整数指数幂科学记数法
- 格式:pptx
- 大小:275.32 KB
- 文档页数:17
新人教版八年级数学上册导学案:15.2.3整数指数的幂(2)科学计数法学习目标用科学计数法表示小于1的数学前准备一、温故知新:1、用科学计数法表示下列各数:我们已经学习了用科学记数法表示一些绝对值较大的数即利用10的正整数次幂,把一个绝对值大于10的数表式成10na⨯的形式,其中n是正整数,1≤a<10。
如用科学记数法表示下列各数:⑴989 ⑵-135200 (3)864000问题梳理区学习导航二、探索新知:前面我们学了用科学记数法表示一些较大的数,现在学了负整数指数幂后,同样,也可以利用10的负整数次幂用科学计数法表示一些绝对值较小的数,将他们表示成10na-⨯的形式。
其中n是正整数,1≤a<10。
如用科学记数法表示下列各数:⑴ 0.00002=()2= ()210=2×()10;⑵-0.000034=-()3.4=()3.410=3.4×()10注:对于绝对值较小的数,用科学记数法表示时,a只能是整数位为1,2,…,9的数,10n-中的n就是原数中第一个不为0的数字前面所有0的个数,包括小数点前面的零在内。
2、探究:用科学记数法把一个数表式成10na⨯(其中1≤a<10,n为整数),n有什么规律呢?30000= ()310⨯,3000= ()310⨯,300= ()310⨯,30= ()310⨯,3= ()310⨯,0.3= ()310⨯,0.03= ()310⨯,0.003= ()310⨯。
观察以上结果,请用简要的文字叙述你的发现三、运用新知:1、用科学记数法表示下列各数:(1)0.00003 = (2)-0.0000064 =(3)0.00314= (4)2013000=2 用小数表示下列各数(1)44.2810--⨯= (2)63.5710-⨯= 学习评价 四、课堂小结:五、达标测评(1)近似数0.230万精确到 位,有 个有效数字,用科学技术法表示该数为(2)把0.00000000120用科学计数法表示为( )A .91.210-⨯B .91.2010-⨯C .81.210-⨯D .101.210-⨯(3)200粒大米重约4克,如果每人每天浪费一粒米,那末约458万人口的漳州市每天浪费大米(用科学计数法表示)A .91600克B .391.610⨯克C .49.1610⨯克D .50.91610⨯(4)一枚一角的硬币直径约为0.022 m ,用科学技术法表示为A .32.210-⨯mB .22.210-⨯mC .32210-⨯mD .12.210-⨯m(5)下列用科学计数法表示的算式:①2374.5=32.374510⨯ ②8.792=18.79210⨯ ③0.00101=21.0110-⨯ ④-0.0000043=74.310--⨯中不正确的有( )A .0个B .1个C .2个D .3个六、自主研学:1、完成新课堂115-116页。
15.2.3 整数指数幂(2)——科学记数法 教案【教学目标】1、知识与技能:会用科学记数法表示绝对值小于1的数。
2、过程与方法:经历探索用科学记数法表示绝对值小于1的数的过程,注重知识产生的过程和依据。
3、情感态度价值观:经历本节知识的学习,培养认真思考的学习态度,会用知识的迁移解决问题。
【教学重难点】1、重点:会用科学记数法表示绝对值小于1的数。
2、难点:正确掌握10n-的特征以及科学记数法中n 与数位的关系。
【教学过程】一、温故知新:在初一年级第一章里,我们已经知道10的正整数次幂,可以把绝对值大于10的数表示成 的形式,这种表示数的方法叫做 。
(其中a 是整数位数只有1位的数, n 等于 , 或 )例如,864 000用科学记数法表示为 .二、情境引入读出下列各题:⑴某种植物花粉的直径为0.000043米;⑵空气的单位体积质量是0.001239克/厘米3;⑶目前发现的一种新型病毒的直径为0.0000251米;⑷ 净水机的过滤一般需要分五级.第一级用高纤维PP 棉滤芯,能够过滤掉直径0.00005~0.0001米的铁锈、泥沙、悬浮物等杂质;⑸ 甲型流感病毒呈多形性,其中球形直径最小只有0.00000008米.这些数据读、写都很困难,有没有简便的方法把这些数据表示出来呢?对于以上问题中小于1的正小数,是否也可以用科学记数法表示呢?如果可以,那么10的指数n 是多少?本节课我们来解决这个问题. 三、合作探究1.把下面负整数指数幂化成小数的形式:10-1= ,10-2= ,10-3= ,10-4= ,…,10-n= .由上面的结果你发现了什么规律?2.把下列小数化成负整数指数幂的形式:0.1= , 0.01= , 0.001= ,0.0001= ,0.00…01(n 个0)= .