整流电路介绍
- 格式:pptx
- 大小:410.89 KB
- 文档页数:23
1.第一种得模拟电子书上(第三版442页)介绍得经典电路。
A1用得就是半波整流并且放大两倍,A2用得就是求与电路,达到精密整流得目得。
(R1=R3=R4=R5=2R2)2.第二种方法瞧起来比较简单A1就是半波整流电路,就是负半轴有输出,A2得电压跟随器得变形,正半轴有输出,这样分别对正负半轴得交流电进行整流!(R1=R2)3.第三种电路仿真效果如下:这个电路真就是她妈得坑爹,经过我半天得分析才发现就是这样得结论:Uo=-|Ui|,整出来得电路全就是负得,真想不通为什么作者放到这里,算了先把分析整理一下:当Ui>0得时候电路等效就是这样得放大器A就是同相比例电路,Uo1=(1+R2/R1)Ui=2Ui放大器B就是加减运算电路,Uo2=(1+R2/R1)Ui-(R4/R3)Uo1=-Ui当Ui<0得时候电路图等效如下:放大器A就是电压跟随器,放大器B就是加减运算电路式子整理:Uo2=(1+R4/(R2+R3))Ui- R4/(R2+R3)Ui=Ui以上就是这个电路得全部分析,但就是想达到正向整流得效果就应该把二极管全部反向过来电路与仿真效果如下图所示4.第四种电路就是要求所有电阻全部相等。
这个仿真相对简单。
电路与仿真效果如下计算方法如下:当Ui>0时,D1导通,D2截止(如果真就是不清楚为什么就是这样分析,可以参照模拟电子技术书上对于第一种电路得分析),这就是电路图等效如下(R6就是为了测试信号源用得跟这个电路没有直接得关系,不知道为什么不加这个电阻就仿真不了)放大器A构成反向比例电路,uo1=-ui,这时在放大器B得部分构成加减运算电路,uo2=-uo1=-(-ui)注意:这里放大器B得正相输入端就是相当于接地得,我刚开始一直没有想通,后来明白了,这一条线路上就是根本就没有电流得,根本就没有办法列出方程来。
(不知道这么想就是不就是正确得)当Ui<0得时候,D1截止,D2导通,电路图等效如下:这时就需要列方程了Ui<0时Ui/R1=-(U2/R5+U2/(R2+R3))计算得到U2=-2/3 Ui再根据U2/(R2+R3)=(U0-U2)/R4 得到U0=3/2 U2带入得到U0=-Ui这个电路在网上找到得,加在这里主要就就是感觉与上一个电路有点像,但就是现在分析了一下,这个就是最经典得电路变形,好处还不清楚。
各类整流电路图及工作原理整流电路是指将交流电转换成直流电的电路。
整流电路主要有单相半波整流电路、单相全波整流电路、三相半波整流电路和三相全波整流电路四种类型。
1.单相半波整流电路:单相半波整流电路由一个二极管、一个负载电阻和一个输入电源组成。
工作原理如下:当输入电源为正半周期时,二极管导通,电流通过负载电阻。
当输入电源为负半周期时,二极管截止,电流不通过负载电阻。
因此,输出电压为输入电压的正半周期。
2.单相全波整流电路:单相全波整流电路由两个二极管、一个中心引线和一个负载电阻组成。
工作原理如下:当输入电源的正半周期时,D1导通,电流通过D1和负载电阻。
当输入电源的负半周期时,D2导通,电流通过D2和负载电阻。
因此,输出电压为输入电压的绝对值。
3.三相半波整流电路:三相半波整流电路由三个二极管、三个负载电阻和一个输入电源组成。
工作原理如下:当输入电源的A相为正半周期时,D1导通,电流通过D1和负载电阻。
当输入电源的B相为正半周期时,D2导通,电流通过D2和负载电阻。
当输入电源的C相为正半周期时,D3导通,电流通过D3和负载电阻。
因此,输出电压为输入电压的正半周期。
4.三相全波整流电路:三相全波整流电路由三个二极管、三个负载电阻和一个输入电源组成。
工作原理如下:当输入电源的A相为正半周期时,D1和D4导通,电流通过D1、D4和负载电阻。
当输入电源的B相为正半周期时,D2和D5导通,电流通过D2、D5和负载电阻。
当输入电源的C相为正半周期时,D3和D6导通,电流通过D3、D6和负载电阻。
因此,输出电压为输入电压的绝对值。
以上是四种常见的整流电路的电路图和工作原理。
整流电路在电力系统、电子设备等领域中广泛应用,能够将交流电转换成直流电,为后续电路的正常工作提供了基础。
整流电路的原理整流电路是一种将交流电转换为直流电的电路。
