中考数学方程专题训练含答案解析(最新整理)
- 格式:docx
- 大小:431.42 KB
- 文档页数:32
方程一.选择题(共9小题)1.(?随州)用配方法解一元二次方程x 2﹣6x ﹣4=0,下列变形正确的是()A .(x ﹣6)2=﹣4+36 B .(x ﹣6)2=4+36 C .(x ﹣3)2=﹣4+9D .(x ﹣3)2=4+9考点:解一元二次方程-配方法.分析:根据配方法,可得方程的解.解答:解:x 2﹣6x ﹣4=0,移项,得x 2﹣6x=4,配方,得(x ﹣3)2=4+9.故选:D .点评:本题考查了解一元一次方程,利用配方法解一元一次方程:移项、二次项系数化为1,配方,开方.2.(?兰州)一元二次方程x 2﹣8x ﹣1=0配方后可变形为()A .(x+4)2=17B .(x+4)2=15 C .(x ﹣4)2=17D .(x ﹣4)2=15考点:解一元二次方程-配方法.专题:计算题.分析:方程利用配方法求出解即可.解答:解:方程变形得:x 2﹣8x=1,配方得:x 2﹣8x+16=17,即(x ﹣4)2=17,故选 C点评:此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.3.(?滨州)用配方法解一元二次方程x 2﹣6x ﹣10=0时,下列变形正确的为()A .(x+3)2=1B .(x ﹣3)2=1 C .(x+3)2=19D .(x ﹣3)2=19考点:解一元二次方程-配方法.专题:计算题.分析:方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.解答:解:方程移项得:x 2﹣6x=10,配方得:x 2﹣6x+9=19,即(x ﹣3)2=19,故选D .点评:此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.4.(?重庆)一元二次方程x 2﹣2x=0的根是()A .x 1=0,x 2=﹣2B .x 1=1,x 2=2C .x 1=1,x 2=﹣2D .x 1=0,x 2=2考点:解一元二次方程-因式分解法.分析:先分解因式,即可得出两个一元一次方程,求出方程的解即可.解答:解:x 2﹣2x=0,x (x ﹣2)=0,x=0,x ﹣2=0,x 1=0,x 2=2,故选D .点评:本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,难度适中.5.(?广安)一个等腰三角形的两条边长分别是方程x 2﹣7x+10=0的两根,则该等腰三角形的周长是()A .12B .9C .13D .12或9考点:解一元二次方程-因式分解法;三角形三边关系;等腰三角形的性质.分析:求出方程的解,即可得出三角形的边长,再求出即可.解答:解:x 2﹣7x+10=0,(x ﹣2)(x ﹣5)=0,x ﹣2=0,x ﹣5=0,x 1=2,x 2=5,①等腰三角形的三边是2,2,5∵2+2<5,∴不符合三角形三边关系定理,此时不符合题意;②等腰三角形的三边是2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+5=12;即等腰三角形的周长是12.故选:A .点评:本题考查了等腰三角形性质、解一元二次方程、三角形三边关系定理的应用等知识,关键是求出三角形的三边长.6.(?山西)我们解一元二次方程3x 2﹣6x=0时,可以运用因式分解法,将此方程化为3x (x﹣2)=0,从而得到两个一元一次方程:3x=0或x ﹣2=0,进而得到原方程的解为x 1=0,x 2=2.这种解法体现的数学思想是()A .转化思想B .函数思想C .数形结合思想D .公理化思想考点:解一元二次方程-因式分解法.专题:计算题.分析:上述解题过程利用了转化的数学思想.解答:解:我们解一元二次方程3x 2﹣6x=0时,可以运用因式分解法,将此方程化为3x (x ﹣2)=0,从而得到两个一元一次方程:3x=0或x ﹣2=0,进而得到原方程的解为x 1=0,x 2=2.这种解法体现的数学思想是转化思想,故选A .点评:此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.7.(?广州)已知2是关于x 的方程x 2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为()A .10B .14C .10或14D .8或10考点:解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质.分析:先将x=2代入x 2﹣2mx+3m=0,求出m=4,则方程即为x 2﹣8x+12=0,利用因式分解法求出方程的根x 1=2,x 2=6,分两种情况:①当6是腰时,2是等边;②当6是底边时,2是腰进行讨论.注意两种情况都要用三角形三边关系定理进行检验.解答:解:∵2是关于x 的方程x 2﹣2mx+3m=0的一个根,∴22﹣4m+3m=0,m=4,∴x 2﹣8x+12=0,解得x 1=2,x 2=6.①当6是腰时,2是等边,此时周长=6+6+2=14;②当6是底边时,2是腰,2+2<6,不能构成三角形.所以它的周长是14.故选B .点评:此题主要考查了一元二次方程的解,解一元二次方程﹣因式分解法,三角形三边关系定理以及等腰三角形的性质,注意求出三角形的三边后,要用三边关系定理检验.8.(?济宁)三角形两边长分别为3和6,第三边的长是方程x 2﹣13x+36=0的两根,则该三角形的周长为()A .13B .15C .18D .13或18考点:解一元二次方程-因式分解法;三角形三边关系.分析:先求出方程x 2﹣13x+36=0的两根,再根据三角形的三边关系定理,得到合题意的边,进而求得三角形周长即可.解答:解:解方程x 2﹣13x+36=0得,x=9或4,即第三边长为9或4.边长为9,3,6不能构成三角形;而4,3,6能构成三角形,所以三角形的周长为3+4+6=13,故选:A .点评:此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯.9.(?烟台)如果x 2﹣x ﹣1=(x+1)0,那么x 的值为()A .2或﹣1B .0或1C .2D .﹣1考点:解一元二次方程-因式分解法;零指数幂.分析:首先利用零指数幂的性质整理一元二次方程,进而利用因式分解法解方程得出即可.解答:解:∵x 2﹣x ﹣1=(x+1)0,∴x 2﹣x ﹣1=1,即(x ﹣2)(x+1)=0,解得:x 1=2,x 2=﹣1,当x=﹣1时,x+1=0,故x ≠﹣1,故选:C .点评:此题主要考查了因式分解法解一元二次方程以及零指数幂的性质,注意x+1≠0是解题关键.二.解答题(共21小题)10.(?巴彦淖尔)我市某超市举行店庆活动,对甲、乙两种商品实行打折销售,打折前,购买2件甲商品和3件乙商品需要180元;购买1件甲商品和4件乙商品需要200元,而店庆期间,购买10件甲商品和10件乙商品仅需520元,这比打折前少花多少钱?考点:二元一次方程组的应用;二元一次方程的应用.分析:设甲商品单价为x元,乙商品单价为y元,根据购买3件甲商品和1件乙商品需用180元;购买1件甲商品和4件乙商品需用200元,列出方程组,继而可计算购买10件甲商品和10件乙商品需要的花费,也可得出比不打折前少花多少钱.解答:解:设打折前甲商品的单价为x元,乙商品的单价为y元,由题意得:,解得:.则购买10件甲商品和10件乙商品需要520元,∵打折后实际花费:10×(24+44)=680(元),∴这比不打折前少花160元.答:这比不打折前少花160元.点评:本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.11.(?福建)某一天,蔬菜经营户老李用了145元从蔬菜批发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:品名黄瓜茄子批发价(元/千克) 3 4零售价(元/千克) 4 7当天他卖完这些黄瓜和茄子共赚了90元,这天他批发的黄瓜和茄子分别是多少千克?考点:二元一次方程组的应用.分析:设批发的黄瓜是x千克,茄子是y千克,根据“用了145元从蔬菜批发市场批发一些黄瓜和茄子,卖完这些黄瓜和茄子共赚了90元,”列出方程组解答即可.解答:解:设批发的黄瓜是x千克,茄子是y千克,由题意得解得答:这天他批发的黄瓜15千克,茄子是25千克.点评:此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.12.(?福州)有48支队520名运动员参加篮球、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只能参加一项比赛.问:篮球、排球队各有多少支?考点:二元一次方程组的应用.分析:设篮球队有x个,排球队有y个,根据共有48个队,520名运动员建立方程组求出其解即可.解答:解:设篮球队有x个,排球队有y个,由题意,得,解得:.答:篮球队有28个,排球队有20个.点评:本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时根据条件建立二元一次方程组是关键.13.(?徐州)某超市为促销,决定对A,B两种商品进行打折出售.打折前,买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元;打折后,买50件A商品和40件B商品仅需364元,这比打折前少花多少钱?考点:二元一次方程组的应用.分析:设打折前A商品的单价为x元,B商品的单价为y元,根据买6件A商品和3件B 商品需要54元,买3件A商品和4件B商品需要32元列出方程组,求出x、y的值,然后再计算出买50件A商品和40件B商品共需要的钱数即可.解答:解:设打折前A商品的单价为x元,B商品的单价为y元,根据题意得:,解得:,则打折前需要50×8+40×2=480(元),打折后比打折前少花480﹣364=116(元).答:打折后比打折前少花116元.点评:本题考查了利用二元一次方程组解决现实生活中的问题.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.14.(?娄底)假如娄底市的出租车是这样收费的:起步价所包含的路程为0~1.5千米,超过1.5千米的部分按每千米另收费.小刘说:“我乘出租车从市政府到娄底汽车站走了 4.5千米,付车费10.5元.”小李说:“我乘出租车从市政府到娄底汽车站走了 6.5千米,付车费14.5元.”问:(1)出租车的起步价是多少元?超过 1.5千米后每千米收费多少元?(2)小张乘出租车从市政府到娄底南站(高铁站)走了 5.5千米,应付车费多少元?考点:二元一次方程组的应用.分析:(1)设出租车的起步价是x元,超过 1.5千米后每千米收费y元.根据他们的对话列出方程组并解答;(2)5.5千米分两段收费: 1.5千米、(5.5﹣1.5)千米.根据(1)中的单价进行计算.解答:解:(1)设出租车的起步价是x元,超过 1.5千米后每千米收费y元.依题意得,,解得.答:出租车的起步价是元,超过 1.5千米后每千米收费2元;(2)+(5.5﹣1.5)×2=12.5(元).答:小张乘出租车从市政府到娄底南站(高铁站)走了 5.5千米,应付车费12.5元.点评:本题考查了二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.15.(?曲靖)某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:类别/单价成本价销售价(元/箱)甲24 36乙33 48(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?考点:二元一次方程组的应用.分析:(1)设商场购进甲种矿泉水x箱,购进乙种矿泉水y箱,根据投入13800元资金购进甲、乙两种矿泉水共500箱,列出方程组解答即可;(2)总利润=甲的利润+乙的利润.解答:解:(1)设商场购进甲种矿泉水x箱,购进乙种矿泉水y箱,由题意得,解得:.答:商场购进甲种矿泉水350箱,购进乙种矿泉水150箱.(2)350×(33﹣24)+150×(48﹣36)=3150+1800=4950(元).答:该商场共获得利润4950元.点评:本题考查了二元一次方程组的实际应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.16.(?黄冈)已知A ,B 两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130元,问A ,B 两件服装的成本各是多少元?考点:二元一次方程组的应用.分析:设A 服装成本为x 元,B 服装成本y 元,由题意得等量关系:①成本共500元;②共获利130元,根据等量关系列出方程组,再解即可.解答:解:设A 服装成本为x 元,B 服装成本y 元,由题意得:,解得:,答:A 服装成本为300元,B 服装成本200元.点评:此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程组.17.(?永州)已知关于x 的一元二次方程x 2+x+m 2﹣2m=0有一个实数根为﹣1,求m 的值及方程的另一实根.考点:一元二次方程的解;根与系数的关系.分析:把x=﹣1代入已知方程列出关于m 的新方程,通过解该方程来求m 的值;然后结合根与系数的关系来求方程的另一根.解答:解:设方程的另一根为x 2,则﹣1+x 2=﹣1,解得x 2=0.把x=﹣1代入x 2+x+m 2﹣2m=0,得(﹣1)2+(﹣1)+m 2﹣2m=0,即m (m ﹣2)=0,解得m 1=0,m 2=2.综上所述,m 的值是0或2,方程的另一实根是0.点评:本题主要考查了一元二次方程的解.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.18.(?大连)解方程:x 2﹣6x ﹣4=0.考点:解一元二次方程-配方法.分析:此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.解答:解:移项得x 2﹣6x=4,配方得x 2﹣6x+9=4+9,即(x ﹣3)2=13,开方得x ﹣3=±,∴x 1=3+,x 2=3﹣.点评:本题考查了用配方法解一元二次方程,用配方法解一元二次方程的步骤:(1)形如x 2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如A x 2+Bx+C=0型,方程两边同时除以二次项系数,即化成x 2+px+q=0,然后配方.19.(?东莞)解方程:x 2﹣3x+2=0.考点:解一元二次方程-因式分解法.分析:把方程的左边利用十字相乘法因式分解为(x ﹣1)(x ﹣2),再利用积为0的特点求解即可.解答:解:∵x 2﹣3x+2=0,∴(x ﹣1)(x ﹣2)=0,∴x ﹣1=0或x ﹣2=0,∴x 1=1,x 2=2.点评:本题考查了因式分解法解一元二次方程,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.20.(?梅州)已知关于x 的方程x 2+2x+A ﹣2=0.(1)若该方程有两个不相等的实数根,求实数A 的取值范围;(2)当该方程的一个根为1时,求A 的值及方程的另一根.考点:根的判别式;一元二次方程的解;根与系数的关系.分析:(1)关于x 的方程x 2﹣2x+A ﹣2=0有两个不相等的实数根,即判别式△=B 2﹣4AC >0.即可得到关于A 的不等式,从而求得A 的范围.(2)设方程的另一根为x 1,根据根与系数的关系列出方程组,求出A 的值和方程的另一根.解答:解:(1)∵B 2﹣4AC=(﹣2)2﹣4×1×(A ﹣2)=12﹣4A >0,解得:A <3.∴A 的取值范围是A <3;(2)设方程的另一根为x 1,由根与系数的关系得:,解得:,则A 的值是﹣1,该方程的另一根为﹣3.点评:本题考查了一元二次方程根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根.21.(?河南)已知关于x 的一元二次方程(x ﹣3)(x ﹣2)=|m|.