由上面的结果你发现了什么规律?四、形成概念我们可以利用10的负整数次幂,把绝对值小于1的数表示成a ×10- n的形式,这种表示数的方法叫做科学记数法.(其中,n 是正整数,a 是整数位数只有1位的数,即:110a ≤<)思考:怎样用上述记数方法表示0.00257和0.0000257?五、例题解析例1:用科学记数法表示:(1)0.00003; (2)0.000006 4; (3) -0.0000314;思考:a ×10-n 中的n 由什么决定?例2:下列是用科学记数法表示的数,写出原来的数.(1)2×10-8 (2)7.001×10-6方法小结:例3:纳米是非常小的长度单位,1nm=10-9m.把1nm 3的物体放到乒乓球上,就如同把乒乓球放到地球上,1mm 3的空间可以放多少个1nm 3的物体(物体之间的间隙忽略不计)?六、当堂训练1、把0.00000000120用科学记数法表示为( )A .91.210-⨯B .91.2010-⨯C .81.210-⨯D .101.210-⨯2、200粒大米重约4克,如果每人每天浪费一粒米,那么约740万人口的长沙市每天浪费大米(用科学记数法表示)( )A .148000克B .414.810⨯克C .51.4810⨯克D .60.14810⨯克3、一枚一角的硬币直径约为0.022 m ,用科学记数法表示为( )A .32.210-⨯mB .22.210-⨯mC .32210-⨯mD .12.210-⨯m4、下列用科学记数法表示的算式:①2374.5=32.374510⨯ ②8.792=18.79210⨯③0.00101=21.0110-⨯ ④-0.0000043=74.310--⨯中不正确的有( )A .0个B .1个C .2个D .3个5、计算(1)(2×10-6)×(3.2×103) (2)(2×10-6)2÷(10-4)3七、自我反思1.我的收获:2.我的易错点:【课后提升】1.用科学记数法表示0.000031,结果是( )A.3.1×10-4B.3.1×10-5C.0.31×10-4D.31×10-62.(玉林中考)将6.18×10-3化为小数是( )A.0.000 618B.0.006 18C.0.061 8D.0.6183.(泰安中考)PM2.5是指大气中直径≤0.000 002 5米的颗粒物,将0.000 002 5用科学记数法表示为( )A.2.5×10-7B.2.5×10-6C.25×10-7D.0.25×10-54.(毕节中考)1纳米=10-9米,将0.003 05纳米用科学记数法表示为___ ___米.5.(六盘水中考)H7N9禽流感病毒的直径大约为0.000 000 080 5米,用科学记数法表示为_ ____.6.已知0.003×0.005=1.5×10n,则n的值是_____.7.用科学记数法表示下列各数:(1)0.0000032;(2)-0.000000305.8.计算:(结果用科学记数法表示)(1)(2×107)×(8×10-9); (2)(5.2×10-9)÷(-4×103).9.(荆门中考)小明上网查询H7N9禽流感病毒的直径大约是0.000 000 08米,用科学记数法表示为( )A.0.8×10-7米B.8×10-7米C.8×10-8米D.8×10-9米10.(德阳中考)已知空气的单位体积质量为1.24×10-3克/厘米3,将1.24×10-3用小数表示为( )A.0.000124B.0.0124C.-0.00124D.0.0012411.已知一个正方体的棱长为2×10-2米,则这个正方体的体积为( )A.6×10-6立方米B.8×10-6立方米C.2×10-6立方米D.8×106立方米12.在电子显微镜下测得一个圆球体细胞的直径是5×10-5cm,2×103个这样的细胞排成的细胞链的长是( )A.10-2 cmB.10-1 cmC.10-3 cmD.10-4 cm13.把下列用科学记数法形式的数还原:(1)7.2×10-5=_____;(2)-1.5×10-4=_____.14.计算:(1)(3×10-5)×(5×10-3); (2)(-1.8×10-10)÷(9×10-5).15.一块900 mm2的芯片上能集成10亿个元件.(1)每个这样的元件约占多少平方毫米?(2)每个这样的元件约占多少m2?。
幂的运算、科学记数法幂,指乘方运算的结果。
把a n 看作乘方的结果,叫做“a 的n 次幂”或“a 的n 次方”。
在幂的形式中,若指数是整数的,则称为整数指数幂。
1)当指数n 是正整数时,a n 叫做正整数指数幂。
2)当指数n 是0,且n 不等于0时,a n 叫做零指数幂。
3)当指数n 是负整数,且a 不等于0时,a n 叫做负整数指数幂。
