第一章 1.2 1.2.2 第一课时 函数的表示法
- 格式:ppt
- 大小:2.32 MB
- 文档页数:46
第一章集合与函数概念1.2 函数及其表示1.2.1 函数的概念和函数的表示法1 教学目标1.1 知识与技能:[1]理解函数的概念,了解构成函数的三要素.[2]会判断给出的两个函数是否是同一函数.[3]能正确使用区间表示数集.[4]函数的三种表示方法,并会求简单函数的定义域和值域.[5]通过实例体会分段函数的概念.[6]了解映射的概念及表示方法,并会判断一个对应关系是否是映射.1.2过程与方法:[1]通过具体实例,体会函数的概念和函数三要素,会求简单函数的定义域和值域。
[2]通过观察、画图等具体动手,体会分段函数的概念。
[3]通过具体习题,了解映射的概念,并会判断一个对应关系是否是映射.1.3 情感态度与价值观:[1]通过学习函数的概念及其表示法以及相关练习,培养学生逻辑思维。
[2]通过细致作图,培养学生的动手能力和识图能力。
2 教学重点/难点/易考点2.1 教学重点[1]函数的三种表示方法。
[2]分段函数的概念。
2.2 教学难点[1]根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.[2]会求函数的定义域和值域。
3 专家建议此节为高中数学函数的第一节内容,一定要让学生充分理解函数的概念,结合具体习题提升学生的逻辑思维和数学素养。
4 教学方法实例探究——归纳总结,提炼概念——补充讲解——练习提高5 教学用具多媒体,教学用直尺、三角板。
6 教学过程6.1 引入新课【师】同学们好。
初中的时候我们就接触过函数,并掌握了一次函数,二次函数和反比例函数。
这节课我们来继续进一步学习和函数有关的内容。
【板书】第一章集合与函数概念 1.2 函数及其表示6.2 新知介绍[1]函数的概念【师】下面请同学们看三个实例,看有什么不同点和相同点。
【板演/PPT】PPT演示三个实例。
【师】那我们现在可以发现不同点是三个实例分别用解析式,图像和表格刻画变量之间的对应关系。
相同点是都有两个非空数集,并且两个数集之间都有一种确定的对应关系。
课题:《函数的表示法》说课稿说课人:高一年级数学组尊敬的各位评委老师,大家好!我是高一年级数学组,今天说课的题目是《1.2.2函数的表示法》。
下面我将从以下几个方面来进行阐述:一、教材本节内容是人教版课程标准实验教材(A 版)必修一第一章《集合与函数的概念》第二节《函数及其表示》的第二个内容。
本内容共分两个课时:第一课时主要学习函数的三种表示方法:解析法、图象法和列表法的概念及特点,以及根据不同的需要选择适当的表示法,第二课时学习分段函数和映射的概念及其运用。
本课时主要学习第一个课时。
函数是描述客观世界变化规律的重要数学模型.为了帮助学生理解函数概念的本质,教材从函数的三要素、函数的表示法等角度对函数概念进行细化,之后将其推广到了映射,并在后续对基本初等函数的学习中,逐步加深理解.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念。
所以它不仅是研究函数本身和应用函数解决实际问题所必须涉及的内容,也是加深理解函数概念的过程.在研究函数的过程中,采用不同的方法表示函数,可以从不同的角度帮助我们理解函数的性质,是研究函数的重要手段.初中教材介绍了函数的三种表示法,高中阶段对函数表示法的学习则需要在此基础上让学生了解三种表示法各自的特点,并会根据实际情境的需要选择恰当的方法表示函数.同时,基于高中阶段所接触的许多函数均可用几种不同的方式表示,因而使得学习函数的表示也是渗透数形结合方法的重要过程.二、学情我所教的是普通班高一理科学生。
学生在初中阶段已经了解了函数的三种表示方法,在实际生活中积累了一定的关于函数关系的实例,会用解析式或图象表示一次函数、二次函数等简单的基本初等函数.但对函数的三种表示法的特点及应用缺少全面的认识.三、教学目标基于以上对教学内容的分析及课标要求,结合学生的认知结构与心理特征,确定本节课的教学目标与教学重难点:三维目标1、知识与技能掌握函数的三种表示方法,明确每种方法的特点,认识离散型函数,提升对函数概念的理解。
