立.2.学生独立思考完成,到平行四边形的判定条件.利用网格画图,学生能够容易得出结论.通过学生操作、思考,利用平行四边形的概念,进一步证明了一组对边平行且相等的四边形是平行四边形,从而加深学生的理解.使学生能够运用平行四边形的概念和定理证明四边形是平行四边形,从而得到两组对边分别相等的四边形是平行四边形.【例题分析】例1、如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.试说明:(1)△AFD≌△CEB.(2)四边形ABCD是平行四边形.小组讨论,代表回答,小组间相互补充.学生经历分培养学生运用几何语言进行说理的规范性.引导学生分例2、如图,在口ABCD 中,点E,F分别在AB,CD 上,AE=CF.四边形DEBF 是平行四边形吗?为什么?析题目的过程.清题中直接给出的条件和根据平行四边形的性质找出隐含的条件.【展示交流】1.下列条件中,不能确定四边形ABCD是平行四边形的是( )A.AB=CD,AD∥BC B.AB=CD,AB//CDC.AB//CD,AD//BC D.AB=CD,AD=BC 2.如图,在□ABCD中,EF∥AB,GH∥AD,EF与GH相交于点O,则图中平行四边形的个数是 ( )A.7 B.8C.9 D.113.一个四边形的三个内角的度数依次如下,其中是平行四边形的是 ( )A.88°、108°、88° B.88°、104°、108° C.88°、92°、92° D.88°、92°、88°4。
苏科版数学八年级下册教学设计9.3 平行四边形(1)一. 教材分析苏科版数学八年级下册第9.3节“平行四边形(1)”主要包括平行四边形的性质和判定。
本节内容是学生学习了四边形的性质之后的内容,是学生对四边形知识的进一步拓展。
本节内容对于学生理解和掌握平行四边形的性质和判定,以及后续学习中应用平行四边形的性质解决实际问题具有重要意义。
二. 学情分析八年级的学生已经掌握了四边形的性质,对于新知识有一定的接受能力。
但是,对于平行四边形的性质和判定,学生可能还比较陌生,需要通过实例和操作来理解和掌握。
此外,学生可能对于证明过程和方法还不够熟练,需要通过练习来提高。
三. 教学目标1.理解平行四边形的性质和判定。
2.能够应用平行四边形的性质解决实际问题。
3.培养学生的逻辑思维能力和证明能力。
四. 教学重难点1.平行四边形的性质和判定。
2.证明过程和方法。
五. 教学方法采用问题驱动法,通过实例和操作,引导学生探索平行四边形的性质和判定。
同时,结合证明过程,培养学生的逻辑思维能力和证明能力。
六. 教学准备1.PPT课件。
2.练习题和答案。
七. 教学过程1.导入(5分钟)通过PPT展示一些生活中的平行四边形,如教室的黑板、滑梯等,引导学生关注平行四边形,激发学生的学习兴趣。
2.呈现(10分钟)介绍平行四边形的定义和性质,如对边平行、对角相等等,并通过PPT展示相关的图示和例题,让学生理解和掌握平行四边形的性质。
3.操练(10分钟)让学生通过PPT上的练习题,应用所学的平行四边形的性质进行计算和证明。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)通过PPT上的巩固题,让学生进一步理解和掌握平行四边形的性质。
教师选取部分学生的答案进行讲解和分析。
5.拓展(10分钟)引导学生思考如何判定一个四边形是平行四边形,介绍判定方法,如对角线互相平分、对边平行等。
并通过PPT展示相关的图示和例题,让学生理解和掌握判定方法。
6.小结(5分钟)让学生总结本节课所学的内容,教师进行补充和讲解。
9.3 平行四边形(1)教学目标:1.以中心对称为主线,研究平行四边形的性质.2.经历探索平行四边形的概念性质的过程,在活动中发展学生的探究意识和有条理的表达能力.3.在对平行四边形性质的探索过程中,理解特殊与一般的关系,领会特殊事物的本质属性与其特殊性质的关系.教学重点:对中心对称图形的理解;有条理的说理的表达能力,规范书写的格式.教学难点:灵活利用平行四边形的概念及其性质解决有关问题.教学过程:一、情境创设师:以课本的两幅图引入,观察,探索:图片中有你熟悉的图形吗?这些图形有什么特征?生:畅所欲言,互相交流.二、探索活动师:引出平行四边形的概念:两组对边分别平行的四边形是平行四边形.记作“□ABCD”,读作“平行四边形ABCD”.图中的四边形ABCD即为平行四边形.尝试:O是□ABCD对角线AC的中点.用透明纸覆盖在下图,描出□ABCD及其对角线AC,再用大头针钉在点O处,将透明纸上的□ABCD旋转1800.你有什么发现?平行四边形ABCD绕点O旋转180:因为O是AC的中点,所以点A与点C重合,点C与点A重合;因为AB ∥ CD,可知∠1= ∠2,所以AB落在射线CD上;因为AD ∥ BC,可知∠3= ∠4,所以CB落在射线AD上.因为两条直线相交只有一个交点,所以点B(AB和CB 的交点)与点D(CD和AD的交点)重合.同理,点D与点B重合.连接BD,因为点B与点D关于点O对称,所以BD经过点O,且被点O平分(如图).平行四边形是中心对称图形,对角线的交点是它的对称中心.师:思考:从证实□ABCD是中心对称图形的过程中,你发现平行四边形还有哪些性质?生:平行四边形的性质:平行四边形的对边相等、对角相等、对角线互相平分.三、例题讲解:师:已知:如图,点A、B、C分别在△EFD的各边上,且AB//DE,BC//EF,CA//FD.求证:A、B、C分别是△EFD各边的中点.先让学生自主思考,学生之间互相讨论.然后老师指定人去讲台板演.老师给予详细证明过程.证明:∵CA ∥ FD,BC ∥ EF,∴四边形AFBC是平行四边形(两组对边分别平行的四边形是平行四边形)∴AF=BC(平行四边形的对边相等).∴AB ∥ DE,BC ∥ EF,∴四边形ABCE是平行四边形(两组对边分别平行的四边形是平行四边形).∴AE=BC(平行四边形的对边相等).∴AF=AE.同理 BD=BF,CD=CE.∴A、B、C分别是△DEF各边的中点.师:思考:△ABC和△EFD的内角分别相等吗?为什么?你还能得到哪些结论?证明你的结论.生:解:△ ABC与△ DEF的内角分别相等,即∠BAC=∠D,∠ACB=∠F,∠ABC=∠E.理由:∵ AB ∥ DE,BC ∥ EF,∴四边形ABCE是平行四边形,∴ ∠ABC=∠E.同理可证∠BAC=∠D,∠ACB=∠F.图中AF=AE=BC,AB=CD=CE,AC=BD=BF.理由:∵四边形AFBC是平行四边形,∴AF=BC.又∵四边形ABCE是平行四边形,∴BC=AE,∴AF=AE=BC.同理可证AB=CD=CE,AC=BD=BF.四、课堂练习:课本第66页1、 2题.随堂练习(一)填空1.平行四边形的对边,对角,对角线。