在现代的电子设备中,由于需要使用直流电,因此整流电路的应用很广泛。
本文将介绍整流电路的原理。
一、整流电路基本构成整流电路通常由四个基本元件组成:变压器、二极管、滤波电容器和负载。
变压器是将交流电转换为所需电压的必要元件,它可以将高压低流量的交流电转换成低压大流量的交流电。
二极管是整流电路中最重要的元件,它可以使电流单向流动。
二极管只有在正向电压作用下才能导电,在反向电压作用下则会发生击穿而烧坏。
滤波电容器可以减小电压的波动,使输出电压更加稳定,并滤掉电路中的高频噪声。
负载是整流电路的最后一个元素,它能够消耗电路输出的电能。
二、整流电路工作原理整流电路的工作原理非常简单,它通过二极管只允许正半周电压通过的特性,将输入的交流电转换为单向的脉冲电压,然后再通过滤波电容器将电压波动降低,从而得到更加稳定的直流电。
如果将一个桥式整流电路连接到高压交流电源上,输入电压的正半周电流将通过一组二极管,而负半周电流则通过另一组二极管,最后输出的电压将近似于直流电压。
这种转换原始的交流电为直流电的过程称为整流。
三、整流电路的分类1. 单相半波整流电路单相半波整流电路如图1所示,它只有一个二极管,用于将交流电转换为单向的电流。
由于只有一半的电压被利用,因此它的效率较低。
图1 单相半波整流电路2. 单相全波整流电路单相全波整流电路如图2所示,它包括四个二极管,在每个半周期内都会采用负载电压输出。
这种电路比半波整流电路更加有效,因为负载电压的峰值会比半波整流电路的峰值高一倍。
图2 单相全波整流电路3. 三相桥式整流电路三相桥式整流电路如图3所示,它包括六个二极管,是一种经常用于高功率应用中的电路。
图3 三相桥式整流电路四、整流电路的应用整流电路广泛应用于电子设备中,例如手机充电器、数码相机、电动车充电器等。
在交流电网中,整流电路也被用于变压器、电机驱动器、大型电容器充电器以及其他类似的设备中。
一、整流电路的工作原理整流电路是将交流电信号转换成直流电信号的电路。
其工作原理主要通过二极管的导通和截止来实现。
在正半周的电压周期内,二极管处于导通状态,电流可以顺利通过;而在负半周的电压周期内,二极管处于截止状态,电流无法通过。
这样,交流电信号经过整流电路后,就可以转化为直流电信号输出。
二、滤波电路的工作原理滤波电路是用来去除整流后直流电信号中的脉动成分,使得输出的电压更加平稳。
其主要原理是通过电容器的充放电来吸收和释放交流电信号中的高频脉动成分。
在充电时,电容器可以吸收一部分脉动成分;在放电时,电容器则会释放出积累的电荷,从而使输出的电压更加稳定。
三、稳流电路的工作原理稳流电路是为了在负载变化时,仍然能够保持输出电流恒定的电路。
其原理是通过负反馈控制电路的工作点,使得在负载变化时,电路可以自动调整输出电流,从而避免因负载变化而导致的输出电流波动。
四、稳压电路的工作原理稳压电路是为了在输入电压波动时,能够保持输出电压恒定的电路。
其工作原理主要包括串联稳压和并联稳压两种方式。
串联稳压是通过调整输出电压与输入电压之间的电压差,以维持输出电压稳定;而并联稳压则是通过电容器和电感器等元件来减小输入电压的波动,从而实现输出电压的稳定。
五、结论整流、滤波、稳流、稳压电路是电子电路中常见的几种基本电路,它们通过不同的原理和组合方式,可以实现对交流电信号的转换和处理,从而得到稳定的直流电信号输出。
在实际应用中,这些电路通常会被应用于各种电子设备和电源系统中,起到了至关重要的作用。
对这些电路的工作原理有深入的了解,对于电子工程领域的从业者来说,是非常重要的。
六、整流、滤波、稳流、稳压电路在电子设备中的应用上文我们已经介绍了整流、滤波、稳流、稳压电路的工作原理,接下来我们将重点谈谈这些电路在电子设备中的应用。
1. 整流电路的应用整流电路是将交流电信号转换成直流电信号的关键电路之一,广泛应用于各种电源设备和电子设备中。
整流电路的概念整流电路概念整流电路是指将交流电转化为直流电的电路。
在电力系统中,交流电是主要的供电形式,但在很多电器设备中,需要使用直流电才能正常工作。
因此,通过整流电路能够将交流电转化为直流电,以满足电器设备的使用需求。
类型整流电路可以分为以下几种类型:•单相半波整流电路:–只有一个半周的交流电流通过折线的方法转化为直流电流。