人教版高中数学必修一 第一章 1.2.2 函数的表示法(1)1.2.2 函数的表示法 第1课时 函数的表示法[学习目标] 1.掌握函数的三种表示方法:解析法、图象法、列表法.2.会根据不同的需要选择恰当的方法表示函数.知识点 函数的三种表示方法思考 (1)函数的三种表示方法各有什么优、缺点?(2)任何一个函数都可以用解析法、列表法、图象法三种形式表示吗? 答 (1)三种表示方法的优、缺点比较:并不是所有的函数都可以用解析式表示,不仅如此,图象法也不适用于所有函数,如D (x )=列表法虽在理论上适用于所有函数,但对于自变量有无数个取值的情况,列表法只能表示函数的一个概况或片段.题型一作函数的图象例1作出下列函数的图象:(1)y=x+1(x∈Z);(2)y=x2-2x(x∈[0,3)).解(1)这个函数的图象由一些点组成,这些点都在直线y=x+1上,如图(1)所示.(2)因为0≤x<3,所以这个函数的图象是抛物线y=x2-2x介于0≤x<3之间的一部分,如图(2)所示.反思与感悟 1.作函数图象主要有三步:列表、描点、连线.作图象时一般应先确定函数的定义域,再在定义域内化简函数解析式,再列表画出图象.2.函数的图象可能是平滑的曲线,也可能是一群孤立的点,画图时要注意关键点,如图象与坐标轴的交点、区间端点,二次函数的顶点等等,还要分清这些关键点是实心点还是空心点.跟踪训练1画出下列函数的图象:(1)y=x+1(x≤0);(2)y=x2-2x(x>1,或x<-1).解(1)y=x+1(x≤0)表示一条射线,图象如图(1).(2)y=x2-2x=(x-1)2-1(x>1,或x<-1)是抛物线y=x2-x去掉-1≤x≤1之间的部分后剩余曲线.如图(2).题型二列表法表示函数例2已知函数f(x),g(x)分别由下表给出则f(g(1))的值为________;满足f(答案1 2解析∵g(1)=3,∴f(g(1))=f(3)=1.f(g(x))与g(f(x))与x相对应的值如下表所示.∴f(g(x))>g(f(x))的解为x=2.反思与感悟解决此类问题关键在于弄清每个表格表示的函数.对于f(g(x))这类函数值的求解,应从内到外逐层解决,而求解不等式,则可分类讨论或列表解决.跟踪训练2已知函数f(x),g(x)分别由下表给出(1)f[g(1)]=__________;(2)若g[f(x)]=2,则x=__________.答案(1)1(2)1解析(1)由表知g(1)=3,∴f[g(1)]=f(3)=1;(2)由表知g(2)=2,又g[f(x)]=2,得f(x)=2,再由表知x=1.题型三待定系数法求函数解析式例3(1)已知f(x)是一次函数,且f[f(x)]=4x-1,求f(x);(2)已知f(x)是二次函数,且满足f(0)=1,f(x+1)-f(x)=2x,求f(x).解(1)∵f(x)是一次函数,∴设f(x)=ax+b(a≠0),则f[f(x)]=f(ax+b)=a(ax+b)+b=a2x+ab+b.又∵f[f(x)]=4x-1,∴a2x+ab+b=4x-1,即解得或∴f(x)=2x-或f(x)=-2x+1.(2)∵f(x)是二次函数,∴设f(x)=ax2+bx+c(a≠0),由f(0)=1,得c=1,由f(x+1)-f(x)=2x,得a(x+1)2+b(x+1)+1-ax2-bx-1=2x.左边展开整理得2ax+(a+b)=2x,由恒等式原理知解得∴f(x)=x2-x+1.反思与感悟 1.对于特征已明确的函数一般用待定系数法求解析式.2.若所求函数为一次函数,通常设f(x)=kx+b(k≠0);若为反比例函数,通常设为f(x)=(k≠0);若为二次函数,则解析式有以下三种:(1)一般式y=ax2+bx+c(a≠0);(2)两根式y=a(x-x1)(x-x2)(a≠0),其中x1,x2是二次函数图象与x轴交点的横坐标;(3)顶点式y=a(x+)2+(a≠0),其中顶点坐标为(-,).解题时需依据条件灵活选用.跟踪训练3已知二次函数f(x)满足f(0)=1,f(1)=2,f(2)=5,求该二次函数的解析式.解设二次函数的解析式为f(x)=ax2+bx+c(a≠0),由题意得解得故f(x)=x2+1.