第二章激光器的速率方程理论
- 格式:ppt
- 大小:971.50 KB
- 文档页数:19
激光原理高福斌gaofubin@gaofubin@163com2013.10.201高福斌/342.2 速率方程组与粒子数反转(!可实现粒子数反转的几种量子系统)回顾——实现粒子数反转的两个必要条件:①工作物质粒子有适当的能级结构②有合适的激励能源前瞻——分析方法:速率方程方法以及速率方程的求解步骤速率方程方法: 分析粒子系统能否实现反转的一种方法速率方程:描述各能级粒子数(密度)变化速率高福斌/342的方程组态E 上的粒子抽运到E 、E 能级上的速率;0122.速率方程: 3个能级应有22n 个独立方程(1) E 2能级在单位时间内增1n ρ加的粒子数密度为:dn 图(2-5)简化的四能级图n 2R n A n W n W =−−+R n A n B νn B νd =−−+(2-5a)2221221112()()f f dtρρ()2n ρ1n 2120A A 图(2-5))简化的四能级图n2n ρ1n 图(2-5))简化的四能级图n dn二.小信号粒子数反转的物理条件:1. 激光上能级E 2的寿命要长,使该能级上的粒子不能轻易地通过非受激辐射而离开;2. 激光下能级E 1的寿命要短,使该能级上的粒子很121220)(ττR R R n +−=Δ快地衰减;3. 选择合适的激励能源,使它对介质的E 2能级的抽运速率R 2愈大愈好,2n 而对E 1能级的抽运速率R 1愈小愈好.1n ρ即满足条件12ττ>0n 高福斌/3422足12R R>{图(2-5))简化的四能级图本节研究:反转粒子数密度Δn 的饱和效应(讨论Δn 2n (与各种因素的关系,引出Δn 饱和效应的概念。
)1n ρ。
)图(2-5))简化的四能级图n 由下式可知:()R R R nττ−+ΔnΔ0nΔ20n0IsI0s nΔ0nΔ:0(1)s I f ν+Δ043n Δ由上式可见: 只要I ≠0, 则Δn <Δn0, 仍有饱和效应.20n 012I I νννΔ−=+⋅在处I ≈I s 时s 2202(/2)(/2)3n n n ννΔ+ΔΔ=Δ=Δ222(/2)2(/2)4ννΔ+Δ频率在此范围内的入射光才会引起显著的饱和作用。
第一章激光器的基本原理1、问:产生激光的条件是什么?(戴大鹏)答: 1.受激辐射是激光产生的必要条件; 2.要形成激光,工作物质必须具有亚稳态能级,这是产生激光的第二个条件; 3.选择适当的物质,使其在亚稳态能级上的电子比低能级上的电子还多,即形成粒子束反转,这是形成激光的第三个条件;4.激光中开始产生的光子是自发辐射产生的,其频率和方向是杂乱无章的。
要使得频率单纯,方向集中,就必须有一个谐振腔,这是形成激光的第四个条件;5. 只有使光子在腔中振荡一次产生的光子数比损耗掉的光子要多得多,才能有放大作用,这是产生激光的第五个条件。
2、问:什么是粒子数反转?(钟双金)粒子数反转 (population inversion )是激光产生的前提。
两能级间受激辐射几率与两能级粒子数差有关。
在热平衡状态下,粒子数按能态的分布遵循玻耳兹曼分布律,这种情况得不到激光。
为了得到激光,就必须使高能级 E2 上的原子数目大于低能级 E1 上的原子数目,因为 E2 上的原子多,发生受激辐射,使光增强(也叫做光放大) 。
为了达到这个目的,必须设法把处于基态的原子大量激发到亚稳态 E2,处于高能级 E2 的原子数就可以大大超过处于低能级 E1 的原子数。
这样就在能级 E2 和 E1 之间实现了粒子数的反转。
实现粒子数反转的条件:通常实现粒子数反转要依靠两个以上的能级:低能级的粒子通过比高能级还要高一些的泵浦能级抽运到高能级。
一般可以用气体放电的办法来利用具有动能的电子去激发激光材料,称为电激励;也可用脉冲光源来照射光学谐振腔内的介质原子,称为光激励;还有热激励、化学激励等。
各种激发方式被形象化地称为泵浦或抽运。
为了使激光持续输出,必须不断地“泵浦”以补充高能级的粒子向下跃迁的消耗量。
3、什么叫纵模、横模?由谱线宽度和腔长来估算可能振荡的纵模数目答案:光场在腔内的纵向和横向分布分别叫做纵模和横模。