(1)求证:对于任意实数m ,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m 的值及方程的另一个根.考点:根的判别式;一元二次方程的解;根与系数的关系.分析:(1)要证明方程有两个不相等的实数根,即证明△>0即可;(2)将x=1代入方程(x ﹣3)(x ﹣2)=|m|,求出m 的值,进而得出方程的解.解答:(1)证明:∵(x ﹣3)(x ﹣2)=|m|,∴x 2﹣5x+6﹣|m|=0,∵△=(﹣5)2﹣4(6﹣|m|)=1+4|m|,而|m|≥0,∴△>0,∴方程总有两个不相等的实数根;(2)解:∵方程的一个根是1,∴|m|=2,解得:m=±2,∴原方程为:x 2﹣5x+4=0,解得:x 1=1,x 2=4.即m 的值为±2,方程的另一个根是4.点评:此题考查了根的判别式,一元二次方程A x 2+Bx+C=0(A ≠0)的根与△=B 2﹣4AC 有如下关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根.同时考查了一元二次方程的解的定义.22.(?泰州)已知:关于x 的方程x 2+2mx+m 2﹣1=0(1)不解方程,判别方程根的情况;(2)若方程有一个根为3,求m的值.考点:根的判别式;一元二次方程的解.分析:(1)找出方程A,B及C的值,计算出根的判别式的值,根据其值的正负即可作出判断;(2)将x=3代入已知方程中,列出关于系数m的新方程,通过解新方程即可求得m 的值.解答:解:(1)∵A=1,B=2m,C=m2﹣1,∵△=B2﹣4AC=(2m)2﹣4×1×(m2﹣1)=4>0,∴方程x2+2mx+m2﹣1=0有两个不相等的实数根;(2)∵x2+2mx+m2﹣1=0有一个根是3,∴32+2m×3+m2﹣1=0,解得,m=﹣4或m=﹣2.点评:此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根.也考查了一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.即用这个数代替未知数所得式子仍然成立.23.(?潜江)已知关于x的一元二次方程x 2﹣4x+m=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根为x1,x2,且满足5x1+2x2=2,求实数m的值.考点:根的判别式;根与系数的关系.分析:(1)若一元二次方程有两实数根,则根的判别式△=B2﹣4AC≥0,建立关于m的不等式,求出m的取值范围;(2)根据根与系数的关系得到x1+x2=4,x1x2=m,再变形已知条件得到(x1+x2)2﹣4x1x2=31+|x1x2|,代入即可得到结果.解答:解:(1)∵方程有实数根,∴△=(﹣4)2﹣4m=16﹣4m≥0,∴m≤4;(2)∵x1+x2=4,∴5x1+2x2=2(x1+x2)+3x1=2×4+3x1=2,∴x1=﹣2,把x1=﹣2代入x2﹣4x+m=0得:(﹣2)2﹣4×(﹣2)+m=0,解得:m=﹣12.点评:本题考查了一元二次方程A x2+B x+C=0(A≠0)的根的判别式△=B2﹣4AC:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程根与系数的关系.24.(?福州)已知关于x 的方程x 2+(2m ﹣1)x+4=0有两个相等的实数根,求m 的值.考点:根的判别式.分析:先根据一元二次方程有两个相等的实数根得出△=0即可得到关于m 的方程,解方程求出m 的值即可.解答:解:∵x 2+(2m ﹣1)x+4=0有两个相等的实数根,∴△=(2m ﹣1)2﹣4×4=0,解得m=﹣或m=.点评:本题考查的是一元二次方程根的判别式,根据题意得出关于m 的方程是解答此题的关键.25.(?南充)已知关于x 的一元二次方程(x ﹣1)(x ﹣4)=p 2,p 为实数.(1)求证:方程有两个不相等的实数根;(2)p 为何值时,方程有整数解.(直接写出三个,不需说明理由)考点:根的判别式.分析:(1)要证明方程总有两个不相等的实数根,那么只要证明△>0即可;(2)要是方程有整数解,那么x 1?x 2=4﹣p 2为整数即可,于是求得当p=0,±1时,方程有整数解.解答:解;(1)原方程可化为x 2﹣5x+4﹣p 2=0,∵△=(﹣5)2﹣4×(4﹣p 2)=4p 2+9>0,∴不论m 为任何实数,方程总有两个不相等的实数根;(2)∵方程有整数解,∴x 1?x 2=4﹣p 2为整数即可,∴当p=0,±1时,方程有整数解.点评:本题考查了一元二次方程的根的情况,判别式△的符号,把求未知系数的范围的问题转化为解不等式的问题是解题的关键.26.(?咸宁)已知关于x 的一元二次方程mx 2﹣(m+2)x+2=0.(1)证明:不论m 为何值时,方程总有实数根;(2)m 为何整数时,方程有两个不相等的正整数根.考点:根的判别式;解一元二次方程-公式法.分析:(1)求出方程根的判别式,利用配方法进行变形,根据平方的非负性证明即可;(2)利用一元二次方程求根公式求出方程的两个根,根据题意求出m 的值.解答:解:(1)△=(m+2)2﹣8m=m 2﹣4m+4=(m ﹣2)2,∵不论m 为何值时,(m ﹣2)2≥0,∴△≥0,∴方程总有实数根;(2)解方程得,x=,x1=,x2=1,∵方程有两个不相等的正整数根,∴m=1或2,m=2不合题意,∴m=1.点评:本题考查的是一元二次方程根的判别式和求根公式的应用,掌握一元二次方程根的情况与判别式△的关系:△>0?方程有两个不相等的实数根;△=0?方程有两个相等的实数根;△<0?方程没有实数根是解题的关键.27.(?东营)年,东营市某楼盘以每平方米6500元的均价对外销售,因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,年的均价为每平方米5265元.(1)求平均每年下调的百分率;(2)假设年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)考点:一元二次方程的应用.专题:增长率问题.分析:(1)设平均每年下调的百分率为x,根据题意列出方程,求出方程的解即可得到结果;(2)如果下调的百分率相同,求出年的房价,进而确定出100平方米的总房款,即可做出判断.解答:解:(1)设平均每年下调的百分率为x,根据题意得:6500(1﹣x)2=5265,解得:x1=0.1=10%,x2=1.9(舍去),则平均每年下调的百分率为10%;(2)如果下调的百分率相同,年的房价为5265×(1﹣10%)=4738.5(元/米2),则100平方米的住房总房款为100×4738.5=473850=47.385(万元),∵20+30>47.385,∴张强的愿望可以实现.点评:此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键.28.(?淮安)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是100+200x斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?考点:一元二次方程的应用.专题:销售问题.分析:(1)销售量=原来销售量﹣下降销售量,据此列式即可;(2)根据销售量×每斤利润=总利润列出方程求解即可.解答:解:(1)将这种水果每斤的售价降低x元,则每天的销售量是100+×20=100+200x 斤;(2)根据题意得:(4﹣2﹣x)(100+200x)=300,解得:x=或x=1,∵每天至少售出260斤,∴x=1.答:张阿姨需将每斤的售价降低1元.点评:本题考查理解题意的能力,第一问关键求出每千克的利润,求出总销售量,从而利润.第二问,根据售价和销售量的关系,以利润做为等量关系列方程求解.29.(?珠海)白溪镇年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,年达到82.8公顷.(1)求该镇至年绿地面积的年平均增长率;(2)若年增长率保持不变,年该镇绿地面积能否达到100公顷?考点:一元二次方程的应用.专题:增长率问题.分析:(1)设每绿地面积的年平均增长率为x,就可以表示出年的绿地面积,根据年的绿地面积达到82.8公顷建立方程求出x的值即可;(2)根据(1)求出的年增长率就可以求出结论.解答:解:(1)设绿地面积的年平均增长率为x,根据意,得57.5(1+x)2=82.8,解得:x1=0.2,x2=﹣2.2(不合题意,舍去)答:增长率为20%;(2)由题意,得82.8(1+0.2)=99.36万元答:年该镇绿地面积不能达到100公顷.点评:本题考查了增长率问题的数量关系的运用,运用增长率的数量关系建立一元二次方程的运用,一元二次方程的解法的运用,解答时求出平均增长率是关键.30.(?广州)某地区年投入教育经费2500万元,年投入教育经费3025万元.(1)求年至年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计年该地区将投入教育经费多少万元.考点:一元二次方程的应用.专题:增长率问题.分析:(1)一般用增长后的量=增长前的量×(1+增长率),年要投入教育经费是2500(1+x)万元,在年的基础上再增长x,就是年的教育经费数额,即可列出方程求解.(2)利用(1)中求得的增长率来求年该地区将投入教育经费.解答:解:设增长率为x,根据题意年为2500(1+x)万元,年为2500(1+x)(1+x)万元.则2500(1+x)(1+x)=3025,解得x=0.1=10%,或x=﹣2.1(不合题意舍去).答:这两年投入教育经费的平均增长率为10%.(2)3025×(1+10%)=3327.5(万元).故根据(1)所得的年平均增长率,预计年该地区将投入教育经费3327.5万元.点评:本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.。
初三解方程练习题及答案解方程是数学中关于未知数的一个重要内容,也是初中数学的基础知识之一。
在初三阶段,解方程的练习对于提高数学能力和解题技巧非常重要。
本文将提供一些初三解方程的练习题,并附上详细的解答,帮助同学们更好地理解和掌握解方程的方法。
一、一元一次方程1. 解下列方程:(1) 2x + 5 = 13(2) 3x - 7 = 8(3) 4(x + 2) - 3x = 10答案解析:(1) 2x + 5 = 13首先将方程转化为等式形式,得到2x = 13 - 5,即2x = 8。
然后将方程两边同除以2,得到x = 4。
(2) 3x - 7 = 8首先将方程转化为等式形式,得到3x = 8 + 7,即3x = 15。
然后将方程两边同除以3,得到x = 5。
(3) 4(x + 2) - 3x = 10首先将方程进行化简,得到4x + 8 - 3x = 10。
然后将同类项合并,得到x + 8 = 10。
最后将方程两边同时减去8,得到x = 2。
二、一元二次方程1. 解下列方程:(1) x^2 + 5x + 6 = 0(2) 2x^2 - 3x - 2 = 0(3) 3(x^2 - 4) = 7x答案解析:(1) x^2 + 5x + 6 = 0使用因式分解法,将方程改写成(x + 2)(x + 3) = 0。
由乘积为0的性质可得:x + 2 = 0 或 x + 3 = 0。
解得x = -2 或 x = -3。
(2) 2x^2 - 3x - 2 = 0使用求根公式,根据公式x = (-b ± √(b^2 - 4ac))/(2a)。
将a、b、c的值代入公式得:x = (3 ± √(9 + 16))/4。
化简后解得x = (3 ± 5)/4,即x = 2 或 x = -1/2。
(3) 3(x^2 - 4) = 7x首先将方程进行化简,得到3x^2 - 12 = 7x。
然后将方程转化为等式形式,得到3x^2 - 7x - 12 = 0。
中考数学《方程与不等式》专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.若3x >﹣3y ,则下列不等式中一定成立的是( ) A .x >yB .x <yC .x ﹣y >0D .x +y >02.如果1x -大于0,那么x 的取值范围是( ) A .1x >B .1x <C .0x <D .0x >3.一元一次不等式x +1<2的解集在数轴上表示为( ) A . B . C .D .4.不等式﹣3x≤9的解集在数轴上表示正确的是( ) A .B .C .D .5.用配方法解方程22990x x --=,配方后得( ) A .2(1)99x -=B .2(1)100x +=C .2(1)98x -=D .2(1)100x -=6.若关于x 的分式方程43233m xx x +=+--有增根,则m 的值为( ) A .2B .3C .4D .57.一项工程,A 独做10天完成,B 独做15天完成,若A 先做5天,再A 、B 合做,完成全部工程的23,共需( ) A .8天B .7天C .6天D .5天8.若关于x 的方程534x kx -=+有整数解,那么满足条件的所有整数k 的和为( ) A .20B .6C .4D .29.不等式组372378x x -≥⎧⎨-<⎩的所有整数解共有( )A .1个B .2个C .3个D .4个10.下列运用等式性质进行的变形中,正确的是( ) A .如果a b =,那么23a b +=+ B .如果a b =,那么23a b -=- C .如果2a a =,那么1a =D .如果a bc c=,那么a b = 11.下列是一元一次方程的是( ) A .231x y +=B .20x -=C .3x +D .11x= 12.为了践行“绿色生活”的理念,甲、乙两人每天骑自行车出行,甲匀速骑行30公里的时间与乙匀速骑行25公里的时间相同,已知甲每小时比乙多骑行2公里,设甲每小时骑行x 公里,根据题意列出的方程正确的是( ) A .30252=+x x B .30252=+x x C .30252=-x x D .30252=-x x13.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同. 设2,3月份利润的月增长率为x ,那么x 满足的方程为( ) A .B .C .D .14.如图所示两个天平都平衡,则3个球体的质量等于( )个正方体的质量,括号内应填A .2B .3C .4D .515.若﹣3<a ≤3,则关于x 的方程x +a =2解的取值范围为( ) A .﹣1≤x <5B .﹣1<x ≤1C .﹣1≤x <1D .﹣1<x ≤516.下列变形中,正确的是( ) A .若a b =,则11a b +=-B .若32a b =,则a b =C .若2a b -=,则2a b =-D .若44b a -=-,则a b =17.在2019年女排世界杯比赛中,中国队以11场全胜积32分的成绩成为女排世界杯五冠王、女排世界杯比赛积分规则如表所示,若中国队以大比分3:2取胜的场次有x 场,则根据以上信息所列方程正确的是( )A .3x+2x =32B .3(11﹣x )+3(11﹣x )+2x =32C .3(11﹣x )+2x =32D .3x+2(11﹣x )=3218.三元一次方程组10318x y z x y x y z ++=⎧⎪+=⎨⎪=+⎩的解是( )A .532x y z =⎧⎪=⎨⎪=⎩B .352x y z =⎧⎪=⎨⎪=⎩C .542x y z =⎧⎪=⎨⎪=⎩D .431x y z =⎧⎪=⎨⎪=⎩19.已知4个矿泉水空瓶可以换矿泉水一瓶,现有15个矿泉水空瓶,若不交钱,最多可以喝矿泉水( ) A .3瓶B .4瓶C .5瓶D .6瓶20.甲、乙、丙三名打字员承担一项打字任务,已知如下信息:如果每小时只安排1名打字员,那么按照甲、乙、丙的顺序至完成工作任务,共需( )A .1316小时B .1312小时C .1416小时D .1412小时二、填空题21.一罐饮料净重500克,罐上注有“蛋白质含量≥0.4%”,则这罐饮料中蛋白质的含量至少为____克. 22.如果方程23252x x -+=-的解与方程72x b -=的解相同,则b =________. 