题型四换元法(或配凑法)求函数解析式例4求下列函数的解析式:(1)已知f=+,求f(x);(2)已知f(+1)=x+2,求f(x).解(1)方法一(换元法)令t==+1,则t≠1.把x=代入f=+,得f(t)=+=(t-1)2+1+(t-1)=t2-t+1.∴所求函数的解析式为f(x)=x2-x+1,x∈(-∞,1)∪(1,+∞).方法二(配凑法)∵f=+=2-=2-+1,∴f(x)=x2-x+1.又∵=+1≠1,∴所求函数的解析式为f(x)=x2-x+1(x≠1).(2)方法一(换元法)令+1=t(t≥1),则x=(t-1)2,∴f(t)=(t-1)2+2=t2-1.∴f(x)=x2-1(x≥1).方法二(配凑法)∵x+2=(+1)2-1,∴f(+1)=(+1)2-1.又∵+1≥1,∴f(x)=x2-1(x≥1).反思与感悟 1.换元法的应用:当不知函数类型求函数解析式时,一般可采用换元法.所谓换元法,即将“+1”换成另一个字母“t”,然后从中解出x与t的关系,再代入原式中求出关于“t”的函数关系式,即为所求函数解析式,但要注意换元前后自变量取值范围的变化情况.2.配凑法的应用:对于配凑法,通过观察与分析,将右端的式子“x+2”变成含有“+1”的表达式.这种解法对变形能力、观察能力有较高的要求.跟踪训练4已知函数f(x+1)=x2-2x,则f(x)=________.答案x2-4x+3解析方法一(换元法)令x+1=t,则x=t-1,可得f(t)=(t-1)2-2(t-1)=t2-4t+3,即f(x)=x2-4x+3.方法二(配凑法)因为x2-2x=(x2+2x+1)-(4x+4)+3=(x+1)2-4(x+1)+3,所以f(x+1)=(x+1)2-4(x+1)+3,即f(x)=x2-4x+3.忽略函数的定义域致误例5已知f(-1)=2x+,求f(x).错解令t=-1,则x=(t+1)2,所以f(t)=2(t+1)2+(t+1)=2t2+5t+3,所以f(x)=2x2+5x+3.正解令t=-1,则t≥-1,x=(t+1)2,所以f(t)=2(t+1)2+(t+1)=2t2+5t+3,所以f(x)=2x2+5x+3(x≥-1).易错警示解令t=1+(x≠0),则x=(t≠1),所以f(t)=(t-1)2-1=t2-2t(t≠1),所以f(x)=x2-2x(x≠1).1.已知f(x+2)=6x+5,则f(x)等于()A.18x+17B.6x+5C.6x-7D.6x-5答案 C解析设x+2=t,得x=t-2,∴f(t)=6(t-2)+5=6t-7,∴f(x)=6x-7,故选C.2.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶. 与以上事件吻合得最好的图象是()答案 C解析由题意,知该学生离学校越来越近,故排除选项A;又由于开始时匀速,后来因交通堵塞停留一段时间,最后是加快速度行驶,故选C.3.已知函数f(x)由下表给出,则f(f(3))=________.答案 1解析由题设给出的表知f(3)=4,则f(f(3))=f(4)=1.故填1.4.已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,则f(x)的解析式为_______.答案f(x)=2x+7解析设f(x)=ax+b(a≠0),则3f(x+1)-2f(x-1)=3ax+3a+3b-2ax+2a-2b=ax+b+5a=2x+17,所以a=2,b=7,所以f(x)=2x+7.5.已知f(x)为二次函数,若f(0)=0,且f(x+1)=f(x)+x+1,求f(x)的表达式.解设f(x)=ax2+bx+c(a≠0),∵f(0)=c=0,∴f(x+1)=a(x+1)2+b(x+1)=ax2+(2a+b)x+a+b,f(x)+x+1=ax2+bx+x+1=ax2+(b+1)x+1.又f(x+1)=f(x)+x+1,∴∴∴f(x)=x2+x.1.函数三种表示法的优缺点2.描点法画函数图象的步骤:(1)求函数定义域;(2)化简解析式;(3)列表;(4)描点;(5)连线.3.