横模数目 n=谱线宽度/c纵模数目 n=谱线宽度/ (c/2*腔长 L)第二章激光器的速率方程理论答案:第三章 密度矩阵1:考虑衰减过程、原子的泵浦或激发过程,写出在初始光场为零时的光学布洛 赫方程并说明各项含义。
第二章 光注入半导体激光器的速率方程模型2.1 光反馈半导体激光器光反馈或光注入半导体激光器的速率方程是分析和模拟系统特性的理论基础,本节先推导光反馈半导体激光器的电场速率方程―Lang-Kobayashi 方程[29],并分析了振荡条件。
为方便分析,将半导体激光器的参量及各参量的关系分别列入表2-1和表2-2。
表2-1 激光器参量的意义符号 物理量 单位 电量 C 有源区体积 m 3 载流子寿命 ns 光子寿命 ps 限制因子 --- 阈值载流子密度 m -3 透明载流子密度 m -3 增益饱和系数 m 3 线宽增强因子 --- 微分增益 m 3s -1 自发辐射因子 --- 端面强度反射率 ---波长nm表2-2 参量之间的关系Table 2-2 Relationships of parameters2.1.1 图2-1 光反馈Fabry-Perot 谐振腔示意图图2-1为光反馈的示意图,激光谐振腔两端面的反射率分别为1R 、2R ,腔长为L ,外部反射镜的反射率为e R 、距离为/2e L c τ=,τ为激光在外腔中环行一次的时间。
E +、E-分别表示正向、负向传播的时变电场的复振幅。
激光的动态变化行为取决于增益,因此可以将增益作为算子。
激光在腔内环行一次的增益为int 2())r G i kL Γg L α=-+- (2-1)将其变为指数形式,上式可变为int exp(2())r m G i kL Γg L αα=-+-- (2-2)其中/k n c ω=为波数。
实际上,激光器有源区内载流子密度()N t 随时间的变化将导致介质折射率和振荡频率的变化。
因此将波数在无光反馈阈值点(th n ,th ω)展开()()g th th th th th n n n nN N c c c N cωωωωω∂≈+-+-∂ (2-3) 其中,g th nn n ωω∂=+∂为介质的群折射率。
将(2-3)式代入(2-2)中,并将r G 分解成1r G G G ω=,其中:频率无关项1int exp[()]exp((2/)())m th th nG Γg L i L c N N Nααω∂=----∂ (2-4) 频率相关项22exp[()]g th th th n Ln L G ii c cωωωω=--- (2-5) 由于2th th n L c ω是2π的整数倍,并且角频率为ω的单色波电场满足关系式di dtω=,G ω可改写为算子exp()exp()th L LdG i dtωωττ=- (2-6) 由于激光器振荡频率在阈值附近,即th ωω≈,因此对时变复电场()e t 可引入慢变化复电场振幅()|()|exp(())E t E t i Φt =,即()()exp()th e t E t i t ω= (2-7)其中th d dtΦωω=-。
第二章速率方程理论一、学习要求与重点难点学习要求1.了解典型激光器的工作能级和常见激光介质的三、四能级特征;2.掌握激光三、四能级系统单模速率方程组的建立方法;3.掌握稳态情形下对小信号增益的求解;4.理解均匀和非均匀加宽介质的增益饱和;5.了解增益介质的色散;6.理解超辐射现象和超辐射激光器工作原理;7.了解激光放大现象和激光放大器工作原理。
重点1.激光三、四能级系统特征;2.速率方程组的建立方法,及其近似处理;3.稳态情形下对小信号增益的求解;4.介质增益饱和的机制;5.超辐射现象。
难点1.速率方程组的近似处理;2.介质增益饱和的机制;3.超辐射激光器工作原理。