整数指数幂的运算法则:1.任何非零数的0次幂都等于1。
2.任何非零数的-n 次幂,等于这个数的n 次幂的倒数。
3.同底数幂相乘,底数不变指数相加。
4.同底数幂相除,底数不变,指数相减。
5.幂的乘方,底数不变,指数相乘。
6.积的乘方,各个因式分别乘方。
7.分式乘方,分子分母各自乘方。
把一个绝对值大于10或者小于1的数记为a ×10n 的形式(其中1≤|a|<10,n 是整数),这种记数法叫做科学记数法。
例:864000=8.64×105-1009874=-1.009874×10610.60万=1.06×1050.1=1×10-10.01=1×10-20.00001=1×10-50.00000001=1×10-80.000611=6.11×10-40.0006075=6.075×10-4-0.00105=-1.05×10-3-0.30990=-3.099×10-1-0.00607=-6.07×10-3=⨯-410141010001.0= =⨯-5101.251011.2⨯00001.01.2⨯=000021.0=7.2×10-5= 0.000072-1.5×10-4= -0.000151、用科学记数法表示下列各数,并保留3个有效数字。
(1)0.0003267(2)-0.0011(3)-8906902、写出原来的数,并指出精确到哪一位。
幂的运算、科学记数法幂,指乘方运算的结果。
把a n 看作乘方的结果,叫做“a 的n 次幂”或“a 的n 次方”。
在幂的形式中,若指数是整数的,则称为整数指数幂。
1)当指数n 是正整数时,a n 叫做正整数指数幂。
2)当指数n 是0,且n 不等于0时,a n 叫做零指数幂。
3)当指数n 是负整数,且a 不等于0时,a n 叫做负整数指数幂。
整数指数幂的运算法则:1.任何非零数的0次幂都等于1。
2.任何非零数的-n 次幂,等于这个数的n 次幂的倒数。
3.同底数幂相乘,底数不变指数相加。
4.同底数幂相除,底数不变,指数相减。
5.幂的乘方,底数不变,指数相乘。
6.积的乘方,各个因式分别乘方。
7.分式乘方,分子分母各自乘方。
把一个绝对值大于10或者小于1的数记为a ×10n 的形式(其中1≤|a|<10,n 是整数),这种记数法叫做科学记数法。
例:864000=8.64×105-1009874=-1.009874×10610.60万=1.06×1050.1=1×10-10.01=1×10-20.00001=1×10-50.00000001=1×10-80.000611=6.11×10-40.0006075=6.075×10-4-0.00105=-1.05×10-3-0.30990=-3.099×10-1-0.00607=-6.07×10-3=⨯-410141010001.0= =⨯-5101.251011.2⨯00001.01.2⨯=000021.0=7.2×10-5= 0.000072-1.5×10-4= -0.000151、用科学记数法表示下列各数,并保留3个有效数字。
(1)0.0003267(2)-0.0011(3)-8906902、写出原来的数,并指出精确到哪一位。
人教版义务教育课程标准实验教科书八年级上册15.2.3整数指数幂(2)科学计数法一、内容和内容解析1.内容科学计数法2.内容解析本节教材是初中数学八年级第十五章第2节的内容,是初中数学的较为重要知识点之一。
这是在学习了整数的正指数幂的基础上,对整数的指数幂的进一步深入和拓展;另一方面,又为学习整数的负指数幂等知识起到了一定的巩固加深作用。
本节课不仅有着广泛的实际应用,而且对于学好整数的负指数起到一定的作用。
基于以上分析,确定本节课的教学重点:理解和运用负整数指数幂的性质,用科学记数法表示绝对值较小的数。
二、目标和目标解析1.目标(1)利用10的乘方,进行科学记数,会用科学记数法表示小于1的数;(2)体会科学记数法的好处,化繁为简的方法;2.目标解析新课标指出,教学目标应包括只是与技能目标,过程与方法目标,情感与态度目标这三个方面,而这三维目标又应是紧密联系的一个右击整体,学生学会知识与技能的过程同时成为学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把前面两者充分体现在过程与方法中。
借此,我将三维目标进行整合,确定本节课的教学目标为:1. 通过本节对科学计数法的学习,培养学生的观察分析和根据规律探究问题的能力,加深对类比、找规律、严密的推理等数学思想的认识。
2. 通过学生主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和实用性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。