求函数解析式常用的方法有(1)待定系数法;(2)换元法;(3)配凑法;(4)消元法等.一、选择题1.已知f(x)是一次函数,2f(2)-3f(1)=5,2f(0)-f(-1)=1,则f(x)等于()A.3x+2B.3x-2C.2x+3D.2x-3答案 B解析设f(x)=kx+b(k≠0),∵2f(2)-3f(1)=5,2f(0)-f(-1)=1,∴∴∴f(x)=3x-2.2.已知f(x-1)=x2,则f(x)的解析式为()A.f(x)=x2+2x+1B.f(x)=x2-2x+1C.f(x)=x2+2x-1D.f(x)=x2-2x-1答案 A解析令x-1=t,则x=t+1,∴f(t)=(t+1)2=t2+2t+1,∴f(x)=x2+2x+1.3.已知f(1-2x)=,则f()的值为()A.4B.C.16D.答案 C解析根据题意知1-2x=,解得x=,故=16.4.函数f(x)=x+的图象是()答案 C解析f(x)=5.如图中图象所表示的函数的解析式为()A.y=|x-1|(0≤x≤2)B.y=-|x-1|(0≤x≤2)C.y=-|x-1|(0≤x≤2)D.y=1-|x-1|(0≤x≤2)答案 B解析由图象知,当0≤x≤1时,y=x;当1<x≤2时,y=3-x.6.设f(x)=2x+a,g(x)=(x2+3),且g(f(x))=x2-x+1,则a的值为()A.1B.-1C.1或-1D.1或-2答案 B解析因为g(x)=(x2+3),所以g(f(x))=[(2x+a)2+3]=(4x2+4ax+a2+3)=x2-x+1,求得a=-1.故选B.二、填空题7.已知f(x)是一次函数,若f(f(x))=4x+8,则f(x)的解析式为________________. 答案f(x)=2x+或f(x)=-2x-8解析设f(x)=ax+b(a≠0),则f(f(x))=f(ax+b)=a2x+ab+b=4x+8.所以解得或所以f(x)=2x+或f(x)=-2x-8.8.函数y=x2-4x+6,x∈[1,5)的值域是________.答案[2,11)解析画出函数的图象,如图所示,观察图象可得图象上所有点的纵坐标的取值范围是[f(2),f(5)),即函数的值域是[2,11).9.若2f(x)+f=2x+(x≠0),则f(2)=________.答案解析令x=2,得2f(2)+f=,令x=,得2f+f(2)=,消去f,得f(2)=.10.如图,函数y=f(x)的图象是折线段ABC,其中A,B,C的坐标分别为(0,4),(2,0),(6,4),则f(f(0))=____.答案 2三、解答题11.作出下列函数的图象,并求出其值域.(1)y=x2+2x,x∈[-2,2];(2)y=|x+1|.解(1)y=x2+2x=(x+1)2-1,x∈[-2,2].列表如下:作出函数图象如图(1)[-1,8].(2)当x+1≥0,即x≥-1时,y=x+1;当x+1<0,即x<-1时,y=-x-1.∴y=作该分段函数的图象如图(2)所示,可得函数的值域是[0,+∞).12.(1)已知f(x)是一次函数,且满足2f(x+3)-f(x-2)=2x+21,求f(x)的解析式;(2)已知f(x)为二次函数,且满足f(0)=1,f(x-1)-f(x)=4x,求f(x)的解析式.解(1)设f(x)=ax+b(a≠0),则2f(x+3)-f(x-2)=2[a(x+3)+b]-[a(x-2)+b]=2ax+6a+2b-ax+2a-b=ax+8a+b=2x+21,所以a=2,b=5,所以f(x)=2x+5.(2)因为f(x)为二次函数,设f(x)=ax2+bx+c(a≠0).由f(0)=1,得c=1.又因为f(x-1)-f(x)=4x,所以a(x-1)2+b(x-1)+c-(ax2+bx+c)=4x,整理,得-2ax+a-b=4x,求得a=-2,b=-2,所以f(x)=-2x2-2x+1.13.求下列函数的解析式:(1)已知f=x2++1,求f(x)的解析式;(2)已知f(x)+2f(-x)=x2+2x,求f(x)的解析式.解(1)∵f=2+2+1=2+3.∴f(x)=x2+3.(2)以-x代替x得:f(-x)+2f(x)=x2-2x. 与f(x)+2f(-x)=x2+2x联立得:f(x)=x2-2x.。