23.由4x ﹣3y +6=0,可以得到用y 表示x 的式子为x =__.24.已知不等式组212(1)43x x x+>⎧⎨-+>⎩,请写出一个该不等式组的整数解___________.25.已知关于x 的一元二次方程x 2+x+m =0有实数根,则m 的取值范围是_____.26.若关于x 的方程()21410k x x ---=是一元二次方程,则k 的取值范围是______.27.当a =_____时,分式32a a +-的值为-4. 28.三角形的三边长分别为7,1+2x ,13,则x 的取值范围是___ 29.25y x +=用含x 的式子表示y 为________________________.30.若关于x ,y 的二元一次方程组2630x my x y -=⎧⎨-=⎩的解是正整数,则整数m =_______.31.某种服装打折销售,如果每件服装按标价的5折出售将亏35元,而按标价的8折出售将赚55元,则成本价为______元.32.已知A ∠与的B ∠两边分别平行,且A ∠比B ∠的3倍少20°,则A ∠的大小是__________.33.已知x ,y 满足方程组22223212472836x xy y x xy y ⎧-+=⎨++=⎩, (1)代数式224x y +的值是_____. (2)代数式112x y+的值是______.34.已知关于x ,y 的方程组225,234x y m x y m +=-⎧⎨-=-⎩的解满足1x <,2y <,则m 的取值范围为______.35.已知关于x ,y 的不等式组100x x a ->⎧⎨-⎩有以下说法:①若它的解集是1<x ≤4,则a =4;①当a =1时,它无解;①若它的整数解只有2,3,4,则4≤a <5;①若它有解,则a ≥2.其中所有正确说法的序号是_____.36.若关于x ,y 的二元一次方程组221x y x y k +=⎧⎨+=+⎩的解为正数,则k 的取值范围为__.37.不等式组的解集为23113x x -<⎧⎨-≤⎩的解集为______.38.如果关于x 的方程x2+2ax ﹣b2+2=0有两个相等的实数根,且常数a 与b 互为倒数,那么a +b=_____.39.某车间 56 名工人,每人每天能生产螺栓 16 个或螺母 24 个,设有 x 名工人生产螺栓, 有 y 名工人生产螺母,每天生产的螺栓和螺母按 1:2 配套,所列方程组是________. 40.若分式方程2211x m x x x x x+-=++有增根,则m 的值是______.三、解答题 41.解下列方程: (1)3x +7=32﹣2x ; (2)121224x x +--=+. 42.解方程:242111x x x++=---. 43.解方程组:(1)32528x y x y +=⎧⎨-=⎩;(2)234347x y x y ⎧+=⎪⎨⎪-=-⎩.44.某商场进货员预测某商品能畅销市场,就用8万元购进该商品,上市后果然供不应求.商场又用17.6万购进了第二批这种商品,所购数量是第一批购进量的2倍,但进货的单价贵了4元,商场销售该商品时每件定价都是58元,最后剩下150件按八折销售,很快售完.在这两笔生意中,商场共盈利多少元? 45.当k 为何值时,方程x 2﹣6x+k ﹣1=0, (1)两根相等; (2)有一根为0. 46.解方程组或不等式组:(1)20346x y x y +=⎧⎨+=⎩;(2)53231204x x x +≥⎧⎪⎨--<⎪⎩ 47.已知一个四位自然数N ,它的各个数位上的数字均不为0,且满足千位数字与百位数字的和等于十位数字与个位数字的和,则称这个数为“和对称数”,将这个四位自然数N 的千位数字和百位数字互换,十位数字和个位数字互换,得到N ',规定()101N N F N '+=. 例如:4536N =,①4536+=+,①4536是“和对称数”,()45365463453699101F +==.2346N =,①2346+≠+,①2346不是“和对称数”.(1)请判断2451、3972是不是“和对称数”,并说明理由.若是,请求出对应的()F N 的值.(2)已知A ,B 均为“和对称数”,其中100010746A a b =++,1002026B m n =++(其38a ≤≤,05b ≤≤,29m ≤≤,512n ≤≤,且均为整数),令()()32k F A F B =+,当k能被77整除时,求出所有符合条件的A 的值. 48.解决以下问题:(1)221x y ±++,的算术平方根是5,求2318x y -+的立方根; (2)的值互为相反数,求a b c 、、的值. 49.为了促进学生加强体育锻炼,某中学从去年开始,每周除体育课外,又开展了“足球俱乐部1小时”活动.去年学校通过采购平台在某体育用品店购买A 品牌足球共花费2880元,B 品牌足球共花费2400元,且购买A 品牌足球数量是B 品牌数量的1.5倍,每个足球的售价,A 品牌比B 品牌便宜12元. (1)求去年A ,B 两种足球的售价;(2)今年由于参加俱乐部人数增加,需要从该店再购买A ,B 两种足球共50个,已知该店对每个足球的售价,今年进行了调整,A 品牌比去年提高了5%,B 品牌比去年降低了10%,如果今年购买A ,B 两种足球的总费用不超过去年总费用的一半,那么学校最多可购买多少个B 品牌足球?50.某生态柑橘园现有柑橘31吨,租用9辆A 和B 两种型号的货车将柑橘一次性运往外地销售.已知每辆车满载时,A 型货车的总费用500元,B 型货车的总费用480元,每辆B型货车的运费是每辆A型货车的运费的1.2倍.(1)每辆A型货车和B型货车的运费各多少元?(2)若每辆车满载时,租用1辆A型车和7辆B型车也能一次性将柑橘运往外地销售,则每辆A型货车和B型车货各运多少吨?参考答案:1.D【分析】利用不等式的性质由已知条件可得到x+y>0,从而得到正确选项.【详解】①3x>﹣3y,①3x+3y>0,①x+y>0.故选D.【点睛】本题考查了不等式的性质:应用不等式的性质应注意的问题,在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.2.Ax->,即可求得x的取值范围.【分析】1x-大于0即10【详解】根据题意得:x->10x>解得:1故选A.【点睛】本题主要考查了一元一次不等式的应用,把判断一个式子的值的取值范围的问题掌握不等式的问题,这是解本题的关键.3.B【分析】求出不等式的解集,表示出数轴上即可.【详解】解:不等式x+1<2,解得:x<1,如图所示:故选B.【点睛】此题考查了在数轴上表示不等式的解集,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.4.A【详解】试题分析:本题考查了在数轴上表示不等式的解集:利用数轴表示不等式的解集体现了数形结合的思想.也考查了解一元一次不等式.先解不等式得到x≥﹣3,在数轴上表示为﹣3的右侧部分且含﹣3,这样易得到正确选项. 考点:在数轴上表示不等式的解集;解一元一次不等式 5.D【分析】把常数项-99移项后,应该在左右两边同时加上一次项系数-2的一半的平方. 【详解】把方程x 2-2x -99=0的常数项移到等号的右边,得到x 2-2x =99 方程两边同时加上一次项系数一半的平方,得到x 2-2x +1=100 配方得(x -1)2=100. 故选D .【点睛】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 6.D【分析】根据分式方程有增根可求出3x =,方程去分母后将3x =代入求解即可. 【详解】解:①分式方程43233m xx x +=+--有增根, ①3x =,去分母,得()4323m x x +=+-, 将3x =代入,得49m +=, 解得5m =. 故选:D .【点睛】本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键. 7.C【分析】此题是工程问题,它的等量关系是A 独做的加上A 、B 合做的是总工程的23,此题可以分段考虑,A 独做了5天,合作了(x -5)天,利用等量关系列方程即可解得. 【详解】设共需x 天. 根据题意得:5112(5)()1010153x +-+= 解得:x =6. 故选C .8.A【分析】先解方程可得75x k=-,再根据关于x 的方程534x kx -=+有整数解,k 为整数,可得51k -=±或57k -=±,从而可得答案. 【详解】解:①534x kx -=+, ①57x kx -=,即()57k x -=, 当50k -≠时, ①75x k=-, ①关于x 的方程534x kx -=+有整数解,k 为整数, ①51k -=±或57k -=±,解得:4k =或6k =或2k =-或12k =, ①()4621220++-+=,①满足条件的所有整数k 的和为20. 故选A .【点睛】本题考查的是一元一次方程的解与方程的解法,掌握“方程的整数解的含义以及求解整数解的方法”是解本题的关键. 9.B【分析】解不等式组,得到关于x 的解集,再找出符合x 取值范围的整数解即可. 【详解】解:解不等式3x −7≥2得:x ≥3, 解不等式3x −7<8得:x <5, 即不等式组的解集为:3≤x <5,符合3≤x <5的x 的整数解为:3,4共2个, 故选:B .【点睛】本题考查一元一次不等式组的整数解,解题的关键是掌握解一元一次不等式组的方法. 10.D【分析】根据等式的基本性质进行分析判断即可.【详解】解:A 选项中,“如果a b =,那么23a b +=+”是不成立的,故不能选A ; B 选项中,“如果a b =,那么23a b -=-”是不成立的,故不能选B ;C选项中,“如果2a a=,那么1a=”不一定成立,因为a的值可能为0,故不能选C;D选项中,“如果a bc c=,那么a b=”成立,故选D.故选:D.【点睛】本题考查等式的基本性质,熟记“等式的基本性质:(1)等式的两边都加上或者减去同一个整式,所得结果仍是等式;(2)等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式”是解答本题的关键.11.B【分析】根据一元一次方程的定义逐项分析判断即可求解.【详解】解:A、不是一元一次方程,故本选项错误;B、是一元一次方程,故本选项正确;C、不是等式,即不是一元一次方程,故本选项错误;D、不是整式方程,即不是一元一次方程,故本选项错误.故选B.【点睛】本题考查了一元一次方程的定义,掌握一元一次方程的定义是解题的关键.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).12.C【详解】解:设甲每小时骑行x公里,根据题意得:30252=-x x.故选C.13.D【详解】试题分析:一月份获利10万元,二月份获利10(1+x)万元,三月份获利10万元,然后根据一季度的总获利得出方程.考点:一元二次方程的应用14.D【分析】根据等式的性质求解即可.【详解】解:由图可知,2个球体的质量=5个圆柱的质量,2个正方体的质量=3个圆柱的质量,①6个球体的质量=15个圆柱的质量,10个正方体的质量=15个圆柱的质量,①6个球体的质量=10个正方体的质量,①3个球体的质量=5个正方体的质量,故选D .【点睛】本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式. 15.A【分析】先求出方程的解,再根据﹣3<a ≤3的范围,即可求解.【详解】解:由x +a =2,得:x =2-a ,①﹣3<a ≤3,①﹣1≤2-a <5,即:﹣1≤x <5,故选A .【点睛】本题主要考查解一元一次方程以及不等式的性质,用含a 的代数式表示x ,是解题的关键.16.D【分析】根据等式的性质逐个判断即可得到答案.【详解】解:由题意可得,若a b =,则111a b b +=+>-,故A 选项错误不符合题意;若32a b =,则23a b =,故B 选项错误不符合题意; 若2a b -=,则2a b =+,故C 选项错误不符合题意;若44b a -=-,则a b =,故D 选项正确符合题意;故选D .【点睛】本题考查等式的性质:等式两边同时加上或减去同一个数等式性质不变,等式两边同时乘以或除以同一个不为0的数等式性质不变.17.C【分析】设中国队以大比分3:2取胜的场次有x 场,则中国队以小比分3:1或3:0取胜的场次有(11﹣x )场,根据总积分=3×小比分获胜的场次数+2×大比分获胜场次数,即可得出关于x 的一元一次方程.【详解】解:设中国队以大比分3:2取胜的场次有x 场,则中国队以小比分3:1或3:0取胜的场次有(11﹣x)场,依题意,得:2x+3(11﹣x)=32.故选:C.【点睛】本题考查了一元一次方程的应用,正确理解题意、找准相等关系是解题的关键. 18.A【分析】由①代入①、①消去x,解二元一次方程组得出y、z的数值,再进一步求得x的数值解决问题.【详解】10318x y zx yx y z++=⎧⎪+=⎨⎪=+⎩①②③,把①代入①得:y+z=5①,把①代入①得:4y+3z=18①,①×4–①得:z=2,把z=2代入①得:y=3,把y=3,z=2代入①得:x=5,则方程组的解为532xyz=⎧⎪=⎨⎪=⎩,故选A.【点睛】此题考查三元一次方程组的解法,注意逐步消元是解决问题的关键.19.C【详解】试题分析:因为15÷4=3余3空瓶,所以可换3瓶喝完,还剩3+3=6空瓶,拿出4空瓶换一瓶,还剩3个空瓶子,找人借一个瓶子凑齐四个喝完还剩一个再把这个瓶子还给那个人,故最多可以喝五瓶矿泉水.故选C.考点:命题.20.C【分析】设甲单独完成任务需要x小时,则乙单独完成任务需要(x﹣5)小时;根据信息二提供的信息列出方程并解答;根据信息三得到丙的工作效率,易得按照甲、乙、丙的顺序至完成工作任务所需的时间.【详解】解:设甲单独完成任务需要x小时,则乙单独完成任务需要(x﹣5)小时,则5x x -解得x =20.经检验x =20是原方程的根,且符合题意.①x =20是所列方程的解.①x -5=15.①甲的工作效率是120,乙的工作效率是115, 则丙的工作效率是110. ①一轮的工作量为:1111320151060++=. ①4轮后剩余的工作量为:52216015-=. ①还需要甲、乙分别工作1小时后,丙需要的工作量为:211115201560--=. ①丙还需要工作16小时. 故一共需要的时间是:3×4+2+16=14 16小时. 故选:C . 【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 21.2【分析】根据题意直接列一元一次不等式,并求解即可.【详解】解:设蛋白质的含量至少应为x 克,依题意得:0.4%500x ≥, 解得x ≥2,则蛋白质的含量至少应为2克.【点睛】本题考查了一元一次不等式的应用,根据题意正确列出不等式是解题的关键. 22.7 【分析】先解方程23252x x -+=-,得97x =,因为这个解也是方程72x b -=的解,根据方程的解的定义,把x 代入方程72x b -=中求出b 的值. 【详解】解:由23252x x -+=-,得2420(515),x x -=-+7所以可得97277b =⨯-= 故答案为:7.【点睛】本题考查了解一元一次方程和方程的解的定义,方程的解就是能够使方程左右两边相等的未知数的值.23.364y - 【详解】方程4x −3y +6=0,解得:x =364y -, 故答案为364y -. 24.0##1【分析】分别求出两个不等式的解集,再求出两个解集的公共部分,即可得到答案.【详解】()212143x x x +>⎧⎪⎨-+>⎪⎩①② 解不等式①得:1x >-;解不等式①得:2x <;所以不等式组的解集为:12x -<<;则其整数解为0与1.故答案为:0(或1).【点睛】本题考查了求一元一次不等式组的整数解,正确并熟练地解一元一次不等式是解题的关键.25.m≤14【分析】一元二次方程有实数根,则①≥0,建立关于m 的不等式,求出m 的取值范围.【详解】解:由题意知,①=1﹣4m≥0, ①m≤14, 故答案为m≤14. 【点睛】本题考查根的判别式,解题的关键是明确当一元二次方程有实数根时,①≥0. 26.1k ≠【分析】根据一元二次方程的定义列式计算即可得解.