2016数学建模专题之遗传算法(25页)
- 格式:ppt
- 大小:2.33 MB
- 文档页数:101
数学建模的遗传算法遗传算法是一种模拟自然遗传和进化过程的数学建模方法,它广泛应用于数学建模问题的求解。
下面将从什么是遗传算法、遗传算法的基本原理、遗传算法的步骤以及遗传算法在数学建模中的应用四个方面进行详细阐述。
首先,什么是遗传算法?遗传算法(Genetic Algorithm, GA)是一种基于进化论和遗传学原理的搜索算法,通过模拟生物进化的过程来寻找最优解。
它通过对问题中的候选解进行编码、选择合适的父代解进行交叉和变异等操作,并根据适应度函数对解进行评估和选择,不断迭代优化,直至找到一个近似最优解。
遗传算法的基本原理是模拟生物进化的过程。
它的设计思想源于达尔文的进化论:个体的适应度越高,越有可能在繁殖中生存下来,并向下一代传递优良基因。
类似地,在遗传算法中,优秀解(个体)被选出参与繁殖(交叉和变异),进而产生更多优秀解的下一代,从而逐渐接近最优解。
遗传算法的步骤主要包括:初始化种群、评估适应度、选择父代、交叉和变异、生成子代、替换和终止条件。
首先,需要根据问题的特点和需要设置种群的初始解,即生成一组随机初始化的个体。
然后,通过适应度函数对每个个体进行评估并计算适应度值,以确定每个个体相对于其他个体的优劣程度。
接下来,选择父代个体用于交叉和变异操作。
选择可以采用各种选择策略,如轮盘赌选择、竞争选择等。
交叉和变异是为了产生新的个体,增加解的多样性和探索空间。
其中,交叉是将两个个体的染色体进行交换和融合,而变异是对个体的染色体进行一定的随机改变。
生成的子代将替换原有的父代,经过多次迭代优化,直到满足某个终止条件(如达到最大代数或找到满意解)为止。
最后,遗传算法在数学建模中有广泛的应用。
它能够解决许多实际问题,如旅行商问题、工厂布局问题、路径规划问题等。
在这些问题中,遗传算法能够通过对候选解的编码和优化过程,找到全局或局部最优解,并通过不断优化迭代过程提高解的质量。
综上所述,遗传算法是一种模拟自然遗传和进化过程的搜索算法。
数学建模遗传算法详解数学建模是指运用数学的方法和理论,对实际问题进行描述、分析、求解和预测的一种科学方法。
在数学建模的过程中,遗传算法是一种常用的优化算法,在解决复杂问题时具有较高的效果和准确性。
遗传算法是一种模拟生物进化思想的优化算法,通过模拟生物进化的过程,通过自然选择、交叉和变异等操作,逐步优化群体中的个体,并最终找到全局最优解。
遗传算法的基本思想是将问题转化为遗传编码和遗传操作的过程,以求解问题的最优解。
遗传算法的具体步骤如下:1. 初始化种群:根据问题的特点和要求,确定初始种群的规模和编码方式。
2. 评估适应度:根据问题的优化目标,对每个个体进行适应度评估,以确定每个个体在种群中的适应程度。
3. 选择操作:采用适应度选择策略,根据适应度值选择个体,优秀的个体被选择的概率更高,从而保留更好的基因。
4. 交叉操作:在选择的个体中进行交叉操作,通过基因的交换和组合,产生新的个体,以增加种群的多样性。
5. 变异操作:对交叉产生的个体进行变异操作,通过基因的随机变化,引入新的基因信息,以增加搜索空间。
6. 更新种群:根据选择、交叉和变异操作的结果,更新种群,进入下一代。
7. 终止条件:设置终止条件,如达到最大迭代次数、满足精度要求等,终止算法。
通过上述步骤的迭代,遗传算法能够逐步优化种群,并最终获得问题的最优解。
在实际应用中,遗传算法在优化问题、路径规划、机器学习等领域有着广泛的应用。
总而言之,数学建模中的遗传算法是一种有效的优化算法,通过模拟生物进化的过程,寻找问题的最优解。
它具有较高的准确性和效果,在实际问题的求解中有着重要的应用价值。
在使用遗传算法时,需要根据具体问题确定算法的参数和操作方法,以获得更好的优化效果。
遗传算法简述及代码详解声明:本文内容整理自网络,认为原作者同意转载,如有冒犯请联系我。
遗传算法基本内容遗传算法为群体优化算法,也就是从多个初始解开始进行优化,每个解称为一个染色体,各染色体之间通过竞争、合作、单独变异,不断进化。
遗传学与遗传算法中的基础术语比较染色体:又可以叫做基因型个体(individuals)群体/种群(population):一定数量的个体组成,及一定数量的染色体组成,群体中个体的数量叫做群体大小。