1.2 函数及其表示1.2.2 函数的表示法(一)教学目标分析:知识目标:理解并掌握函数的三种表示方法,并能进行简单应用。
过程与方法:通过现实生活中丰富实例的探究过程,感受不同方法在具体问题中的应用,渗透数形结合思想方法。
情感目标:提高利用函数观点分析和解决问题的能力,通过数学活动,体验数学的应用意识,体会数学的价值。
重难点分析:重点:函数的三种表示方法。
难点:利用列表、图象认识函数的意义,以及根据条件,利用恰当方法表示函数及相互转化。
互动探究:一、课堂探究:1、复习引入探究一、在初中,我们已经学习过函数的哪几种表示方法?函数的表示法:(1)解析法:用数学表达式表示两个变量之间的对应关系;(2)图象法:用图象表示两个变量之间的对应关系;(3)列表法:列出表格表示两个变量之间的对应关系。
探究二、教材1.2.1节的三个实例分别用了哪种表示方法?能否用其他的表示方法?你能总结它们各自的优缺点吗?2、分析三个实例的表示方法:实例(1)中的函数是用解析法表示的,简明表示了h与t之间的依赖关系,也可以用图像法表示,也可以用列表法表示,但是列表法不能全面表示变量间的关系;实例(2)中的函数是用图像法表示的,直观形象地表明了函数的变化趋势,此函数的解析式不容易得到,列表法也不能形象地表示其变化趋势;实例(3)中的函数是用列表法表示的,可直接看出恩格尔系数随年数变化的情况,此函数可以用图像法来表示,但解析式不明确。
3、总结三种表示方法的优缺点:解析法的优点是:(1)函数关系清楚、精准;(2)容易从自变量的值求出其对应的函数值;(3)便于研究函数的性质。
解析法是中学研究函数的主要表达方法。
解析法的缺点是:在求对应函数值时,可能需要进行较复杂的计算。
图像法的优点是:能形象直观地表示函数的变化趋势,是今后利用数形结合思想解题的基础。
图像法的缺点是:从自变量的值常常难以找到对应的函数值的准确值。
列表法的优点是:不必通过计算就知道当自变量取某些值时函数的对应值,当自变量的值的个数较少时使用,列表法在实际生产和生活中有广泛的应用。
1.2.2函数的表示法第1课时函数的表示法明目标、知重点了解函数的三种表示法的各自优点,掌握用三种不同形式表示函数.自主学习1.函数的三种表示法(1)解析法——用表示两个变量之间的;(2)图象法——用表示两个变量之间的;f x为纵坐标就得到一个点,当自变量取完定义(以自变量x为横坐标,以对应的函数值()域内所有值时,即可得到函数图像。
一般地,作函数图象主要有三步:列表、描点、连线.作图象时一般应先确定函数的定义域,再在定义域内化简函数解析式,再列表描出图象,画图时要注意一些关键点,如与坐标轴的交点,端点的虚、实问题等.)(3)列表法——列出来表示两个变量之间的.2.(了解)函数三种表示法的优缺点例题解析探究点一函数的表示方法例1某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y元.试用函数的三种表示法表示函数y=f(x).探究点二如何求函数的解析式例2已知f(x)是一次函数,且满足3f(x+1)-f(x)=2x+9,求f(x).反思与感悟本题已知函数类型,故可用待定系数法求解.即设出函数关系式,代入已知条件,建立关于x的恒等式求解.跟踪训练2(1)已知f(x)是一次函数,满足3f(x+1)=6x+4,则f(x)的解析式(2)已知f(x)是二次函数,若f(0)=0,且f(x+1)=f(x)+x+1,求函数f(x)的解析式.例3已知f(x+1)=x2+4x+1,求f(x)的解析式.反思与感悟利用换元法、配凑法求函数解析式时要注意新元的取值范围,即所求函数的定义域.跟踪训练3.已知f (1x )=1x +1,则f (x )的解析式为( ) A .f (x )=11+x B .f (x )=1+x x C .f (x )=x 1+xD .f (x )=1+x 例4 已知函数y =f (x )满足f (x )=2f (1x)+x ,则f (x )的解析式为。
跟踪训练4:已知函数y =f (x )满足f (x )=2f (-x )+x ,则f (x )的解析式为。