【详解】①关于x 的方程()21410k x x ---=是一元二次方程,①10k -≠,①1k ≠,故答案为:1k ≠.【点睛】本题主要考查了一元二次方程定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.27.1【分析】根据题意列出方程即可求出答案. 【详解】解:由题意得:342a a +=--, 去分母得,()342a a +=-- ,解得,1a =,经检验1a =是分式方程的解,故答案为:1【点睛】本题考查分式方程,解题的关键是熟练运用分式方程的解法.28.3<x <6【详解】试题分析:根据三角形三边之间的关系:两边之和大于第三边,两边之差小于第三边,可得13-7< 1+2x <20,解得3<x <6 .考点:三角形三边之间的关系点评:该题考查了三角形三边之间的关系,已知三角形的两边长,可以求第三边的范围,即两边之差<第三边长<两边之和.29.y=-2x+5【分析】把x 看做已知数求出y 即可.【详解】解:方程y+2x=5,解得:y=-2x+5.故答案为:y=-2x+5.【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .30.0,3,4,5【分析】先解方程组2630x myx y-=⎧⎨-=⎩,用m表示出方程组的解,根据方程组有正整数解得出m的值.【详解】解:2630x myx y-=⎧⎨-=⎩①②由①得:x=3y ①,把①代入①得:6y−my=6,①y=66-m,①x=186-m,①方程组2630x myx y-=⎧⎨-=⎩的解是正整数,①6−m>0,①m<6,并且66-m和186-m是正整数,m是整数,①m的值为:0,3,4,5.故答案是:0,3,4,5.【点睛】本题考查了二元一次方程组的解,一般情况下二元一次方程组的解是唯一的.数学概念是数学的基础与出发点,当遇到有关二元一次方程组的解的问题时,要回到定义中去,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.31.185【分析】设每件服装标价为x元,再根据无论亏本或盈利,其成本价相同,列出方程,求出x的解,最后根据成本价=服装标价×折扣,即可得出答案.【详解】解:设每件服装标价为x元,根据题意得:0.5x+35=0.8x-55,解得:x=300.则每件服装标价为300元,成本价是:300×50%+35=185(元),故答案为:185.【点睛】此题主要考查了一元一次方程的应用,正确找出等量关系是解题的关键.32.10°或130°【分析】根据A ∠与B ∠两边分别平行,由A ∠比B ∠的3倍少20°列方程求解即可得到答案.【详解】①A ∠比B ∠的3倍少20°,①A ∠=3B ∠- 20°,①A ∠与B ∠两边分别平行,①①A 与①B 相等或互补,①当A ∠=B ∠时,得到①A =3①A - 20°,①①A =10°;①当①A +①B =180°时,得到①A =3(180°-①A )-20°,①①A =130°,故答案为:10°或130°.【点睛】此题考查平行线的性质,解一元一次方程,能正确理解两边分别平行的两个角的关系是解题的关键.33. 17 54± 【分析】(1)令224n x y m xy +==,,将原方程组可化为关于m 、n 的二元一次方程组,进行求解即可;(2)先根据完全平方公式求出25x y +=±,再将112x y+通分进行计算即可. 【详解】(1)令224n x y m xy +==,,原方程组可化为3247236m n m n -=⎧⎨+=⎩, 解得172m n =⎧⎨=⎩, 即221724x y xy +==,,故答案为:17;(2)222(2)4178254x y x y xy +=+=+=+,25x y ∴+=±1125224x y x y xy +±∴+==,故答案为:54±. 【点睛】本题考查了解二元一次方程组,完全平方公式的变形,异分母分式相加等,熟练掌握知识点并运用整体代入法是解题的关键.34.823m -<< 【分析】先解出方程组的解,再根据解的情况列出关于m 的不等式组,解不等式组即可求解.【详解】解:225234x y m x y m +=-⎧⎨-=-⎩①② ①+①得:x =-1-m ,将x =-1-m 代入①中,得:y =342m -, ①该方程组的解满足1x <,2y <, ①113422m m --<⎧⎪⎨-<⎪⎩, 解得:823m -<<. 故答案为:823m -<<. 【点睛】本题考查解二元一次方程组的应用、解一元一次不等式组,熟练掌握二元一次方程组、一元一次不等式组的解法,正确解出x 、y 值是解答的关键.35.①①①【分析】先求出各不等式的解集,再根据各小题的结论解答即可.【详解】解:解不等式x ﹣1>0得,x >1;解不等式x ﹣a ≤0得,x ≤a ,故不等式组的解集为:1<x ≤a .①①它的解集是1<x ≤4,①a =4,故本小题正确;①①a =1,x >1,①不等式组无解,故本小题正确;①①它的整数解只有2,3,4,则4≤a <5,①4≤a <5,故本小题正确;①①它有解,①a >1,故本小题错误.故答案为:①①①.【点睛】本题主要考查了解一元一次不等式组,掌握解一元一次不等式组是解题的关键. 36.13k <<【分析】先求出方程组的解,根据题意得出关于k 的不等式组,再求出不等式组的解集即可.【详解】解:解方程组221x y x y k +=⎧⎨+=+⎩得:13x k y k=-⎧⎨=-⎩, 关于x ,y 的二元一次方程组221x y x y k +=⎧⎨+=+⎩的解为正数, ∴1030k k ->⎧⎨->⎩, 解得:13k <<,故答案为:13k <<.【点睛】本题考查了二元一次方程组的解,解二元一次方程组和解一元一次不等式组等知识点,能得出关于k 的不等式组是解此题的关键.37.22x -≤<【分析】分别求出每个不等式的解集,再取它们的公共部分即可得到不等式组的解集.【详解】解:23113x x -<⎧⎨-≤⎩①② 解不等式①得,x <2,解不等式①得,x ≥-2所以,不等式组的解集为:22x -≤<故答案为:22x -≤<.【点睛】此题考查了解一元一次不等式组,解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大中间找,大大小小无法找(空集).38.±2.【分析】根据根的判别式求出△=0,求出a 2+b 2=2,根据完全平方公式求出即可.【详解】解:①关于x 的方程x 2+2ax-b 2+2=0有两个相等的实数根,①①=(2a )2-4×1×(-b 2+2)=0,即a 2+b 2=2,①常数a 与b 互为倒数,①ab=1,①(a+b )2=a 2+b 2+2ab=2+2×1=4,①a+b=±2,故答案为±2.【点睛】本题考查了根的判别式和解高次方程,能得出等式a 2+b 2=2和ab=1是解此题的关键.39.5621624x y x y +=⎧⎨⨯=⎩【分析】此题中的等量关系有:①生产螺栓人数+生产螺母人数=56人;①每天生产的螺栓和螺母按1:2配套,那么螺栓要想与螺母的数量配套,则螺栓数量的2倍=螺母数量.【详解】解:根据生产螺栓人数+生产螺母人数=56人,得方程x+y=56;根据螺栓数量的2倍=螺母数量,得方程2×16x=24y .列方程组为:5621624x y x y +=⎧⎨⨯=⎩故答案为5621624x y x y +=⎧⎨⨯=⎩【点睛】本题考查了由实际问题抽象出二元一次方程组,难点在于理解第二个等量关系:若要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.40.1-或2【分析】根据增根是化为整式方程后产生的不适合分式方程的根,先把分式方程去分母化为整式方程,再通过使最简公分母不为0确定增根的可能值,将其代入整式方程即可算出m 的值.【详解】解:①2211x m x x x x x+-=++, ①()2221x m x -=+,①221m x x =--. ①2211x m x x x x x+-=++有增根, ①0x =或=1x -.当0x =时,2211m x x =--=-;当=1x -时,2212m x x =--=.①m 的值为1-或2.故答案为:1-或2【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;①化分式方程为整式方程;①把增根代入整式方程即可求得相关字母的值. 41.(1)x =5;(2)x =4.【分析】(1)移项,合并同类项,系数化成1即可;(2)去分母,然后移项,合并同类项,系数化成1即可.【详解】解:(1)移项合并得:5x =25,解得:x =5;(2)去分母得:2x +2﹣4=8+2﹣x ,移项合并得:3x =12,解得:x =4.【点睛】本题考查一元一次方程的解法,掌握一元一次方程的解法是关键.42.13x = 【分析】观察可得最简公分母是(x +1)(x ﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 【详解】解:242111x x x ++=--- 整理,得:421(1)(1)1x x x x +-=-+-- 方程两边都乘以(x +1)(x ﹣1),得4﹣(x +1)(x +2)=﹣(x 2﹣1),整理,得,3x =1, 解得1x=3. 经检验,1x=3是原方程的根.①原方程的解是1x=3.【点睛】本题考查解分式方程,注意解分式方程,结果要检验.43.(1)32x y =⎧⎨=-⎩;(2)34x y =⎧⎨=⎩. 【分析】(1)利用加减消元法求出解即可.(2)去分母后,加减法消元解方程.【详解】解:(1)32528x yx y+=⎧⎨-=⎩①②,①×2得,4x﹣2y=16①,①+①得,7x=21,解得x=3,把x=3代入①得,2×3﹣y=8,解得y=﹣2,所以,方程组的解是32xy=⎧⎨=-⎩;(2)方程组可化为4324347x yx y+=⎧⎨-=-⎩①②,①×4得,16x+12y=96①,①×3得,9x﹣12y=﹣21①,①+①得,25x=75,解得x=3,把x=3代入①得,3×3﹣4y=﹣7,解得y=4,所以,方程组的解是34xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.44.在这两笔生意中,商场共盈利90260元.【分析】盈利=总售价-总进价,应求出某商品的数量.总价明显,一定是根据单价来列等量关系.本题的关键描述语是:“单价贵了4元”;等量关系为:第一次的单价=第二次的单价-4.【详解】设商场第一次购进某商品x件,则第二次购进某商品2x件,根据题意得:8000017600042x x-=.160000=176000-8x解这个方程得:x=2000.经检验:x=2000是原方程的根.商场利润:(2000+4000-150)×58+58×0.8×150-80000-176000=90260(元).答:在这两笔生意中,商场共盈利90260元.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.45.(1)k=10;(2)k=1.【分析】(1)方程由两个相等的根,则△=0;(2)有一个根是0,则两根之积为0.【详解】解:(1)△=36﹣4(k-1)=40-4k,①两根相等,①①=0,即k=10;(2)①有一根为0,①0∆≥,即10k≤,由根与系数的关系可得,k﹣1=0,①k=1.【点睛】本题考查了一元二次方程根的判别式,根与系数的关系,熟练掌握是解题的关键.一元二次方程根的情况与判别式①的关系:(1)①>0⇔方程有两个不相等的实数根;(2)①=0⇔方程有两个相等的实数根;(3)①<0⇔方程没有实数根.46.(1)63xy=⎧⎨=-⎩;(2)13x-≤<【分析】(1)方程组利用代入消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分求出不等式组的解集,表示在数轴上即可.【详解】(1)解:20 346 x yx y+=⎧⎨+=⎩①②方程①可化为2x y=-①把①代入①,得解得y=-3把y=-3代入①,得x=()236-⨯-=所以原方程组的解为:63x y =⎧⎨=-⎩(2)53231204x x x +≥⎧⎪⎨--<⎪⎩①② 解不等式①得1x ≥-解不等式①得3x <所以不等式组的解集为13x -≤<将其在数轴上表示如下:【点睛】本题两个小题分别考查了解二元一次方程组和解一元一次不等式组,根据相关题目要求按步骤求解是解题的关键47.(1)3972不是“和对称数”,2451是“和对称数”,理由见解析,()F N 值为66(2)A 的值为3746,4756,6776,5766,7786,8796【分析】(1)根据“和对称数”的定义,即可求解;(2)根据题意分别表示出()(),F A F B ,再由()()32k F A F B =+,k 能被77整除,并结合a ,m 的取值范围进行分类讨论,即可求解.【详解】(1)解:3972不是“和对称数”,①3924+≠,①3972不是“和对称数”.2451是“和对称数”,①2451+=+,。
中考数学复习专题综合过关检测—分式方程及应用(含解析)(考试时间:90分钟,试卷满分:100分)一、选择题(本题共10小题,每小题3分,共30分)。
1.(2023•天涯区一模)把分式方程﹣=1化为整式方程正确的是()A.1﹣(1﹣x)=1B.1+(1﹣x)=1C.1﹣(1﹣x)=x﹣2D.1+(1﹣x)=x﹣2【答案】D【解答】解:方程变形得:+=1,去分母得:1+(1﹣x)=x﹣2,故选:D.2.(宝应县二模)初三(1)班在今年的植树节领有平均每人植树6棵的任务,如果只由女同学完成,每人应植树15棵,如果只由男同学完成,每人应植树的棵数为()A.9B.10C.12D.14【答案】B【解答】解:设单独由男生完成,每人应植树x棵.那么根据题意可得出方程:,解得:x=10.检验得x=10是方程的解.因此单独由男生完成,每人应植树10棵.故选:B.3.(2023•邵阳县一模)分式方程=的解是()A.x=3B.x=﹣1C.x=1D.x=﹣3【答案】D【解答】解:去分母得,3(x+1)=2x,去括号得,3x+3=2x,移项得,x=﹣3,检验:把x=﹣3代入x(x+1)=﹣3(﹣3+1)=6≠0,∴x=﹣3是原方程的解,故选:D.4.(2023•武威三模)在创建文明城市的进程中,某市为美化城市环境,计划种植树木50万棵,由于志愿者的加入,实际每天植树比原计划多30%,结果提前2天完成任务,设原计划每天植树x万棵,由题意得到的方程是()A.B.C.D.【答案】A【解答】解:由题意可得,=2,故选:A.5.(2023•龙江县校级三模)若关于x的分式方程无解,则a的值为()A.0B.1C.﹣1或0D.0或1【答案】D【解答】解:,方程两边同时乘以x﹣2,得1﹣a=2ax﹣4a,移项、合并同类项,得2ax =3a +1,∵方程无解,∴2a =0或=2,解得a =0或a =1.故选:D .6.(2023•环翠区一模)若关于x 的分式方程﹣1=有增根,则a 的值为()A .﹣3B .3C .2D .﹣【答案】A【解答】解:方程两边都乘以(x ﹣2)得:6﹣(x ﹣2)=﹣ax ,解得:x =,∵方程有增根,∴x ﹣2=0,∴x =2,∴=2,解得:a =﹣3.故选:A .7.(2023•东港区校级三模)某班级为做好疫情防控,班委会决定拿出班费中的a 元给同学们购买口罩,由于药店对学生购买口罩每包优惠2元,结果比原计划多买了5包口罩.设原计划购买口罩x 包,则依题意列方程为()A .B .C .D .【答案】B【解答】解:设原计划购买口罩x 包,则实际购买口罩(x +5)包,依题意得:=+2.故选:B.8.(2023•吴桥县校级模拟)“若关于x 的方程无解,求a的值.”尖尖和丹丹的做法如下:尖尖:去分母得:ax=12+3x﹣9,移项得:ax﹣3x=12﹣9,合并同类项得:(a﹣3)x=3,∵原方程无解,∴a﹣3=0,∴a=3.丹丹:去分母得:ax=12+3x﹣9,移项,合并同类项得:(a﹣3)x=3,解得:x=,∵原方程无解,∴x为增根,∴3x﹣9=0,解得x=3,∴=3,解得a=4.下列说法正确的是()A.尖尖对,丹丹错B.尖尖错,丹丹对C.两人都错D.两人的答案合起来才对【答案】D【解答】解:去分母得:ax=12+3x﹣9,移项,合并同类项得:(a﹣3)x=3,∵原方程无解,∴x为增根或a﹣3=0,当3x﹣9=0,解得x=3,此时=3,解得a=4;当a﹣3=0,解得a=3;综上所述:a的值为3或4,故选:D.9.