高二物理机械波多解问题分析(教学课件201909)
- 格式:ppt
- 大小:150.00 KB
- 文档页数:9
关于机械波多解问题的例析山东临沂双月园学校(276017)刘忠涛机械波多解问题历来是各级各类考试中经常考察的热点,也是高中物理教学中的一个重点和难点。
学生在求解机械波问题时,往往由于对波动的实质理解不深刻、对题目中隐含条件挖掘不透彻、对已知条件使用不全面等,常常会出现解答不完整而造成漏解。
本文限于横波沿一条直线传播的情形,就常见的机械波多解问题通过剖析其成因进行归类例析,力求帮助学生掌握解决此类问题的根本。
一、波传播的“双向性”带来的多解问题机械波在同种介质中沿一条直线传播的情形下,波的传播方向有两种可能,这就是波传播的“双向性”。
当题目没有明确波的传播方向时,我们必须要考虑波传播的“双向性”,才能得出完整的答案。
例1如图1所示,一列简谐横波以速率v传播,t1时刻的波形为实线,t2时刻的波形为虚线。
已知△t= t2- t1=0.06s,且△t小于一个周期T。
则下列关于该列波传播的周期与速率的判断,可能正确的是( )。
A.T=0.24s,v=50m/sB.T=0.08s,v=150m/sC.T=0.24s,v=150m/sD.T=0.08s,v=50m/s解析:本题没有明确波的传播方向,因此需要考虑波传播的“双向性”。
由图1可知,该波的波长为λ=12m。
(1)若波沿+x方向传播,由图1可看出,波在△t内传播的最小距离为△S=λ/4。
又则波速大小v=△s/△t=λ/T =50m /s.(2)若波沿-x 方向传播,同理可得另一组解T=0.08s ,v=150m /s.故本题正确选项为A 、B 。
二、波传播的周期性带来的多解问题机械波在介质中传播的过程中,由于介质质点做周期性的振动,因而波的图像也具有周期性。
这种周期性表现在两个方面:时间上的周期性和空间上的周期性。
(一)波传播的时间上的周期性产生多解设某简谐波周期为T ,传播过程中在时刻t 各振动质点形成一波形,经过时间△t=nT (n=0,1,2,3,……)各振动质点又回到t 时刻的位置。
机械波多解问题引言机械波是指由介质的振动传递能量的波动现象。
在机械波的研究中,我们经常会遇到波传播过程中的一些问题,其中最常见的问题是波产生、波传播和波干涉等问题。
本文将介绍机械波多解问题,探讨在实际问题中如何处理这些多解。
机械波的基本特性机械波的传播速度取决于介质的特性,如密度、弹性系数等。
对于一维机械波,可以用波动方程来描述其传播过程:∂²y/∂t² =v²∂²y/∂x² (1)其中,y(x,t)表示波动函数,v表示波速。
方程(1)是一个二阶偏微分方程,它描述了波在空间和时间上的传播特性。
波产生问题在实际问题中,我们经常需要考虑如何产生特定形式的波。
在波产生问题中,多解的存在使得问题的求解变得复杂。
下面以弦上的振动为例说明该问题。
弦上的振动考虑一个固定在两端的弦,我们以一个周期性力来激发弦的振动。
这个周期性力的形式可以是正弦函数:F(t) = F₀sin(ωt) (2)其中,F₀是振动的振幅,ω是角频率。
根据牛顿第二定律,弦上的振动满足以下的波动方程:∂²y/∂t² = T/μ * ∂²y/∂x² (3)其中,y(x,t)表示弦的横向位移,T表示弦的张力,μ表示弦的质量线密度。
我们可以将方程(3)与边界条件约束在弦的两端(x=0和x=L),得到弦的振动情况。
然而,方程(3)是一个二阶偏微分方程,解的多解性使得问题变得困难。
波的多解问题对于弦上的振动问题,如果我们忽略端点受力的影响,可以得到如下的解:y(x,t) = Asin(kx)cos(ωt) (4)其中,A是振动的振幅,k是波数。
这个解描述了在弦上传播的正弦波。
然而,方程(4)并不是方程(3)的唯一解。
方程(3)的其他解被称为驻波。
驻波是两个相同波数、频率相同但振幅和相位不同的波在空间上叠加形成的结果。
由于驻波的产生是源于波在介质中的传播和干涉现象,因此驻波的解不会出现在方程(3)中。