–低成本、简单实现,但整流效率较低。
•单相全波整流电路:–通过桥式整流电路,将两个半周的交流电流转化为直流电流。
–整流效率较高,普遍应用于家庭电器和电子设备中。
•三相全波整流电路:–由三相交流电源通过整流器组成,将交流电转化为直流电。
–在工业领域得到广泛应用,如大型电机驱动系统。
原理整流电路的工作原理基于二极管的单向导电特性。
在单相半波整流电路中,交流电输入后,通过单个二极管将正半周的交流电流导通,而阻断负半周的交流电流,从而形成直流输出。
在单相全波整流电路中,桥式整流器由四个二极管组成,交流电输入后,正负半周的交流电流都能够导通,从而形成直流输出。
在三相全波整流电路中,利用三相交流电源的相位差,通过整流器实现了更加稳定和高效的整流。
应用整流电路在各个领域都有广泛的应用,包括:•家庭电器:电视、冰箱、洗衣机等使用直流电的家用电器•电子设备:手机充电器、电脑适配器等直流电供应设备•工业驱动器:用于控制和驱动电机,如变频器、伺服驱动器等整流电路的设计和实现对于保证电器设备的正常工作和提高能量利用效率都具有重要作用。
设计要点设计整流电路需要考虑以下几个要点:1.选择合适的整流器元件:常见的整流器元件有二极管、可控硅等,根据需求选择适当的元件。
2.考虑负载和电流需求:根据所驱动的负载和所需的电流大小来选择合适的整流电路。
3.控制电压波动:通过滤波电路降低输出直流电压的纹波,确保电压的稳定性。
4.防止过流和过热:采用过流保护和过热保护措施,确保整流电路的安全稳定运行。
优势和挑战整流电路的优势包括:•能够将交流电转化为直流电,满足电器设备的使用需求。
什么是整流电路_整流电路四种类型详解何为整流电路,身为硬件工程师的你如果连这都不知道,那还真是枉费了这个职称,而且你不仅要知道什么是整流电路,还要知道整流电路的类型,以及作用,原理等,才能更好的去应用,去工作,去提升自己。
“整流电路”(rectifying circuit)是把交流电能转换为直流电能的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。
整流电路通常由主电路、滤波器和变压器组成。
20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。
滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。
变压器设置与否视具体情况而定。
变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离。
整流电路的作用是将交流降压电路输出的电压较低的交流电转换成单向脉动性直流电,这就是交流电的整流过程,整流电路主要由整流二极管组成。
经过整流电路之后的电压已经不是交流电压,而是一种含有直流电压和交流电压的混合电压。
习惯上称单向脉动性直流电压。
整流电路也分四种类型:第一种是半波整流半波整流电路一般情况下只需要一个二极管。
详细的情况我们可以看下下面的图1,在图1中你能看到在交流电正半周时VD 导通,负半周时VD 截止,负载R 上得到的是脉动的直流电。
第二种是全波整流全波整流则是要用到二个二极管,ASEMI工程上也会要求需要有带中心抽头的两个次级线圈,这两个次级线圈需要圈数相同,以保证相同的电阻。
详细的情况我们可以看下图2,负载RL得到的就是全波整流电流,输出电压比半波整流电路要高。
图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益。
图2优点是匹配电阻少,只要求R1=R2。
图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3。
图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点。
图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计。
图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K。
图8的电阻匹配关系为R1=R2。
图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称。