(2023•义乌市模拟)若分式的值为1,则x的值是()A.5B.4C.3D.1【答案】A【解答】解:根据题意得:=1,去分母得:x﹣2=3,解得:x=5,检验:把x=5代入得:x﹣2≠0,∴分式方程的解为x=5.故选:A.10.(2023•黄埔区校级二模)在正数范围内定义一种运算“※”,其规定则为a※b=,如2※4=,根据这个规则,则方程3※(x+1)=1的解为()A.B.1C.﹣1D.﹣【答案】A【解答】解:由题意得:3※(x+1)=.∵3※(x+1)=1,∴.∴x+1+3=3(x+1).∴x+4=3x+3.∴﹣2x=﹣1.∴x=.当x=时,3(x+1)≠0.∴这个方程的解为x=.故选:A.二、填空题(本题共6题,每小题2分,共12分)11.(2023•柳州三模)分式方程的解是x=﹣2.【答案】x=﹣2.【解答】解:,方程两边都乘x(x﹣3),得2(x﹣3)=5x,解得:x=﹣2,检验:当x=﹣2时,x(x﹣3)≠0,所以x=﹣2是分式方程的解.故答案为:x=﹣2.12.(2023•梁山县模拟)“孔子周游列国”是流传很广的故事.有一次他和学生到离他们住的驿站30里的书院参观,学生步行出发1小时后,孔子坐牛车出发,牛车的速度是步行的1.5倍,孔子和学生们同时到达书院,设学生步行的速度为每小时x里,则可列方程为.【答案】.【解答】解:设学生步行的速度为每小时x里,则牛车的速度是每小时1.5x里,∵学生早出发1小时,孔子和学生们同时到达书院,∴,故答案为:.13.(2023•建湖县一模)关于x的分式方程=2的解为正数,则a的取值范围是a<4且a≠2.【答案】a<4且a≠2.【解答】解:去分母得:1﹣(a﹣1)=2(x﹣1),解得:x=2﹣a,由分式方程的解为正数,得到2﹣a>0,且2﹣a≠1,解得:a<4且a≠2,故答案为a<4且a≠2.14.(2023•盐田区二模)当x=﹣8时,分式的值为2.【答案】﹣8.【解答】解:根据题意得:=2,去分母得:x﹣2=2(x+3),解得:x=﹣8,检验:把x=﹣8代入得:x+3≠0,∴分式方程的解为x=﹣8,则当x=﹣8时,分式的值为2.故答案为:﹣8.15.(2023•市北区三模)甲、乙两人同时从学校出发,去距离学校15千米的农场参加劳动.甲的速度是乙的1.2倍,结果甲比乙早到10分钟,求甲和乙的速度各是多少?设乙的速度为x千米/小时,则根据题意可列方程为.【答案】.【解答】解:设乙的速度为x千米/小时,则甲的速度为1.2x千米/小时,根据题意得:.故答案为:.16.(2023•九龙坡区校级模拟)若关于x的不等式组有且仅有四个整数解,关于y的分式方程+=1有整数解,则符合条件的所有整数a的和是﹣10.【答案】﹣10,【解答】解:关于x的不等式组整理得,∵关于x的不等式组有且仅有四个整数解,∴1≤<2,∴﹣8<a≤﹣3,解分式方程得y=且≠2,∵关于y的分式方程有整数解,且a为整数,∴符合条件的所有整数a为﹣7,﹣3,∴符合条件的所有整数a的和为:﹣7﹣3=﹣10.故答案为:﹣10.三、解答题(本题共7题,共58分)。
九年级解方程练习题带答案解方程是数学学科中的基础内容之一,对于九年级的学生来说,掌握解方程的方法和技巧是非常重要的。
下面将给出几道九年级解方程的练习题,并附上详细的解析,希望能够帮助同学们更好地理解和应用解方程的知识。
练习题一:1. 解方程:2x + 5 = 172. 解方程:3(x + 4) = 273. 解方程:4x - 7 = 9x + 24. 解方程:2(x - 3) + 5 = 3(x + 1)练习题二:1. 解方程:5x - 3 = 2(x + 1) + 72. 解方程:3(2x - 1) = 4(x + 3) - 53. 解方程:2(x + 5) - 3x = 4(3x - 1) + 54. 解方程:6(x + 2) + 4x = 5(2x - 3) + 2(x + 4)练习题三:1. 解方程:4(x - 2) - 5(2x + 1) = 102. 解方程:3(2x + 1) - 2(3 - x) = 7x - 3(2x + 1)3. 解方程:2(x - 5) + 3(2x - 1) = 3(2x + 3) + 2(x - 4)4. 解方程:5(x + 2) + 7(2 - x) = 4(3x + 1) - 6(x + 2)答案及解析:练习题一:1. 解方程:2x + 5 = 17答案:x = 6解析:将方程两边都减去5,得到2x = 12;再将方程两边都除以2,得到x = 6。
2. 解方程:3(x + 4) = 27答案:x = 5解析:将方程中的括号内的式子乘以3,得到3x + 12 = 27;再将方程两边都减去12,得到3x = 15;最后将方程两边都除以3,得到x = 5。
3. 解方程:4x - 7 = 9x + 2答案:x = -3解析:将方程中的4x和9x合并,得到-5x - 7 = 2;再将方程两边都加上7,得到-5x = 9;最后将方程两边都除以-5,得到x = -3。
2023年中考数学-----方程的实际应用篇专项练习题(含答案解析)1.中国“最美扶贫高铁”之一的“张吉怀高铁”开通后,张家界到怀化的运行时间由原来的3.5小时缩短至1小时,运行里程缩短了40千米.已知高铁的平均速度比普通列车的平均速度每小时快200千米,求高铁的平均速度.【分析】设高铁的平均速度为xkm/h,由运行里程缩短了40千米得:x+40=3.5(x﹣200),可解得高铁的平均速度为296km/h.【解答】解:设高铁的平均速度为xkm/h,则普通列车的平均速度为(x﹣200)km/h,由题意得:x+40=3.5(x﹣200),解得:x=296,答:高铁的平均速度为296km/h.2.在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.【分析】(1)设乙骑行的速度为x千米/时,则甲骑行的速度为1.2x千米/时,利用路程=速度×时间,结合甲追上乙时二者的行驶路程相等,即可得出关于x的一元一次方程,解之即可求出乙骑行的速度,再将其代入1.2x中即可求出甲骑行的速度;(2)设乙骑行的速度为y千米/时,则甲骑行的速度为1.2y千米/时,利用时间=路程÷速度,结合乙比甲多用20分钟,即可得出关于y的分式方程,解之经检验后即可求出乙骑行的速度,再将其代入1.2y中即可求出甲骑行的速度.【解答】解:(1)设乙骑行的速度为x千米/时,则甲骑行的速度为1.2x千米/时,依题意得:×1.2x=2+x,解得:x=20,∴1.2x=1.2×20=24.答:甲骑行的速度为24千米/时.(2)设乙骑行的速度为y千米/时,则甲骑行的速度为1.2y千米/时,依题意得:﹣=,解得:y=15,经检验,y=15是原方程的解,且符合题意,∴1.2y=1.2×15=18.答:甲骑行的速度为18千米/时.3.为改善村容村貌,阳光村计划购买一批桂花树和芒果树.已知桂花树的单价比芒果树的单价多40元,购买3棵桂花树和2棵芒果树共需370元.(1)桂花树和芒果树的单价各是多少元?(2)若该村一次性购买这两种树共60棵,且桂花树不少于35棵.设购买桂花树的棵数为n,总费用为w元,求w关于n的函数关系式,并求出该村按怎样的方案购买时,费用最低?最低费用为多少元?【分析】(1)设桂花树的单价是x元,可得:3x+2(x﹣40)=370,解得桂花树的单价是90元,芒果树的单价是50元;(2)根据题意得w=40n+3000,由一次函数性质得购买桂花树35棵,购买芒果树25棵时,费用最低,最低费用为4400元.【解答】解:(1)设桂花树的单价是x元,则芒果树的单价是(x﹣40)元,根据题意得:3x+2(x﹣40)=370,解得x=90,∴x﹣40=90﹣40=50,答:桂花树的单价是90元,芒果树的单价是50元;(2)根据题意得:w=90n+50(60﹣n)=40n+3000,∴w关于n的函数关系式为w=40n+3000,∵40>0,∴w随n的增大而增大,∵桂花树不少于35棵,∴n≥35,∴n=35时,w取最小值,最小值为40×35+3000=4400(元),此时60﹣n=60﹣35=25(棵),答:w关于n的函数关系式为w=40n+3000,购买桂花树35棵,购买芒果树25棵时,费用最低,最低费用为4400元.4.某水果经营户从水果批发市场批发水果进行零售,部分水果批发价格与零售价格如下表:(1)第一天,该经营户用1700元批发了菠萝和苹果共300kg,当日全部售出,求这两种水果获得的总利润?(2)第二天,该经营户依然用1700元批发了菠萝和苹果,当日销售结束清点盘存时发现进货单丢失,只记得这两种水果的批发量均为正整数且菠萝的进货量不低于88kg,这两种水果已全部售出且总利润高于第一天这两种水果的总利润,请通过计算说明该经营户第二天批发这两种水果可能的方案有哪些?【分析】(1)设第一天,该经营户批发了菠萝xkg,苹果ykg,根据该经营户用1700元批发了菠萝和苹果共300kg,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再利用总利润=每千克的销售利润×销售数量(购进数量),即可求出结论;(2)设购进mkg菠萝,则购进kg苹果,根据“菠萝的进货量不低于88kg,且这两种水果已全部售出且总利润高于第一天这两种水果的总利润”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m,均为正整数,即可得出各进货方案.【解答】解:(1)设第一天,该经营户批发了菠萝xkg,苹果ykg,依题意得:,解得:,∴(6﹣5)x+(8﹣6)y=(6﹣5)×100+(8﹣6)×200=500(元).答:这两种水果获得的总利润为500元.(2)设购进mkg菠萝,则购进kg苹果,依题意得:,解得:88≤m<100.又∵m,均为正整数,∴m可以为88,94,∴该经营户第二天共有2种批发水果的方案,方案1:购进88kg菠萝,210kg苹果;方案2:购进94kg菠萝,205kg苹果.5.某经销商计划购进A,B两种农产品.已知购进A种农产品2件,B种农产品3件,共需690元;购进A种农产品1件,B种农产品4件,共需720元.(1)A,B两种农产品每件的价格分别是多少元?(2)该经销商计划用不超过5400元购进A,B两种农产品共40件,且A种农产品的件数不超过B种农产品件数的3倍.如果该经销商将购进的农产品按照A种每件160元,B种每件200元的价格全部售出,那么购进A,B两种农产品各多少件时获利最多?【分析】(1)设每件A种农产品的价格是x元,每件B种农产品的价格是y元,根据“购进A 种农产品2件,B种农产品3件,共需690元;购进A种农产品1件,B种农产品4件,共需720元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设该经销商购进m件A种农产品,则购进(40﹣m)件B种农产品,利用总价=单价×数量,结合购进A种农产品的件数不超过B种农产品件数的3倍且总价不超过5400元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,设两种农产品全部售出后获得的总利润为w元,利用总利润=每件的销售利润×销售数量,即可得出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题.【解答】解:(1)设每件A种农产品的价格是x元,每件B种农产品的价格是y元,依题意得:,解得:.答:每件A种农产品的价格是120元,每件B种农产品的价格是150元.(2)设该经销商购进m件A种农产品,则购进(40﹣m)件B种农产品,依题意得:,解得:20≤m≤30.设两种农产品全部售出后获得的总利润为w元,则w=(160﹣120)m+(200﹣150)(40﹣m)=﹣10m+2000.∵﹣10<0,∴w随m的增大而减小,∴当m=20时,w取得最大值,此时40﹣m=40﹣20=20.答:当购进20件A种农产品,20件B种农产品时获利最多.6.在某市组织的农机推广活动中,甲、乙两人分别操控A、B两种型号的收割机参加水稻收割比赛.已知乙每小时收割的亩数比甲少40%,两人各收割6亩水稻,乙则比甲多用0.4小时完成任务;甲、乙在收割过程中对应收稻谷有一定的遗落或破损,损失率分别为3%,2%.(1)甲、乙两人操控A、B型号收割机每小时各能收割多少亩水稻?(2)某水稻种植大户有与比赛中规格相同的100亩待收水稻,邀请甲、乙两人操控原收割机一同前去完成收割任务,要求平均损失率不超过2.4%,则最多安排甲收割多少小时?【分析】(1)设甲操控A型号收割机每小时收割x亩水稻,则乙操控B型号收割机每小时收割(1﹣40%)x亩水稻,利用工作时间=工作总量÷工作效率,结合乙比甲多用0.4小时完成任务,即可得出关于x的分式方程,解之经检验后即可求出甲操控A型号收割机每小时收割水稻的亩数,再将其代入(1﹣40)x中即可求出乙操控B型号收割机每小时收割水稻的亩数;(2)设安排甲收割y小时,则安排乙收割小时,根据要求平均损失率不超过2.4%,即可得出关于y的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设甲操控A型号收割机每小时收割x亩水稻,则乙操控B型号收割机每小时收割(1﹣40%)x亩水稻,依题意得:﹣=0.4,解得:x=10,经检验,x=10是原方程的解,且符合题意,∴(1﹣40%)x=(1﹣40%)×10=6.答:甲操控A型号收割机每小时收割10亩水稻,乙操控B型号收割机每小时收割6亩水稻.(2)设安排甲收割y小时,则安排乙收割小时,依题意得:3%×10y+2%×6×≤2.4%×100,解得:y≤4.答:最多安排甲收割4小时.7.习近平总书记在主持召开中央农村工作会议中指出:“坚持中国人的饭碗任何时候都要牢牢端在自己手中,饭碗主要装中国粮.”某粮食生产基地为了落实习近平总书记的重要讲话精神,积极扩大粮食生产规模,计划投入一笔资金购买甲、乙两种农机具,已知1件甲种农机具比1件乙种农机具多1万元,用15万元购买甲种农机具的数量和用10万元购买乙种农机具的数量相同.(1)求购买1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购买甲、乙两种农机具共20件,且购买的总费用不超过46万元,则甲种农机具最多能购买多少件?【分析】(1)设购买1件乙种农机具需要x万元,则购买1件甲种农机具需要(x+1)万元,利用数量=总价÷单价,结合用15万元购买甲种农机具的数量和用10万元购买乙种农机具的数量相同,即可得出关于x的分式方程,解之经检验后即可得出购买1件乙种农机具所需费用,再将其代入(x+1)中即可求出购买1件甲种农机具所需费用;(2)设购买m件甲种农机具,则购买(20﹣m)件乙种农机具,利用总价=单价×数量,结合总价不超过46万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设购买1件乙种农机具需要x万元,则购买1件甲种农机具需要(x+1)万元,依题意得:=,解得:x=2,经检验,x=2是原方程的解,且符合题意,∴x+1=2+1=3.答:购买1件甲种农机具需要3万元,1件乙种农机具需要2万元.(2)设购买m件甲种农机具,则购买(20﹣m)件乙种农机具,依题意得:3m+2(20﹣m)≤46,解得:m≤6.答:甲种农机具最多能购买6件.8.金鹰酒店有140间客房需安装空调,承包给甲、乙两个工程队合作安装,每间客房都安装同一品牌同样规格的一台空调,已知甲工程队每天比乙工程队多安装5台,甲工程队的安装任务有80台,两队同时安装.问:(1)甲、乙两个工程队每天各安装多少台空调,才能同时完成任务?(2)金鹰酒店响应“绿色环保”要求,空调的最低温度设定不低于26℃,每台空调每小时耗电1.5度;据预估,每天至少有100间客房有旅客住宿,旅客住宿时平均每天开空调约8小时.若电费0.8元/度,请你估计该酒店每天所有客房空调所用电费W(单位:元)的范围?【分析】(1)设乙工程队每天安装x台空调,则甲工程队每天安装(x+5)台空调,根据甲、乙两个工程队同时完成安装任务,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设每天有m(100≤m≤140)间客房有旅客住宿,利用每天所有客房空调所用电费W=电费的单价×每天旅客住宿耗电总数,即可得出W关于m的函数关系式,再利用一次函数上点的坐标特征,即可求出W的取值范围.