三、教学问题诊断分析从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。
但同时,这一阶段的学生好动,注意力易分散,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
整数指数幂及科学记数法【学习目标】1. 熟练掌握整数指数幂的运算.2. 熟练运用科学记数法表示一个有理数。
【知识点】1、整数指数幂 ① 引入负整数、零指数幂后,指数的取值范围就推广到了全体实数,并且正正整数幂的法则对对负整数指数幂一样适用。
即★n m n m a a +=⋅a ★()mn nm a a =★()n n nb b a a = ★n m n m a a -=÷a (0≠a )★n nb a b a =⎪⎭⎫ ⎝⎛n★n a 1=-na (0≠a )★10=a (0≠a ) (任何不等于零的数的零次幂都等于1)其中m ,n 均为整数。
2、科学记数法若一个数x 是0<x<1的数,则可以表示为n 10a ⨯(10a 1<≤,即a 的整数部分只有一位,n 为整数)的形式,n 的确定n=从左边第一个0起到第一个不为0的数为止所有的0的个数的相反数。
如0.000000125=-7101.25⨯若一个数x 是x>10的数则可以表示为n10a ⨯(10a 1<≤,即a 的整数部分只有一位,n 为整数)的形式,n 的确定n=比整数部分的数位的个数少1。
如120 000 000=8101.2⨯【例题】例1、计算(1)3132)()(---⋅bc a (2)2322123)5()3(z xy z y x ---⋅(3)24253])()()()([b a b a b a b a +--+-- (4)6223)(])()[(--+⋅-⋅+y x y x y x7个09个数字例2、已知51=+-x x ,求(1)22-+x x 的值;(2)求44-+x x 的值.例3、(1)223)102.8()103(--⨯⨯⨯; (2)3223)102()104(--⨯÷⨯.(3)(9×10-3)×(5×10-2). (4) (-4×106)÷(2×103)例4、我们常用“水滴石穿”来说明一个人只要持之以恒地做某件事,就一定能成功.经测算,当水滴不断地滴在一块石头上时,经过10年,石头上可形成一个深为1厘米的小洞,那么平均每个月小洞的深度增加多少米?(结果保留三个有效数字,并用科学记数法表示)例5、用科学记数法表示-0.00002009= . -0.000000001= . 0.0012= . 0.000000345= . 0.00003= . 0.00000000108= .【巩固练习】1.计算:(1)20082007024)25.0()31(|31|)51()5131(⋅-+-+-÷⋅--(2)322231)()3(-----⋅n mn m (3)23232222)()3()()2(--⋅⋅ab b a b a ab(4)21222)]()(2[])()(4[----++-y x y x y x y x(5)(yx )2·(xy)-2÷(x -1y).(6)(ab )-2·(ba)2; (7)(-3)-5÷33.(8) a -2b 2·(ab -1);2.已知0152=+-x x ,求(1)1-+x x ,(2)22-+x x 的值.3、据考证,单个雪花的质量在0.000 25克左右,这个数用科学记数法表示为( )A.2.5×10-3B.2.5×10-4C.2.5×10-5D.-2.5×10-4 4、下面的计算不正确的是( )A.a 10÷a 9=aB.b -6·b 4=21bC.(-bc)4÷(-bc)2=-b 2c 2D.b 5+b 5=2b 5 5、要使(242--x x )0有意义,则x 满足条件_______________.6、(1)(a1)-p=_______________;(2)x -2·x -3÷x -3=_______________;(3)(a -3b 2)3=;____________(4)(a -2b 3)-2=_______________. 7、若x 、y 互为相反数,则(5x )2·(52)y =____________________. 8、计算:(23-)-2-(3-π)0+(22-)2·(22)-2.9.计算:(1)5x 2y -2·3x -3y 2; (2)6xy -2z÷(-3x -3y -3z -1).10.已知m -m -1=3,求m 2+m -2的值.11、27a a ÷= ; =--3132)(y xyx _ ___。