图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性。
图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡。
精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态。
结论:虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种。
整流电路知识点总结一、整流电路的概念。
1. 定义。
- 整流电路是将交流电转换为直流电的电路。
其基本原理是利用二极管等具有单向导电性的电子元件,使交流电的正半周或负半周通过,从而在负载上得到单方向的脉动直流电。
2. 作用。
- 在电子设备中,许多电路需要直流电源供电,如电子计算机、通信设备、各种电子仪器等。
而市电提供的是交流电,整流电路就是将交流市电转换为适合这些设备使用的直流电的关键电路部分。
二、常见的整流电路类型。
(一)半波整流电路。
1. 电路结构。
- 由一个二极管和负载电阻组成。
交流电源的一端连接二极管的阳极,另一端连接负载电阻的一端,负载电阻的另一端与二极管的阴极相连。
2. 工作原理。
- 在交流电源的正半周时,二极管处于正向偏置状态,电流可以通过二极管流经负载电阻,在负载电阻上产生电压降。
而在交流电源的负半周时,二极管处于反向偏置状态,电流不能通过二极管,负载电阻上没有电流通过。
这样,在负载电阻上就得到了单向的脉动直流电压,其输出电压的波形是输入交流电压正半周的一部分,负半周被削去,所以称为半波整流。
3. 输出电压计算。
- 设输入交流电压的有效值为U_2,则半波整流电路输出电压的平均值U_O 为U_O=0.45U_2。
4. 优缺点。
- 优点:电路简单,使用的元件少,成本低。
- 缺点:输出电压脉动大,直流成分低,电源利用率低,只利用了交流电源的半个周期。
(二)全波整流电路。
1. 电路结构。
- 有两种常见结构,一种是使用两个二极管和一个中心抽头的变压器;另一种是使用四个二极管组成的桥式整流电路。
- 在中心抽头变压器全波整流电路中,变压器的次级绕组有中心抽头,将次级绕组分为两个相等的部分。
两个二极管分别连接在次级绕组的两端与负载电阻之间,且二极管的阴极连接在一起作为输出的正极,变压器中心抽头作为输出的负极。
- 桥式整流电路由四个二极管D1 - D4组成。
交流电源的两端分别连接到桥式电路的一对对角线上,负载电阻连接在另外一对对角线上。
常见整流电路一、什么是整流电路?整流电路是一种将交流电转换为直流电的电路。
在很多电子设备中,我们需要使用直流电,而电源往往提供的是交流电,因此需要通过整流电路将其转换为直流电供设备使用。
二、整流电路的分类根据整流的方式不同,整流电路可以分为以下三种类型:单相半波整流、单相全波整流和三相整流。
2.1 单相半波整流电路单相半波整流电路是最简单的一种整流电路,其原理是只利用交流电波的正半周进行整流。
具体的实现方式是通过二极管将交流信号的负半周截去,实现电流的单向流动。
这种方式的整流效率较低,约为40%。
2.2 单相全波整流电路单相全波整流电路是对交流信号的正负半周都进行整流的电路。
实现全波整流的一种常见方法是使用两个二极管和中心点接地的变压器。
具体过程是,交流信号通过变压器后,通过两个二极管分别进行整流,最终得到直流信号。
相比单相半波整流电路,单相全波整流电路的整流效率更高,约为80%。
2.3 三相整流电路三相整流电路是应用于三相交流电源的整流电路。
相比于单相整流电路,三相整流电路具有更高的整流效率和功率输出。
这种电路通常采用桥式整流电路,通过六个二极管实现对三相信号的整流。
三、整流电路的应用整流电路广泛应用于各种电子设备和电力系统中。
下面列举了一些典型的应用场景:3.1 电源适配器电源适配器是用于将交流电转换为直流电供电给电子设备的装置。
适配器中一般都会采用整流电路将输入的交流电转换为稳定的直流电。
3.2 直流电源直流电源是实验室、工业控制以及通信等领域中常见的电源类型。
直流电源通过整流电路将交流电转换为直流电,供给各种设备使用。