【解答】解:(1)设乙工程队每天安装x台空调,则甲工程队每天安装(x+5)台空调,依题意得:=,解得:x=15,经检验,x=15是原方程的解,且符合题意,∴x+5=15+5=20.答:甲工程队每天安装20台空调,乙工程队每天安装15台空调,才能同时完成任务.(2)设每天有m (100≤m ≤140)间客房有旅客住宿,则W =0.8×1.5×8m =9.6m . ∵9.6>0,∴W 随m 的增大而增大,∴9.6×100≤W ≤9.6×140,即960≤W ≤1344.答:该酒店每天所有客房空调所用电费W (单位:元)的范围为不少于960元且不超过1344元.9.今年我市某公司分两次采购了一批土豆,第一次花费30万元,第二次花费50万元,已知第一次采购时每吨土豆的价格比去年的平均价格上涨了200元,第二次采购时每吨土豆的价格比去年的平均价格下降了200元,第二次的采购数量是第一次采购数量的2倍.(1)问去年每吨土豆的平均价格是多少元?(2)该公司可将土豆加工成薯片或淀粉,因设备原因,两种产品不能同时加工,若单独加工成薯片,每天可加工5吨土豆,每吨土豆获利700元;若单独加工成淀粉,每天可加工8吨土豆,每吨土豆获利400元,由于出口需要,所有采购的土豆必须全部加工完且用时不超过60天,其中加工成薯片的土豆数量不少于加工成淀粉的土豆数量的32,为获得最大利润,应将多少吨土豆加工成薯片?最大利润是多少?【分析】(1)设去年每吨土豆的平均价格是x 元,则第一次采购每吨土豆的平均价格为(x +200)元,第二次采购每吨土豆的平均价格为(x ﹣500)元,根据第二次的采购数量是第一次采购数量的两倍,据此列出分式方程求解即可;(2)先求出今年采购的土豆数,根据采购的土豆需不超过60天加工完毕,加工成薯片的土豆数量不少于加工成淀粉的土豆数量的,据此列出不等式组并求解,然后由一次函数的性质求出最大利润即可.【解答】解:(1)设去年每吨土豆的平均价格是x元,则今年第一次采购每吨土豆的平均价格为(x+200)元,第二次采购每吨土豆的平均价格为(x﹣200)元,由题意得:×2=,解得:x=2200,经检验,x=2200是原分式方程的解,且符合题意,答:去年每吨土豆的平均价格是2200元;(2)由(1)得:今年采购的土豆数为:×3=375(吨),设应将m吨土豆加工成薯片,则应将(375﹣m)吨加工成淀粉,由题意得:,解得:150≤m≤175,设总利润为y元,则y=700m+400(375﹣m)=300m+150000,∵300>0,∴y随m的增大而增大,∴当m=175时,y的值最大=300×175+150000=202500,答:为获得最大利润,应将175吨土豆加工成薯片,最大利润是202500元.10.如图,某小区矩形绿地的长宽分别为35m,15m.现计划对其进行扩充,将绿地的长、宽增加相同的长度后,得到一个新的矩形绿地.(1)若扩充后的矩形绿地面积为800m,求新的矩形绿地的长与宽;(2)扩充后,实地测量发现新的矩形绿地的长宽之比为5:3.求新的矩形绿地面积.【分析】(1)设将绿地的长、宽增加xm,则新的矩形绿地的长为(35+x)m,宽为(15+x)m,根据扩充后的矩形绿地面积为800m,即可得出关于x的一元二次方程,解之即可得出x 的值,将其正值分别代入(35+x)及(15+x)中,即可得出结论;(2)设将绿地的长、宽增加ym,则新的矩形绿地的长为(35+y)m,宽为(15+y)m,根据实地测量发现新的矩形绿地的长宽之比为5:3,即可得出关于y的一元一次方程,解之即可得出y值,再利用矩形的面积计算公式,即可求出新的矩形绿地面积.【解答】解:(1)设将绿地的长、宽增加xm,则新的矩形绿地的长为(35+x)m,宽为(15+x)m,根据题意得:(35+x)(15+x)=800,整理得:x2+50x﹣275=0解得:x1=5,x2=﹣55(不符合题意,舍去),∴35+x=35+5=40,15+x=15+5=20.答:新的矩形绿地的长为40m,宽为20m.(2)设将绿地的长、宽增加ym,则新的矩形绿地的长为(35+y)m,宽为(15+y)m,根据题意得:(35+y):(15+y)=5:3,即3(35+y)=5(15+y),解得:y=15,∴(35+y)(15+y)=(35+15)×(15+15)=1500.答:新的矩形绿地面积为1500m2.11.建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.(1)求该市改造老旧小区投入资金的年平均增长率;(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?【分析】(1)设该市改造老旧小区投入资金的年平均增长率为x,利用2021年投入资金金额=2019年投入资金金额×(1+年平均增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设该市在2022年可以改造y个老旧小区,根据2022年改造老旧小区所需资金不多于2022年投入资金金额,即可得出关于y的一元一次不等式,解之取其中的最大整数值即可得出结论.【解答】解:(1)设该市改造老旧小区投入资金的年平均增长率为x,依题意得:1000(1+x)2=1440,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市改造老旧小区投入资金的年平均增长率为20%.(2)设该市在2022年可以改造y个老旧小区,依题意得:80×(1+15%)y≤1440×(1+20%),解得:y≤,又∵y为整数,∴y的最大值为18.答:该市在2022年最多可以改造18个老旧小区.12.南充市被誉为中国绸都,本地某电商销售真丝衬衣和真丝围巾两种产品,它们的进价和售价如下表.用15000元可购进真丝衬衣50件和真丝围巾25件.(利润=售价﹣进价)(2)若该电商计划购进真丝衬衣和真丝围巾两种商品共300件,据市场销售分析,真丝围巾进货件数不低于真丝衬衣件数的2倍.如何进货才能使本次销售获得的利润最大?最大利润是多少元?(3)按(2)中最大利润方案进货与销售,在实际销售过程中,当真丝围巾销量达到一半时,为促销并保证销售利润不低于原来最大利润的90%,衬衣售价不变,余下围巾降价销售,每件最多降价多少元?【分析】(1)利用总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出a的值;(2)设购进真丝衬衣x件,则购进真丝围巾(300﹣x)件,根据真丝围巾进货件数不低于真丝衬衣件数的2倍,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,设两种商品全部售出后获得的总利润为w元,利用总利润=每件的销售利润×销售数量,即可得出w 关于x的函数关系式,再利用一次函数的性质,即可解决最值问题;(3)设每件真丝围巾降价y元,利用总利润=每件的销售利润×销售数量,结合要保证销售利润不低于原来最大利润的90%,即可得出关于y的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)依题意得:50a+80×25=15000,解得:a=260.答:a的值为260.(2)设购进真丝衬衣x件,则购进真丝围巾(300﹣x)件,依题意得:300﹣x≥2x,解得:x≤100.设两种商品全部售出后获得的总利润为w元,则w=(300﹣260)x+(100﹣80)(300﹣x)=20x+6000.∵20>0,∴w随x的增大而增大,∴当x=100时,w取得最大值,最大值=20×100+6000=8000,此时300﹣x=300﹣100=200.答:当购进真丝衬衣100件,真丝围巾200件时,才能使本次销售获得的利润最大,最大利润是8000元.(3)设每件真丝围巾降价y元,依题意得:(300﹣260)×100+(100﹣80)××200+(100﹣y﹣80)××200≥8000×90%,解得:y≤8.答:每件真丝围巾最多降价8元.13.为贯彻执行“德、智、体、美、劳”五育并举的教育方针,内江市某中学组织全体学生前往某劳动实践基地开展劳动实践活动.在此次活动中,若每位老师带队30名学生,则还剩7名学生没老师带;若每位老师带队31名学生,就有一位老师少带1名学生.现有甲、乙两型客车,它们的载客量和租金如表所示:3000元.(1)参加此次劳动实践活动的老师和学生各有多少人?(2)每位老师负责一辆车的组织工作,请问有哪几种租车方案?(3)学校租车总费用最少是多少元?【分析】(1)设参加此次劳动实践活动的老师有x人,可得:30x+7=31x﹣1,即可解得参加此次劳动实践活动的老师有8人,参加此次劳动实践活动的学生有247人;(2)根据每位老师负责一辆车的组织工作,知一共租8辆车,设租甲型客车m辆,可得:,解得m的范围,解得一共有3种租车方案:租甲型客车3辆,租乙型客车5辆或租甲型客车4辆,租乙型客车4辆或租甲型客车5辆,租乙型客车3辆;(3)设学校租车总费用是w元,w=400m+320(8﹣m)=80m+2560,由一次函数性质得学校租车总费用最少是2800元.【解答】解:(1)设参加此次劳动实践活动的老师有x人,参加此次劳动实践活动的学生有(30x+7)人,根据题意得:30x+7=31x﹣1,解得x=8,∴30x+7=30×8+7=247,答:参加此次劳动实践活动的老师有8人,参加此次劳动实践活动的学生有247人;(2)师生总数为247+8=255(人),∵每位老师负责一辆车的组织工作,∴一共租8辆车,设租甲型客车m辆,则租乙型客车(8﹣m)辆,根据题意得:,解得3≤m≤5.5,∵m为整数,∴m可取3、4、5,∴一共有3种租车方案:租甲型客车3辆,租乙型客车5辆或租甲型客车4辆,租乙型客车4辆或租甲型客车5辆,租乙型客车3辆;(3)∵7×35=245<255,8×35=280>255,∴租车总费用最少时,至少租8两辆车,设租甲型客车m辆,则租乙型客车(8﹣m)辆,由(2)知:3≤m≤5.5,设学校租车总费用是w元,w=400m+320(8﹣m)=80m+2560,∵80>0,∴w随m的增大而增大,∴m=3时,w取最小值,最小值为80×3+2560=2800(元),答:学校租车总费用最少是2800元.14.金师傅近期准备换车,看中了价格相同的两款国产车.(2)若燃油车的每千米行驶费用比新能源车多0.54元.①分别求出这两款车的每千米行驶费用.②若燃油车和新能源车每年的其它费用分别为4800元和7500元.问:每年行驶里程为多少千米时,买新能源车的年费用更低?(年费用=年行驶费用+年其它费用)【分析】(1)根据表中的信息,可以计算出新能源车的每千米行驶费用;(2)①根据燃油车的每千米行驶费用比新能源车多0.54元和表中的信息,可以列出相应的分式方程,然后求解即可,注意分式方程要检验;②根据题意,可以列出相应的不等式,然后求解即可.【解答】解:(1)由表格可得,新能源车的每千米行驶费用为:=(元),即新能源车的每千米行驶费用为元;(2)①∵燃油车的每千米行驶费用比新能源车多0.54元,∴﹣=0.54,解得a=600,经检验,a=600是原分式方程的解,∴=0.6,=0.06,答:燃油车的每千米行驶费用为0.6元,新能源车的每千米行驶费用为0.06元;②设每年行驶里程为xkm,由题意得:0.6x+4800>0.06x+7500,解得x>5000,答:当每年行驶里程大于5000km时,买新能源车的年费用更低.15.2022北京冬奥会期间,某网店直接从工厂购进A、B两款冰墩墩钥匙扣,进货价和销售价如下表:(注:利润=销售价﹣进货价)30件,求两款钥匙扣分别购进的件数;(2)第一次购进的冰墩墩钥匙扣售完后,该网店计划再次购进A、B两款冰墩墩钥匙扣共80件(进货价和销售价都不变),且进货总价不高于2200元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?(3)冬奥会临近结束时,网店打算把B款钥匙扣调价销售,如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,将销售价定为每件多少元时,才能使B款钥匙扣平均每天销售利润为90元?【分析】(1)设购进A款钥匙扣x件,B款钥匙扣y件,利用总价=单价×数量,结合该网店第一次用850元购进A、B两款钥匙扣共30件,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进m件A款钥匙扣,则购进(80﹣m)件B款钥匙扣,利用总价=单价×数量,结合总价不超过2200元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,设再次购进的A、B两款冰墩墩钥匙扣全部售出后获得的总利润为w元,利用总利润=每件的销售利润×销售数量,即可得出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题;(3)设B款钥匙扣的售价定为a元,则每件的销售利润为(a﹣25)元,平均每天可售出(78﹣2a)件,利用平均每天销售B款钥匙扣获得的总利润=每件的销售利润×平均每天的销售量,即可得出关于a的一元二次方程,解之即可得出结论.【解答】解:(1)设购进A款钥匙扣x件,B款钥匙扣y件,依题意得:,解得:.答:购进A款钥匙扣20件,B款钥匙扣10件.(2)设购进m件A款钥匙扣,则购进(80﹣m)件B款钥匙扣,依题意得:30m+25(80﹣m)≤2200,解得:m≤40.设再次购进的A、B两款冰墩墩钥匙扣全部售出后获得的总利润为w元,则w=(45﹣30)m+(37﹣25)(80﹣m)=3m+960.∵3>0,∴w随m的增大而增大,∴当m=40时,w取得最大值,最大值=3×40+960=1080,此时80﹣m=80﹣40=40.答:当购进40件A款钥匙扣,40件B款钥匙扣时,才能获得最大销售利润,最大销售利润是1080元.(3)设B款钥匙扣的售价定为a元,则每件的销售利润为(a﹣25)元,平均每天可售出4+2(37﹣a)=(78﹣2a)件,依题意得:(a﹣25)(78﹣2a)=90,整理得:a2﹣64a+1020=0,解得:a1=30,a2=34.答:将销售价定为每件30元或34元时,才能使B款钥匙扣平均每天销售利润为90元.16.某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加m%.5月份每吨。
初三练习题方程及答案题目:初三练习题方程及答案一、方程的基础知识方程是数学中重要的概念之一,它表示了一个等式中未知量的关系。
在初三数学课程中,方程的学习是非常重要的。
下面我们来回顾一些方程的基础知识。
1. 方程的定义方程是一个等式,其中包含了一个或多个未知量。
这些未知量可以通过求解方程来确定其值。
2. 一元一次方程的解法一元一次方程是指只包含一个未知量且最高次数为一次的方程。
一元一次方程的通常形式为:ax + b = 0。
我们可以通过以下步骤来解一元一次方程:a) 将方程化为标准形式:ax = -b。
b) 求得未知量x的值:x = -b/a。
3. 一元一次方程的应用一元一次方程在实际问题中有广泛的应用。
例如,我们可以用一元一次方程来表示线性函数关系,计算直线的斜率等。
二、练习题及答案现在,让我们通过一些练习题来巩固学习过的方程知识。
每道题后面都附有答案,以供参考。
练习题1:解一元一次方程2x + 5 = 9解答:将方程化为标准形式:2x = 9 - 5计算得:2x = 4解得:x = 4/2答案:x = 2练习题2:解一元一次方程3(x + 2) = 5x - 1解答:将方程按照乘法分配律展开:3x + 6 = 5x - 1将未知量移到等式一边,常数移到等式另一边:3x - 5x = -1 - 6计算得:-2x = -7解得:x = -7/(-2)答案:x = 7/2练习题3:解一元一次方程组2x + 3y = 7x - 4y = -5解答:我们可以通过消元法来解决一元一次方程组。
第一步,将第一个方程乘以2,并将其与第二个方程相减消去x:4x + 6y = 14x - 4y = -5计算得:3x = 19解得:x = 19/3将x的值代入其中一个方程,求得y的值:19/3 - 4y = -5计算得:y = 4/3答案:x = 19/3,y = 4/3通过上述练习题的解答,我们可以发现方程在解决实际问题中具有重要的作用。