二、知识点总结1. 典型激光器的主要工作能级⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧−−−−−→−⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧−−−−−→−++3/27/29/25/29/23/2122S F H F I F YAG Nd F F A E .)C r (I 4424443444239209503694和抽运能级:激发能级激光下能级:基态激光上能级:激发能级钕玻璃中中:掺钕离子和抽运能级:激发能级激光下能级:基态中的激光上能级:激发能级:掺离子红宝石:三能级系统离子电子态间跃迁离子电子态间跃迁nm nm E nm ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧→∏∏−−−−−−−−→−⎪⎩⎪⎨⎧−−−−−→−∑++自终止基态:组激光下能级:激发能级激光上能级:激发能级最强分子:多条近紫外光,基态:激发能级组激光下能级:激发能级组激光上能级:激发能级波段和绿:蓝氩离子:三能级系统态跃迁向低电子态的分子振动离子电子态间跃迁g g u X B C nm p s p p p nm nm 13354413773335514488.N 44.He II 2⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧−−−−−−−−−→−-⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧−−−−−→−⎪⎪⎩⎪⎪⎨⎧−−−−−→−++9/23/27/29/25/211/29/23/27/29/25/213/23/29/23/27/29/25/211/23/2I:S F H F I E )Tr (I:S F H F I F ..YAG I :S F H F I F ..YAG Nd I 4442442344424444442444390070037131910610641基态和抽运能级:激发能级激光下能级:激发能级中振动基态能级激光上能级:电子激发宽带:离子掺钛蓝宝石基态和抽运能级:激发能级激光下能级:激发能级激光上能级:激发能级,钕玻璃中中基态和抽运能级:激发能级激光下能级:激发能级激光上能级:激发能级,钕玻璃中中:掺钕离子:四能级系统能级间跃迁离子不同电子态中振动离子电子态间跃迁离子电子态间跃迁nm m m m m μμμμ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧−−−−−→−⎪⎪⎩⎪⎪⎨⎧−−−−−→−⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧−−−−−−→−⎪⎪⎩⎪⎪⎨⎧−−−−−−→−⎪⎪⎩⎪⎪⎨⎧−−−−−−→−0000010021006900000101010061013339312215112363301000100111基态:振动基态级带级带下泻能级:振动激发能能级带激光下能级:振动激发能级带激光上能级:振动激发基态:振动基态级带级带下泻能级:振动激发能能级带激光下能级:振动激发能级带激光上能级:振动激发:碰撞激励基态:下泻能级:激发能级激光下能级:激发能级激光上能级:激发能级基态:下泻能级:激发能级激光下能级:激发能级激光上能级:激发能级基态:下泻能级:激发能级激光下能级:激发能级激光上能级:激发能级:碰撞激励:四能级系统分子振动态间跃迁分子振动态间跃迁原子电子态间跃迁原子电子态间跃迁原子电子态间跃迁m m m m nm μμμμ..)(N C O S S P S .S S P S .S S P S )He Ne(He II 220Ne 0Ne 0Ne 2. 速率方程组⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==-=∆⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧∆=++∆-=∆⎪⎪⎩⎪⎪⎨⎧∆=-+++∆-=∆21210221112211222112111ηηηηηνννϕϕηϕηηϕϕηηϕηη激光系统总量子效率::激光上下能级荧光效率驰豫效率:抽运能级向激光上能级率:一个光子的受激跃迁几布居反转粒子数密度::四能级系统:三能级系统单模:上下下下上上a a a a a P P a a a P P V g h B B n g g n n n V B dt d A B W n nW dt n d n V B dt d A n g g A B g g W n nW dt nd ),()(I ])([I3. 