3.3 变频器变频器是用于控制交流电机转速的装置,通常情况下需要将输入的交流电转换为可调的直流电。
整流电路在变频器中起到了关键的作用。
四、常见整流电路中的二极管选择在常见的整流电路中,二极管扮演着至关重要的角色。
选取合适的二极管对整流电路的性能具有重要影响。
以下是在常见整流电路中选择二极管的几个要点:4.1 正向电压降正向电压降指的是二极管导通时的压降值,通常为0.6-0.7V。
常见整流电路的分类整流电路是将交流电转换为直流电的电路。
根据整流电路的不同特点和应用需求,可以分为以下几种分类:一、单相半波整流电路:单相半波整流电路是最简单的一种整流电路。
它通过一个二极管将交流电的负半周削减掉,只保留正半周。
输出电压波形为脉冲形式,具有较大的脉动。
它由一个二极管和负载电阻组成。
其工作原理如下:1、输入:单相交流电源。
交流电源的电压随时间变化,正负半周交替出现。
2、二极管导通:当交流电源的正半周电压大于二极管的正向导通电压时,二极管处于导通状态。
此时,电流从二极管的正极流过,经过负载电阻后形成输出电流。
3、二极管截止:当交流电源的负半周电压小于二极管的正向导通电压时,二极管处于截止状态。
此时,二极管不导通,电流无法通过负载电阻。
通过以上工作原理,单相半波整流电路将交流电的负半周削减掉,只保留正半周。
输出电压波形为脉冲形式,具有较大的脉动。
脉动的原因是输出电流在截止期间没有输出,导致输出电压下降。
单相半波整流电路的优点是结构简单、成本低廉,适用于对输出电压要求不高的场合。
缺点是输出电压脉动大,效率较低。
在实际应用中,单相半波整流电路常用于对电压要求不严格的低功率电子设备中,如电子钟、电子秤等。
二、单相全波整流电路:单相全波整流电路通过两个二极管和一个中心点接地的负载电阻,将交流电的正负半周都转换为正半周输出。
输出电压波形为脉冲形式,脉动比半波整流电路小。
它是一种将单相交流电转换为直流电的电路,通过两个二极管和一个中心点接地的负载电阻来实现。
其工作原理如下:1、输入:单相交流电源。
交流电源的电压随时间变化,正负半周交替出现。
2、第一个二极管导通:当交流电源的正半周电压大于第一个二极管的正向导通电压时,第一个二极管处于导通状态。
此时,电流从第一个二极管的正极流过,经过负载电阻后形成输出电流。
3、第一个二极管截止,第二个二极管导通:当交流电源的负半周电压大于第二个二极管的正向导通电压时,第一个二极管处于截止状态,第二个二极管处于导通状态。
常见的整流电路整流电路是将交流电信号转换为直流电信号的电路。
在实际应用中,整流电路被广泛应用于各种类型的电子设备中,包括家庭用品、工业设备和汽车等。
常见的整流电路包括单相半波整流、单相全波整流、三相半波整流和三相全波整流等。
一、单相半波整流1.1 原理单相半波整流电路是最简单的一种整流电路,它由一个二极管和一个负载组成。
当二极管导通时,它会将正弦波的上升部分传递给负载,而下降部分则被截断。
当二极管截止时,负载上没有输出信号。
1.2 特点单相半波整流电路具有以下特点:(1)输出直流信号具有较大的脉动性。
(2)效率较低。
(3)适用于小功率负载。
二、单相全波整流2.1 原理单相全波整流电路由两个二极管和一个中心引线组成。
它可以将正弦波的上升和下降部分都传递给负载,从而提高了效率并减少了输出信号的脉动性。
2.2 特点单相全波整流电路具有以下特点:(1)输出直流信号具有较小的脉动性。
(2)效率较高。
(3)适用于中等功率负载。
三、三相半波整流3.1 原理三相半波整流电路由三个二极管和一个负载组成。
它可以将正弦波的上升部分传递给负载,而下降部分则被截断。
当一个二极管导通时,其他两个二极管都处于截止状态。
3.2 特点三相半波整流电路具有以下特点:(1)输出直流信号具有较大的脉动性。
(2)效率较低。
(3)适用于小功率负载和需要使用三相电源的设备。
四、三相全波整流4.1 原理三相全波整流电路由六个二极管和一个中心引线组成。
它可以将正弦波的上升和下降部分都传递给负载,从而提高了效率并减少了输出信号的脉动性。
4.2 特点三相全波整流电路具有以下特点:(1)输出直流信号具有较小的脉动性。
(2)效率较高。
(3)适用于大功率负载和需要使用三相电源的设备。