中考数学《方程与不等式》专题训练50题含参考答案一、单选题1.不等式组1036x x -<⎧⎨<⎩的解集是( )A .无解B .1x >C .2x <D .12x <<【答案】D【分析】分别解出两个不等式,取公共解集即可.【详解】解:1036x x -<⎧⎨<⎩①② 解①得:1x > , 解①得:2x < ,故此不等式组的解集为:12x << 故选D.【点睛】此题考查的是解不等式组,掌握解不等式的一般步骤、不等式的基本性质和不等式组公共解集的取法是解决此题的关键.2.如果3m =3n ,那么下列等式不一定成立的是( ) A . m -3=n -3 B .3m +3=3n +2 C .5+m =5+n D .3m -=3n -3.若()()221x ax x +--的展开式中不含x 的一次项,则a 的值为( )A .3-B .2-C .1-D .0【答案】B【分析】先将多项式展开,然后令x 的系数为0,求出a 的值即可.【详解】解:()()221x ax x +--32222x x ax ax x =-+--+()()32122x a x a x =+-+-++,①()()221x ax x +--展开后不含x 的一次项,①20a +=, ①2a =-; 故选:B .【点睛】本题考查了多项式乘多项式,熟练掌握多项式乘以多项式的运算法则是解题的关键. 4.方程23x +=11x -的解为( ) A .x =3 B .x =4C .x =5D .x =﹣5【答案】C【详解】方程两边同乘(x-1)(x+3),得 x+3-2(x-1)=0, 解得:x=5,检验:当x=5时,(x-1)(x+3)≠0, 所以x=5是原方程的解, 故选C.5.下列方程中,关于x 的一元二次方程的是( ) A .ax 2+bx +c =0 B .(x -1)2=x 2+3x +2 C .x 2=x +1D .2x 2-1x+1=0【答案】C【分析】根据一元二次方程的定义,逐项分析即可,一元二次方程的定义:含有一个未知数,未知数的最高次数是2;二次项系数不为0;是整式方程. 【详解】A. ax 2+bx +c =0(0a ≠),故该选项不正确,不符合题意;6.若2x-1=15与kx-1=15的解相同,则k的值为()A.8B.6C.-2D.2【答案】D【分析】先解2x-1=15求出x的值,再把求得的x的值代入kx-1=15,然后解关于k的方程即可求出k的值.【详解】①2x-1=15,①2x=16,①x=8.把x=8代入kx-1=15得8k-1=15,①k=2.故选D.【点睛】本题考查了一元一次方程解的定义及一元一次方程的解法,能使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解;解一元一次方程的基本步骤为:①去分母;①去括号;①移项;①合并同类项;①未知数的系数化为1.7.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.10080807644⨯-=B.2x-+=(100)7644x x【分析】利用平移的方法,平移后的剩余部分仍是矩形,且长与宽均减小x 米,从而由面积可列出方程.【详解】矩形场地上的两条路分别向上和向右平移后如图所示,则平移后剩余部分的长为(100-x )米,宽为(80-x )米,题意得:(100-x )(80-x )=7644 故选:C .【点睛】本题考查了一元二次方程的实际应用,关键是运用平移的思想,问题得以简化并得到解决.8.下列各组数中,是方程x+y=7的解的是( ) A .23x y =-⎧⎨=⎩B .31x y =-⎧⎨=⎩C .43x y =⎧⎨=⎩D .23x y =⎧⎨=⎩【答案】C【分析】将四个答案逐一代入,能使方程成立的即为方程的解. 【详解】解:A 、2317-+=≠,故此选项不符合题意; B 、3127-+=-≠,故此选项不符合题意; C 、437+=,故此选项符合题意; D 、2357+=≠,故此选项不符合题意; 故选C .【点睛】本题考查二元一次方程的解,理解掌握方程的解的定义是解答关键. 9.若表格中每对,的值都是同一个二元一次方程的解,则这个方程为( )A .53+=x yB .5x y +=C .20x y -=D .35x y +=【分析】设方程为y=kx+b ,把x 与y 的两对值代入求出k 与b 的值,即可确定出方程.【详解】解:设方程为y=kx+b ,把(0,5)与(1,2)代入得:52b k b =⎧⎨+=⎩ 解得:53b k =⎧⎨=-⎩,①这个方程为y=-3x+5,即3x+y=5, 故选:D .【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.10.若0xy ≤x ,y 满足的条件是( ). A .0x ≥,0y ≥ B .0x ≥,0y ≤ C .0x ≤,0y ≥ D .0x ≤,0y ≤【答案】C【分析】根据二次根式有意义的条件得出20x y ≥,结合题意即可得出结果. 【详解】解:根据题意得,20x y ≥, ①20x ≥, ①0y ≥, ①0xy ≤, ①0x ≤, 故选C .【点睛】题目主要考查二次根式有意义的条件及不等式的性质,熟练掌握二次根式有意义的条件是解题关键.11.若a b <,则下列各式正确的是( ) A .22a b > B .22a b ->-C .34a b -<-D .22a b> 【答案】B【分析】根据不等式的性质,进行计算逐一判断即可解答. 【详解】解:A 、①a <b ,①2a <2b ,故该选项不符合题意; B 、①a <b ,①-2a >-2b ,故该选项符合题意;12.下列说法:①a为任意有理数,a2+1总是正数;①方程x+2=1x是一元一次方程;①若ab>0,a+b<0,则a<0,b<0;①代数式2,,23t a bb+都是整式;①若a2=(﹣2)2,则a=﹣2.其中错误的有()A.4个B.3个C.2个D.1个13.观察下列方程,经分析判断得知有实数根的是()A.33x=-B.22301x+=+C.()32x xx+=+D.221x xx-+=-【答案】C【分析】根据解分式方程的步骤逐一解答即可选出正确选项.去分母化为整式方程,解14.用配方法解一元二次方程x 2+6x ﹣3=0,原方程可变形为( ) A .(x +3)2=9 B .(x +3)2=12 C .(x +3)2=15 D .(x +3)2=39【答案】B【分析】移项后两边配上一次项系数一半的平方即可得. 【详解】解:①x 2+6x =3, ①x 2+6x +9=3+9,即(x +3)2=12, 故选:B .【点睛】本题考查了用配方法解一元二次方程,解题需要注意解题步骤的准确应用,选择配方法解一元二次方程时,最好使方程的二次项系数为1,一次项系数是2的倍数15.已知关于x 、y 的二元一次方程()()23230m x m y m -+-+-=,当m 每取一个值时,就有一个方程,而这些方程有一个公共解,这个公共解是( ) A .31x y =⎧⎨=-⎩B .13x y =⎧⎨=-⎩C .13x y =-⎧⎨=⎩D .31x y =-⎧⎨=⎩【答案】D【分析】把原方程整理得:m (x +y +2)-(2x +3y +3)=0,根据“当m 每取一个值时就有一个方程,而这些方程有一个公共解”,可知这个公共解与m 无关,得到关于x 和y 的二元一次方程组,解之即可. 【详解】解:原方程可整理得: m (x +y +2)-(2x +3y +3)=0,根据题意得:202330x y x y ++=⎧⎨++=⎩ 解得31x y =-⎧⎨=⎩.故选D .【点睛】本题考查了二元一次方程组的解以及解二元一次方程组,正确掌握解二元一次方程组是解题的关键. 16.利用求根公式求21562x x +=的根时,a ,b ,c 的值分别是( ) A .5,12,6 B .5,6,12C .5,﹣6,12D .5,﹣6,﹣1217.如表是德国足球甲级联赛某赛季的部分球队积分榜:规定:负一场积0分.观察后可知,柏林赫塔在这个赛季的胜场次数是( )A .18场 B .19场C .20场D .21场【答案】B胜场次数x 场,根据胜场积分与平场积分的和=总积分列出方程,解方程即可. 【详解】解:设球队胜一场积m 分,平一场积n 分, 由题意得:2166920767m n m n +=⎧⎨+=⎩, 解得:31m n =⎧⎨=⎩,球队胜一场积3分,平一场积1分,设柏林赫塔在这个赛季的胜场次数x 场,则平(34-x -8)=(26-x )场, 根据题意得:3x +(26-x )=64, 解得:x =19,①柏林赫塔在这个赛季的胜场次数是19, 故选:B .【点睛】考查了一元一次方程和二元一次方程组的应用,本类题型清楚积分的组成部分及胜负积分的规则及各个量之间的关系,并与一元一次方程相结合即可解该类题型.总积分等于胜场积分与平场的和.18.同型号的甲、乙两辆车加满气体燃料后均可行驶600km .它们各自单独行驶并返回的最远距离是300km .现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( ) A .380km B .400kmC .450kmD .500km【答案】B【分析】设甲行驶到C 地时返回,到达A 地燃料用完,乙行驶到B 地再返回 A 地时燃料用完,根据题意得关于x 和y 的二元一次方程组,求解即可.【详解】解:如图,设行驶途中停下来的地点为C 地,AB xkm =,AC ykm =,根据题意,得226002600x y x y x +=⨯⎧⎨-+=⎩,解得400200x y =⎧⎨=⎩,①AB 的最大长度是400km .【点睛】本题考查了二元一次方程组在行程问题中的应用,理清题中的数量关系正确列出方程组是解题的关键.19.关于x 的方程220ax +=是一元二次方程,则a 满足( ) A .a >0 B .a =1C .a ≥0D .a ≠0【答案】A【详解】根据一元二次方程的定义,得000a a a ≠⎧⇒>⎨≥⎩ .故选A. 20.代数式22244619x xy y x -+++的最小值是( ) A .10 B .9 C .19 D .11【答案】A【分析】把代数式22244619x xy y x -+++根据完全平方公式化成几个完全平方和的形式,再进行求解即可.【详解】解:2222244619(3)(2)10x xy y x x x y -+++=++-+ ①22(3)0,(2)0x x y +≥-≥①代数式22244619x xy y x -+++的最小值是10. 故选:A .【点睛】本题考查的知识点是配方法的应用-用配方法确定代数式的最值,解此题的关键是将原代数式化成几个完全平方和的形式.二、填空题21.含有____________的_________叫方程. 【答案】 未知数; 等式.【分析】方程是指含有未知数的等式.所以方程必须具备两个条件:(1)含有未知数(2)等式.【详解】解:根据方程的定义可知:含有未知数的等式是方程. 故答案为未知数;等式.【点睛】本题主要考查了方程的定义,熟记方程的定义是解题的关键.22.某童装店按每套88元的价格购进1000套童装,应缴纳的税费为销售额的10%,如果要获得不低于20000元的纯利润,则每套童装至少售价_____元.【分析】设每套童装的售价为x 元,根据利润=销售收入﹣税费﹣进货成本结合利润不低于20000元,即可得出关于x 的一元一次不等式,解之取其最小值即可得出结论.【详解】解:设每套童装的售价为x 元,依题意,得:1000x ﹣10%×1000x ﹣88×1000≥20000,解得:x ≥120.故答案为:120.【点睛】此题主要考查一元一次不等式的应用,解题的关键是根据题意找到不等关系列式求解.23.如果方程1)k k x -(+3=0是关于x 的一元一次方程,那么k 的值是______. 【答案】-1【分析】根据一元一次方程的定义知|k |=1且未知数是系数k -1≠0,据此可以求得k 的值.【详解】解:①方程(k -1)x |k |+3=0是关于x 的一元一次方程,①|k |=1,且k -1≠0,解得,k =-1;故答案是:-1.【点睛】本题考查了一元一次方程的概念和绝对值方程.一元一次方程的未知数的指数为1,且未知数的系数不为零.24.我县某一天的最高气温是11①,最低气温是零下4①,则当天我县气温t (①)应满足的不等式是 __________.【答案】﹣4≤t ≤11【分析】根据题意写出不等式即可.【详解】解:因为最低气温是零下4①,所以﹣4≤t ,最高气温是11①,t ≤11,则今天气温t (①)的范围是﹣4≤t ≤11.故答案是:﹣4≤t ≤11.【点睛】本题考查的是不等式的定义,不等式的概念:用“>”或“<”号表示大小关系的式子,叫做不等式.25.已如m 是方程2350x x --=的一个根,则代数式262m m -的值为______.【答案】10-【分析】方程的根就是方程的解,就是能够使方程左右两边相等的未知数的值;即用这个数代替未知数所得式子仍然成立;将m 代入原方程即可求m 2-3m 的值,然后对原式进行变形代入计算.【详解】解:把x=m 代入方程2350x x --=可得:235m m -=①22622(3)2510=m m m m ---=-⨯=-;故答案为:-10.【点睛】此题考查了一元二次方程的解,解题时应注意把m 2-3m 当成一个整体.利用了整体的思想.26.如果x -2y =1,那么用含x 的代数式表示y ,则y =______.27.对任意四个有理数 a ,b ,c ,d 定义新运算:,a b ad bc c d =-那么当43 77x x=-时,x =________.28.某种药品的说明书上注明:口服,每天30~60mg ,分2~3次服用.这种药品一次服用的剂量范围是_____mg~_____mg.【答案】1030【详解】试题分析:根据等量关系:一次服用剂量=每日用量÷每日服用次数,即可求出服用剂量的最大值和最小值,而一次服用的剂量应介于两者之间,依题意列出不等式组求解即可.解:设这种药品一次服用的剂量为xmg当每日用量30mg,分3次服用时,一次服用的剂量最小;当每日用量60mg,分2次服用时,一次服用的剂量最大;根据依题意列出不等式组,解得所以这种药品一次服用的剂量范围是10mg~30mg.考点:一元一次不等式组的应用点评:解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的不等关系,列出不等式求解.29.若不等式(a﹣3)x>1的解集为13xa<-,则a的取值范围是_____.30.如果不等式组112x mx m-≤⎧⎨+≥⎩无解,则不等式2x+2<mx+m的解集是______.【答案】1x>-【详解】分析:首先根据不等式无解得出m的取值范围,然后根据不等式的解法得出不等式的解.详解:解不等式组可得:121x m x m ≤+⎧⎨≥-⎩,①不等式无解, ①2m -1>m+1,解得:m >2,①2x -mx <m -2, 即(2-m)x <m -2, ①m >2, ①2-m <0, ①x >-1. 点睛:本题主要考查的是解不等式及不等式组的方法,属于中等难度的题型.理解不等式的解法是解题的关键.系数含参时,我们首先要判断系数的正负性,然后进行求解.如果在不等式的两边同时乘以或除以一个负数,则不等符号需要改变. 31.已知关于x 的方程()344a x x a +-=-的解为2x =-,则=a ______.【答案】4【分析】将x=-2代入方程,然后解方程求得a 的值.【详解】解:①()344a x x a +-=-的解为2x =-,①()23424a a -+-=--,解得:4a =故答案为:4.【点睛】本题考查方程的解和解一元一次方程,掌握方程的解的概念及解一元一次方程的步骤,正确计算是解题关键.32.不等式2x-1>5的解集为______.【答案】x>3【详解】考点:解一元一次不等式.分析:先移项,再合并同类项,系数化为1即可.解:移项得,2x>5+1,合并同类项得,2x>6,系数化为1得,x>3.故答案为x>3.点评:本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键. 33.