初始群体:若干染色体的集合,即解的规模,如30,50等,认为是随机选取的数据集合。
适应度(fitness):各个个体对环境的适应程度优化时先要将实际问题转换到遗传空间,就是把实际问题的解用染色体表示,称为编码,反过程为解码/译码,因为优化后要进行评价(此时得到的解是否较之前解优越),所以要返回问题空间,故要进行解码。
SGA采用二进制编码,染色体就是二进制位串,每一位可称为一个基因;如果直接生成二进制初始种群,则不必有编码过程,但要求解码时将染色体解码到问题可行域内。
遗传算法的准备工作:1) 数据转换操作,包括表现型到基因型的转换和基因型到表现型的转换。
前者是把求解空间中的参数转化成遗传空间中的染色体或者个体(encoding),后者是它的逆操作(decoding)2) 确定适应度计算函数,可以将个体值经过该函数转换为该个体的适应度,该适应度的高低要能充分反映该个体对于解得优秀程度。
非常重要的过程。
遗传算法基本过程为:1) 编码,创建初始群体2) 群体中个体适应度计算3) 评估适应度4) 根据适应度选择个体5) 被选择个体进行交叉繁殖6) 在繁殖的过程中引入变异机制7) 繁殖出新的群体,回到第二步实例一:(建议先看实例二)求 []30,0∈x 范围内的()210-=x y 的最小值1) 编码算法选择为"将x 转化为2进制的串",串的长度为5位(串的长度根据解的精度设 定,串长度越长解得精度越高)。
数学建模⽅法-遗传算法(理论篇)⼀、引⾔ 哈喽⼤家好,今天要给⼤家讲的是“遗传算法”。
跟粒⼦群算法、蚁群算法⼀样,遗传算法也是属于启发式算法,它基于达尔⽂的进化论,模拟进化论中的“⾃然选择,物竞天择、适者⽣存”,通过N代的遗传、变异、交叉、复制,进化出问题的最优解。
⼆、浅谈⽣物学2.1 达尔⽂教你进化论 学过初中⽣物的应该都知道达尔⽂的进化论。
总结起来其实就是“物竞天择、适者⽣存”。
这是什么意思呢?通俗讲,就是在弱⾁强⾷的时代,唯有强者才能⽣存下来。
记住这句话,这是遗传算法的核⼼。
2.2 遗传学所告诉我们的 好,达尔⽂告诉我们要⽣存下去就要适应环境,但是如何它没告诉我们存活下来的⽣物是如何不被淘汰的。
遗传学告诉了我们答案。
我们知道,细胞是所有⽣物的基⽯。
对于每个细胞,都有⼀套相同的染⾊体,⽽染⾊体,则是由DNA所聚合⽽成,其中DNA⼜是由基因组成的。
每个基因都编码了⼀个独特的性状,⽐如头发或眼⽪的颜⾊。
如下图: 我们假设在某个地区O,⽣活着两类⽣物,其中携带基因a的⽣物种群P能够适应当前的⾃然环境,携带基因b的⽣物种群Q不能够适应当前的⾃然环境。
因此,随着岁⽉的流逝,那些不能适应当前⾃然环境的⽣物⼀个个死去,⽽能够适应当前⾃然环境的⽣物不断的繁衍。
很多年很多年过去后,这个地区O留下来的都是携带基因a的⽣物种群P。
好了,⽣物学知识暂且讲到这⾥,⾜够我们接下来解释我们的遗传算法了。
三、遗传算法3.1 遗传算法的定义 我们把种群P当成问题的最优解,把除P外的种群当成普通解。
那么进化就是普通解不断被淘汰⽽最后留下的只有最优解的过程。
这就是遗传算法的思想。
我们先给出遗传算法的流程如下,具体在后⾯解释: 1. 种群初始化 2. 计算每个种群的适应度值 3. 选择(Selection) 4. 交叉(Crossover) 5. 变异(Mutation) 6. 重复2-5步直⾄达到进化次数 现在,我们来逐步理解⼀下整个流程。
算法】超详细的遗传算法(GeneticAlgorithm)解析01 什么是遗传算法?1.1 遗传算法的科学定义遗传算法(Genetic Algorithm, GA)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。
其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,不需要确定的规则就能自动获取和指导优化的搜索空间,自适应地调整搜索方向。
遗传算法以一种群体中的所有个体为对象,并利用随机化技术指导对一个被编码的参数空间进行高效搜索。