布居反转⎝⎛⎝⎛←−−→−== ⎝⎛←<=←<=+-=∆ ⎝⎛ ⎝⎛←>+-=∆2100011111τηηβηββτητηβτητητητηP P P P P P P W S A n n g g S A g g n n n W W g g n W W n W W n 激光辐射效率:完全布居反转度之反比:激光上下能级粒子数密,增速放缓高泵浦强度:出现饱和低泵浦强度:线性增加上级短任一激光下能级寿命比反转条件:比下级多任一激光上能级粒子数反转条件::四能级系统激光辐射效率:,增速放缓高泵浦强度:出现饱和低泵浦强度:线性增加度速度:存在阈值激励速抽运速度大于自发辐射反转条件::三能级系统强光和饱于小远强光内质介小信号:最佳下基上下上下上下下基上下上下上下上下上下下上上下上下上下上下)(I I()()⎝⎛⎝⎛∆+±=-+∆=∆↑↓←∆=−−→−+∆=∆⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛∆+-⎪⎭⎫ ⎝⎛∆+-=∆:未讨论。
第二章 光注入半导体激光器的速率方程模型2.1 光反馈半导体激光器光反馈或光注入半导体激光器的速率方程是分析和模拟系统特性的理论基础,本节先推导光反馈半导体激光器的电场速率方程―Lang-Kobayashi 方程[29],并分析了振荡条件。
为方便分析,将半导体激光器的参量及各参量的关系分别列入表2-1和表2-2。
表2-1 激光器参量的意义符号 物理量 单位 电量 C 有源区体积 m 3 载流子寿命 ns 光子寿命 ps 限制因子 --- 阈值载流子密度 m -3 透明载流子密度 m -3 增益饱和系数 m 3 线宽增强因子 --- 微分增益 m 3s -1 自发辐射因子 --- 端面强度反射率 ---波长nm表2-2 参量之间的关系Table 2-2 Relationships of parameters2.1.1 图2-1 光反馈Fabry-Perot 谐振腔示意图图2-1为光反馈的示意图,激光谐振腔两端面的反射率分别为1R 、2R ,腔长为L ,外部反射镜的反射率为e R 、距离为/2e L c τ=,τ为激光在外腔中环行一次的时间。
E +、E-分别表示正向、负向传播的时变电场的复振幅。
激光的动态变化行为取决于增益,因此可以将增益作为算子。
激光在腔内环行一次的增益为int 2())r G i kL Γg L α=-+- (2-1)将其变为指数形式,上式可变为int exp(2())r m G i kL Γg L αα=-+-- (2-2)其中/k n c ω=为波数。
实际上,激光器有源区内载流子密度()N t 随时间的变化将导致介质折射率和振荡频率的变化。
因此将波数在无光反馈阈值点(th n ,th ω)展开()()g th th th th th n n n nN N c c c N cωωωωω∂≈+-+-∂ (2-3) 其中,g th nn n ωω∂=+∂为介质的群折射率。
将(2-3)式代入(2-2)中,并将r G 分解成1r G G G ω=,其中:频率无关项1int exp[()]exp((2/)())m th th nG Γg L i L c N N Nααω∂=----∂ (2-4) 频率相关项22exp[()]g th th th n Ln L G ii c cωωωω=--- (2-5) 由于2th th n L c ω是2π的整数倍,并且角频率为ω的单色波电场满足关系式di dtω=,G ω可改写为算子exp()exp()th L LdG i dtωωττ=- (2-6) 由于激光器振荡频率在阈值附近,即th ωω≈,因此对时变复电场()e t 可引入慢变化复电场振幅()|()|exp(())E t E t i Φt =,即()()exp()th e t E t i t ω= (2-7)其中th d dtΦωω=-。