五、总结整流电路是将交流电信号转换为直流电信号的电路,常见的整流电路包括单相半波整流、单相全波整流、三相半波整流和三相全波整流等。
每种整流电路都有自己独特的特点和适用范围。
在实际应用中,我们需要根据具体情况选择合适的整流电路。
详解4种整流、5种滤波电路1、变压电路通常直流稳压电源使用电源变压器来改变输入到后级电路的电压。
电源变压器由初级绕组、次级绕组和铁芯组成。
初级绕组用来输入电源交流电压,次级绕组输出所需要的交流电压。
通俗的说,电源变压器是一种电→磁→电转换器件。
即初级的交流电转化成铁芯的闭合交变磁场,磁场的磁力线切割次级线圈产生交变电动势。
次级接上负载时,电路闭合,次级电路有交变电流通过。
变压器的电路图符号见图2-3-1。
2、整流电路经过变压器变压后的仍然是交流电,需要转换为直流电才能提供给后级电路,这个转换电路就是整流电路。
在直流稳压电源中利用二极管的单项导电特性,将方向变化的交流电整流为直流电。
(1)半波整流电路半波整流电路见图2-3-2。
其中B1是电源变压器,D1是整流二极管,R1是负载。
B1次级是一个方向和大小随时间变化的正弦波电压,波形如图 2-3-3(a)所示。
0~π期间是这个电压的正半周,这时B1次级上端为正下端为负,二极管D1正向导通,电源电压加到负载R1上,负载R1中有电流通过;π~2π期间是这个电压的负半周,这时B1次级上端为负下端为正,二极管D1反向截止,没有电压加到负载R1上,负载R1中没有电流通过。
在2π~3π、3π~4π等后续周期中重复上述过程,这样电源负半周的波形被“削”掉,得到一个单一方向的电压,波形如图2-3-3(b)所示。
由于这样得到的电压波形大小还是随时间变化,我们称其为脉动直流。
设B1次级电压为E,理想状态下负载R1两端的电压可用下面的公式求出:整流二极管D1承受的反向峰值电压为:由于半波整流电路只利用电源的正半周,电源的利用效率非常低,所以半波整流电路仅在高电压、小电流等少数情况下使用,一般电源电路中很少使用。
(2)全波整流电路由于半波整流电路的效率较低,于是人们很自然的想到将电源的负半周也利用起来,这样就有了全波整流电路。
全波整流电路图见图2-3-6。
相对半波整流电路,全波整流电路多用了一个整流二极管D2,变压器B1的次级也增加了一个中心抽头。
一、填空题1、将变成的过程叫整流。
2、整流器一般由、、三部分组成。
3、常用的单相整流电路有、、等几种。
4、整流电路按被整流的交流电相数,可分为与两种,按被整流后输出的电压电流的波形,又可分为与两种。
5、在变压器二次侧电压相同的情况下,桥式整流电路输出的直流电压比半波整流电路高倍,而且脉动。
6、在单相半波整流电路中,如果电源变压器二次侧电压的有效值是220V,则负载电压将是V。
7、在单相桥式整流电路中,如果负载电流是20A,则流过每只晶体二极管的电流是A。
8、所谓滤波,就是保留脉动直流电中的成分,尽可能滤除其中的成分,把脉动直流电变成直流电的过程。
9、常用的滤波电路有、、等几种,滤波电路一般接在电路的后面。
10、滤波电路中,滤波电容和负载联,滤波电感和负载联。
11、电容滤波是利用电路中电容充电速度,放电速度的特点,使脉动直流电压变得,从而实现滤波的。
负载电阻R L的阻值越,电容C的容量越,电容滤波的效果越好,单相桥式整流电容滤波电路的输出电压随负载电流增加而。
12、电感滤波是利用电感线圈电流不能,从而使流过负载的电流变得来实现滤波的,负载电阻R L的阻值越,滤波电感L越,电容滤波的效果越好。
13、电容滤波适用于场合,电感滤波适用于场合。
14、所谓稳压电路,就是当,能使稳定的电路。
15、硅稳压管在电路中,它的正极必须接电源的极,它的负极必须接电源的极。
16、并联型稳压电路是直接利用稳压管的变化,并通过限流电阻的作用,达到稳压的目的。
17、和串联的稳压电路叫串联型稳压电路,串联型稳压电路包括、、和等几部分。
18、选用整流二极管时,主要考虑、两个参数。
19、当实际工作电压高于整流元件额定电压时,可将几个同型号的整流元件使用。
二、判断题1、凡是具有单向导电性的元件都可作整流元件。
()2、直流稳压电源中的变压器都起降压作用。
()3、单相半波整流电路中,只要把变压器二次侧绕组的端钮对调,就能使输出直流电压的极性改变。