其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定五个要素组成了遗传算法的核心内容。
1.2 遗传算法的执行过程(参照百度百科)遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。
每个个体实际上是染色体(chromosome)带有特征的实体。
染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。
因此,在一开始需要实现从表现型到基因型的映射即编码工作。
由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码。
初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。
遗传算法(GeneticAlgorithms)遗传算法前引:1、TSP问题1.1 TSP问题定义旅⾏商问题(Traveling Salesman Problem,TSP)称之为货担郎问题,TSP问题是⼀个经典组合优化的NP完全问题,组合优化问题是对存在组合排序或者搭配优化问题的⼀个概括,也是现实诸多领域相似问题的简化形式。
1.2 TSP问题解法传统精确算法:穷举法,动态规划近似处理算法:贪⼼算法,改良圈算法,双⽣成树算法智能算法:模拟退⽕,粒⼦群算法,蚁群算法,遗传算法等遗传算法:性质:全局优化的⾃适应概率算法2.1 遗传算法简介遗传算法的实质是通过群体搜索技术,根据适者⽣存的原则逐代进化,最终得到最优解或准最优解。
它必须做以下操作:初始群体的产⽣、求每⼀个体的适应度、根据适者⽣存的原则选择优良个体、被选出的优良个体两两配对,通过随机交叉其染⾊体的基因并随机变异某些染⾊体的基因⽣成下⼀代群体,按此⽅法使群体逐代进化,直到满⾜进化终⽌条件。
2.2 实现⽅法根据具体问题确定可⾏解域,确定⼀种编码⽅法,能⽤数值串或字符串表⽰可⾏解域的每⼀解。
对每⼀解应有⼀个度量好坏的依据,它⽤⼀函数表⽰,叫做适应度函数,⼀般由⽬标函数构成。
确定进化参数群体规模、交叉概率、变异概率、进化终⽌条件。
案例实操我⽅有⼀个基地,经度和纬度为(70,40)。
假设我⽅飞机的速度为1000km/h。
我⽅派⼀架飞机从基地出发,侦察完所有⽬标,再返回原来的基地。
在每⼀⽬标点的侦察时间不计,求该架飞机所花费的时间(假设我⽅飞机巡航时间可以充分长)。
已知100个⽬标的经度、纬度如下表所列:3.2 模型及算法求解的遗传算法的参数设定如下:种群⼤⼩M=50;最⼤代数G=100;交叉率pc=1,交叉概率为1能保证种群的充分进化;变异概率pm=0.1,⼀般⽽⾔,变异发⽣的可能性较⼩。
编码策略:初始种群:⽬标函数:交叉操作:变异操作:选择:算法图:代码实现:clc,clear, close allsj0=load('data12_1.txt');x=sj0(:,1:2:8); x=x(:);y=sj0(:,2:2:8); y=y(:);sj=[x y]; d1=[70,40];xy=[d1;sj;d1]; sj=xy*pi/180; %单位化成弧度d=zeros(102); %距离矩阵d的初始值for i=1:101for j=i+1:102d(i,j)=6370*acos(cos(sj(i,1)-sj(j,1))*cos(sj(i,2))*...cos(sj(j,2))+sin(sj(i,2))*sin(sj(j,2)));endendd=d+d'; w=50; g=100; %w为种群的个数,g为进化的代数for k=1:w %通过改良圈算法选取初始种群c=randperm(100); %产⽣1,...,100的⼀个全排列c1=[1,c+1,102]; %⽣成初始解for t=1:102 %该层循环是修改圈flag=0; %修改圈退出标志for m=1:100for n=m+2:101if d(c1(m),c1(n))+d(c1(m+1),c1(n+1))<...d(c1(m),c1(m+1))+d(c1(n),c1(n+1))c1(m+1:n)=c1(n:-1:m+1); flag=1; %修改圈endendendif flag==0J(k,c1)=1:102; break %记录下较好的解并退出当前层循环endendendJ(:,1)=0; J=J/102; %把整数序列转换成[0,1]区间上实数即染⾊体编码for k=1:g %该层循环进⾏遗传算法的操作for k=1:g %该层循环进⾏遗传算法的操作A=J; %交配产⽣⼦代A的初始染⾊体c=randperm(w); %产⽣下⾯交叉操作的染⾊体对for i=1:2:wF=2+floor(100*rand(1)); %产⽣交叉操作的地址temp=A(c(i),[F:102]); %中间变量的保存值A(c(i),[F:102])=A(c(i+1),[F:102]); %交叉操作A(c(i+1),F:102)=temp;endby=[]; %为了防⽌下⾯产⽣空地址,这⾥先初始化while ~length(by)by=find(rand(1,w)<0.1); %产⽣变异操作的地址endB=A(by,:); %产⽣变异操作的初始染⾊体for j=1:length(by)bw=sort(2+floor(100*rand(1,3))); %产⽣变异操作的3个地址%交换位置B(j,:)=B(j,[1:bw(1)-1,bw(2)+1:bw(3),bw(1):bw(2),bw(3)+1:102]);endG=[J;A;B]; %⽗代和⼦代种群合在⼀起[SG,ind1]=sort(G,2); %把染⾊体翻译成1,...,102的序列ind1num=size(G,1); long=zeros(1,num); %路径长度的初始值for j=1:numfor i=1:101long(j)=long(j)+d(ind1(j,i),ind1(j,i+1)); %计算每条路径长度endend[slong,ind2]=sort(long); %对路径长度按照从⼩到⼤排序J=G(ind2(1:w),:); %精选前w个较短的路径对应的染⾊体endpath=ind1(ind2(1),:), flong=slong(1) %解的路径及路径长度xx=xy(path,1);yy=xy(path,2);plot(xx,yy,'-o') %画出路径以上整个代码中没有调⽤GA⼯具箱。
数学建模中的遗传算法设计数学建模是现代科学的重要组成部分,它的发展推动了现代自然科学和工程科学的进步。
而在数学建模中,遗传算法是一种非常有效的优化算法,在实际应用中具有广泛的应用前景。
一、遗传算法的基本原理遗传算法是一种通过模拟自然进化过程获取最优解的方法。
其基本原理是对于一个需要求解的问题,根据问题特性设计出适应度函数,该函数能够衡量个体的适应程度。
在进化过程中,将该适应度函数作为选择个体的依据,而后产生随机变异,不断迭代,最终找到全局最优解。
具体来说,遗传算法包含以下几个基本操作:1、初始化种群:生成一个随机种群,其中个体遵守问题特定的限制条件,如初始解范围、数量、精度等。
2、选择操作:根据适应度函数选择每一代群体的优良解。
3、交叉操作:在群体中选择两个个体进行交叉,产生下一代。
4、变异操作:对产生的下一代个体进行变异,从而增加群体的多样性。
5、重复执行选择、交叉、变异操作:重复执行直到达到终止条件,如迭代次数、达到一定精度等。
遗传算法的主要优点是能够在大量的组合、问题结构较复杂、目标函数具有非线性、多峰等特点的优化问题中获得较好的全局最优解。
但同时也存在一些缺陷,如易陷入局部最优解,多次运行结果不一致等问题。
二、遗传算法在数学建模中的应用1、函数优化问题如求解无约束非线性函数的最小值、最大值等,通过适应度函数来评估群体中个体的适应程度,根据遗传算法的原则不断迭代更新,最终得到全局最优解。
例如,已知函数$f(x)=-x^2+2x+5$,求其最大值。
遗传算法可编程求得该函数最大值$x=1$。
2、组合优化问题如旅行商问题、背包问题、调度问题等,这些经典问题通常不依赖于外部条件,可以通过组合优化的方式求解。
遗传算法在解决这些问题时,可以通过选择合适的遗传操作和适应度函数得到非常好的优化结果。
例如,求解背包问题,遗传算法可通过交叉、变异等操作不断优化方案,达到最优背包填充方案。
3、物理建模问题如固体力学中弹性力学问题、电磁场问题等,这些问题通常涉及到大量的物理变量和参数,其求解难度较高。