若关于x 的一元二次方程ax 2﹣4x +1=0有实数根,则a 的最大整数值为_____.【答案】4.【分析】由关于x 的一元二次方程ax 2﹣4x +1=0有实数根,则a ≠0,且①≥0,即①=42﹣4a =16﹣4a ≥0,解不等式得到a 的取值范围,最后确定a 的最大整数值.【详解】解:①关于x 的一元二次方程ax 2﹣4x +1=0有实数根,①a ≠0,且①≥0,即①=42﹣4a =16﹣4a ≥0,解得a ≤4,①a 的取值范围为a ≤4且a ≠0,所以a 的最大整数值为4.故答案为:4.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a≠0,a ,b ,c 为常数)根的判别式①=b 2−4ac .当①>0,方程有两个不相等的实数根;当①=0,方程有两个相等的实数根;当①<0,方程没有实数根.也考查了一元二次方程的定义和不等式的特殊解. 34.已知代数式4x -与3(2)x 的值相等,则x 的值为______.【答案】1x =【分析】根据题意列方程,然后进行解答即可得出x 的值.【详解】解:由题意,得4-x=3(2-x)解得x=1故答案为1x =.【点睛】本题考查了解一元一次方程.关键在于根据题意列出方程.35.某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得300元.若该店第二天销售香蕉t 千克,则第三天销售香蕉____千克.(用含t 的代数式表示.)36.若x 1,x 2是方程x 2+x -1=0的两根,则(x 12+x 1-2)(x 22+x 2-2)的值为_______.【答案】1【分析】根据一元二次方程的定义得到2111x x +=,2221x x +=,代入计算即可.【详解】解:①x 1,x 2是方程x 2+x -1=0的两根,①21110x x +-=,22210x x +-=,①2111x x +=,2221x x +=,①()()22112222x x x x +-+-=()()1212--=1故答案为:1.【点睛】本题考查了一元二次方程的解,解体的关键是掌握方程的解能使方程等式两边成立.37.若实数m 、n 满足|m ﹣3|+0,且m 、n 恰好是Rt △ABC 的两条边长,则第三条边长为_______.5##5【分析】先由非负数的性质求出m =3,n =4,由于题中直角三角形的斜边不能确定,38.若方程(a-3)x |a|-1+2x-8=0是关于x 的一元二次方程,则a 的值是_____.【答案】-3【分析】根据一元二次方程的定义列方程求出a 的值即可.39.一种药品现在售价56.10元,比原来降低了15%,原售价为____元.【答案】66.【详解】试题分析:设这种药品的原售价为x 元,则比原来降低了15%后的售价为(1-15%)x 元,根据题意得(1-15%)x=56.1,解得x=66.故答案为66.考点:列一元一次方程解应用题.40.如果关于x 的方程22220x ax b +-+=有两个相等的实数根,且常数a 与b 互为负倒数,那么a b +=__________. 【答案】0【分析】根据根的判别式求出0⊿=,得到222a b +=,再根据完全平方公式求出即可.【详解】关于x 的方程22220x ax b +-+=有两个相等的实数根,()()2224120a b ∴-⨯⨯-+=⊿=,化简得:222a b +=常数a 与b 互为负倒数,即1ab =-()222222(1)0a b a b ab ∴+=++=+⨯-= 0a b ∴+=故答案为0【点睛】本题考查了根的判别式,得到等式222a b +=和1ab =-是解题的关键.三、解答题41.某农场去年种植了10亩地的南瓜,亩产量为2000kg ,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,今年南瓜亩产量的增长率是种植面积的增长率的12,设南瓜种植面积的增长率为x . (1)则今年南瓜的种植面积为________亩;今年南瓜亩产量为_______k g (用含x 的代数式表示)(2)今年南瓜的总产量为60000kg,求南瓜亩产量的增长率.42.已知点P(2m﹣4,m+4),解答下列问题:(1)若点P在y轴上,则点P的坐标为______;(2)若点P的纵坐标比横坐标大7,求出点P坐标;(3)若点P在过A(2,3)点且与x轴平行的直线上,则AP的长为多少?【答案】(1)(0,6)(2)P点的坐标为(﹣2,5)(3)AP=8【分析】(1)让横坐标为0求得m的值,代入点P的坐标即可求解;(2)利用纵坐标-横坐标=7得m的值,代入点P的坐标即可求解;(3)利用纵坐标为3求得m的值,代入点P的坐标即可求解.(1)解:令2m-4=0,解得m=2,所以P点的坐标为(0,6),故答案为:(0,6);(2)解:令m+4-(2m-4)=7,解得m=1,所以P点的坐标为(-2,5);(3)解:①点P在过A(2,3)点且与x轴平行的直线上,①m+4=3,解得m=-1.①P点的坐标为(-6,3),①AP=2+6=8.【点睛】本题考查坐标与图形性质,解题的关键是理解题意,灵活运用所学知识解决问题.43.甲乙两个施工队在六安(六盘水——安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离,若设甲队每天铺设x 米,乙队每天铺设y米.(1)依题意列出二元一次方程组;(2)求出甲乙两施工队每天各铺设多少米?【答案】(1)100 56x yx y-=⎧⎨=⎩(2)甲施工队每天各铺设600米,乙施工队每天各铺设500米.【分析】(1)利用每天甲队比乙队多铺设100米钢轨,得x-y=100;利用甲队铺设5天的距离刚好等于乙队铺设6天的距离,得5x=6y,从而可得答案(2)解方程组即可得到答案.(1)解:设甲队每天铺设x米,乙队每天铺设y米,则10056x y x y -=⎧⎨=⎩ (2)10056x y x y -=⎧⎨=⎩解得:600500x y =⎧⎨=⎩答:甲施工队每天各铺设600米,乙施工队每天各铺设500米.44.解不等式:并把不等式的解集在数轴上表示出来:4-()314x +≥()528x ++2 【答案】x ≤0,数轴表示见解析【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得,再在数轴上表示出来即可.【详解】解:去分母,得:32-6(x +1)≥5(x +2)+16,去括号,得:32-6x -6≥5x +10+16,移项,得:-6x -5x ≥10+16-32+6,合并,得:-11x ≥0,系数化为1,得:x ≤0,将不等式的解集表示在数轴上如下:【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变. 45.(1)用配方法解方程:21090x x -+=.(2)某商品经过连续两次降价,销售单价由原来的125元降到80元,求平均每次降价的百分率.【答案】(1)121,9x x ==;(2)平均每次降价的百分率为:20%.【详解】试题分析:(1)先配方,再进行开方,化简即可;(2)利用数量关系:商品原来价格×(1﹣每次降价的百分率)2=现在价格,设出未知数,列方程解答即可.试题解析:(1)21090x x -+=210252590x x -+-+=()2516x -=54x -=±121,9x x ==;(2) 设这种商品平均每次降价的百分率为x,根据题意列方程得,125(1﹣x )2=80,解得x 1=0.2=20%,x 2=﹣1.8(不合题意,舍去);故平均每次降价的百分率为:20%.考点:1. 配方法解方程,2. 一元二次方程的应用.46.解下列方程或不等式组:(1)解方程:122134x x -+=- (2)解不等式组()2563212x x x ⎧+≥⎨->+⎩47.在某校园超市中买1支英雄牌钢笔和3本硬皮笔记本需要18元钱;买同样的钢笔2支和笔记本5本需要31元.(1)求每支英雄牌钢笔和每本硬皮笔记本的价格;(2)九年一班准备用班费购买48件上述价格的钢笔和笔记本.作为毕业联欢会的奖品,已知班费不少于200元,求最少可以买多少本笔记本?【答案】(1)每支英雄牌钢笔3元,每本硬皮笔记本5元;(2)至少可以购买28本笔记本【分析】(1)用二元一次方程解决问题的关键是找到两个合适的等量关系.本问中两个等量关系是:1支钢笔的价钱+3本笔记本的价钱=18,2支钢笔的价钱+5本笔记本的价钱=31,根据这两个等量关系可以列出方程组;(2)本问可以列一元一次不等式解决.用钢笔数=48-笔记本数代入下列不等式关系:购买钢笔钱数+购买笔记本钱数≤200,可以列出一元一次不等式,求解即可.【详解】解:(1)设每支英雄牌钢笔x 元,每本硬皮笔记本y 元由题意得3182531x y x y +=⎧⎨+=⎩解得35x y =⎧⎨=⎩答:每支英雄牌钢笔3元,每本硬皮笔记本5元(2)设可以购买a 本笔记本由题意得()3485200a a -+≥解得28a ≥答:至少可以购买28本笔记本【点睛】本题考查了一元一次不等式的应用和二元一次方程组的应用,解题的关键是找出题中的等量关系或不等关系:1支钢笔的价钱+3本笔记本的价钱=18,2支钢笔的价钱+5本笔记本的价钱=31,购买钢笔钱数+购买笔记本钱数≤200.48.甲、乙两公司为“见义勇为基金会”各捐款3000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.请你根据上述信息,就这两个公司的“人数”或“人均捐款”提出一个用分式方程解决的题,并写出解题过程.【答案】问:甲、乙两公司各有多少名员工?;见解析;甲公司有30名员工,乙公司有25名员工【分析】问:甲、乙两公司各有多少名员工?设乙公司有x 名员工,则甲公司有1.2x 名员工,根据人均捐款钱数=捐款总钱数÷人数结合乙公司比甲公司人均多捐20元,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:问:甲、乙两公司各有多少名员工?设乙公司有x 名员工,则甲公司有1.2x 名员工,49.列方程(组)或不等式(组)解应用题:(1)甲工人接到240个零件的任务,工作1小时后,因要提前完成任务,调来乙和甲合作,合做了5小时完成.已知甲每小时比乙少做4个,那么甲、乙每小时各做多少个?(2)某工厂准备购进A 、B 两种机器共20台用于生产零件,经调查2台A 型机器和1台B 型机器价格为18万元,1台A 型机器和2台B 型机器价格为21万元.①求一台A 型机器和一台B 型机器价格分别是多少万元?①已知1台A 型机器每月可加工零件400个,1台B 型机器每月可加工零件800个,经预算购买两种机器的价格不超过140万元,每月两种机器加工零件总数不低于12400个,那么有哪几种购买方案,哪种方案最省钱?【答案】(1)甲每小时加工个20零件,乙每小时加工24个零件;(2)①A ,B 两种型号机器的单价分别为5万元和8万元;①有三种购买方案:方案一:购买A 型机器7台,B 型机器13台,方案二:购买A 型机器8台,B 型机器12台,方案三:购买A 型机器9台,B 型机器11台,方案三更省钱.【分析】(1)设甲每小时加工x 个零件,乙每小时加工y 个零件,利用乙每小时比甲多做4个,以及利用甲工作了1小时后,调来乙工人与甲合作了5小时完成,240个零件的任务得出等式方程求出即可;(2)①设A ,B 两种型号机器的单价分别为x 万元和y 万元,根据题意得方程组218221x y x y +⎧⎨+⎩==,解答即可; ①设购买A 型机器m 台,则购买B 型机器(20-m )台,根据购买总价和生产数量列出不等式组求解即可.【详解】(1)设甲每小时加工x 个零件,乙每小时加工y 个零件,根据题意得:465240x y x y +⎧⎨+⎩==,50.解方程组:(1)2(1)61x yx y+-=⎧⎨=-⎩(2)3(1)51135x yy x-=+⎧⎪-⎨=+⎪⎩【答案】(1)56 xy=⎧⎨=⎩(2)57x y =⎧⎨=⎩【分析】(1)用代入法求解即可;(2)用加减法求解即可.【详解】(1)解:()2161x y x y ⎧+-=⎨=-⎩①② , 将①代入①得:6y =,把6y =代入①得5x =,①原方程组的解为56x y =⎧⎨=⎩; (2)解:整理得:383520x y x y -=⎧⎨-=-⎩①②, ①-①,得428y =,解得:7y =,把7y =代入①,得378x -=,解得:5x =,①方程组的解是57x y =⎧⎨=⎩. 【点睛】本题考查解二元一次方程组,熟练掌握用代入法或加减法解二元一次方程组是解题的关键.。
初三方程题型练习题答案一、一元一次方程1. 解方程2x + 3 = 7。
解答:2x + 3 = 7首先,将方程中的常数项3移到等式的右边,得到:2x = 7 - 32x = 4然后,将方程中的系数2移到等式的右边,得到:x = 4 ÷ 2x = 2所以,方程的解为x = 2。
2. 解方程3(x + 5) = 6x - 8。
解答:3(x + 5) = 6x - 8首先,将方程中的括号内的式子用分配律展开,得到:3x + 15 = 6x - 8然后,将方程中的系数3移到等式的右边,得到:15 = 6x - 3x - 8接着,将方程中的系数-3x移到等式的左边,得到:15 + 3x = -8 + 6x再将方程中的常数项15移到等式的右边,得到:3x - 6x = -8 - 15最后,将方程中的系数相加并计算常数项,得到:-3x = -23现在,我们将方程中的系数-3移到等式的右边,并改变符号,得到:x = 23 ÷ 3所以,方程的解为x = 23 ÷ 3。
二、一元二次方程1. 解方程x² + 4x + 3 = 0。
解答:首先,我们需要找到二次方程的解。
根据求根公式,对于一元二次方程ax² + bx + c = 0,其解为:x = (-b ± √(b² - 4ac)) / (2a)将方程x² + 4x + 3 = 0代入公式,并进行计算:x = (-4 ± √(4² - 4×1×3)) / (2×1)简化计算:x = (-4 ± √(16 - 12)) / 2x = (-4 ± √4) / 2x = (-4 ± 2) / 2计算最终结果:x₁ = (-4 + 2) / 2 = -2 / 2 = -1x₂ = (-4 - 2) / 2 = -6 / 2 = -3所以,方程的解为x = -1和x = -3。
中考数学《方程与不等式》专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.下列是二元一次方程的是( )A .B .C .D .2.不等式510x -≤的解集为( ) A .2x ≤B .2x ≤-C .2x ≥D .x≥-23.定义a b ab a b *=++,若535x *=,则x 的值是( ) A .4B .5C .6D .74.已知m n <,则下列不等式一定成立的是( ) A .20202020m n ->- B .20202020m n< C .20202020m n +>+D .20202020m n >5.把方程(+(2x-1)2=0化为一元二次方程的一般形式是( ) A .5x 2-4x-4=0B .x 2-5=0C .5x 2-2x+1=0D .5x 2-4x+6=06.用配方法解下列方程时,配方正确的是( ) A .方程x 2﹣6x ﹣5=0,可化为(x ﹣3)2=4 B .方程y 2﹣2y ﹣2015=0,可化为(y ﹣1)2=2015 C .方程a 2+8a+9=0,可化为(a+4)2=25 D .方程2x 2﹣6x ﹣7=0,可化为2323()24x -=7.已知关于x 的方程(k ﹣1)x 2﹣(k ﹣1)x +14=0有两个相等的实数根,则k 的值为( )A .1B .2C .1或2D .-1或-28.由a ﹥b 得到an 2﹥bn 2成立的条件是( ) A .n ﹥0B .n <0C .n ≠0D .n 是任意实数9.关于x 的一元二次方程(m ﹣2)2x 2+(2m+1)x+1=0有两个不相等的实数根,则m 的取值范围是( )A .m <34B .m >34且m≠2C .m≤34D .m≥34且m≠210.“a 是正数”用不等式表示为( ) A .a ≤0B .a ≥0C .a <0D .a >011.一元一次方程2152236x x -+-=,去分母后变形正确的是( ) A .42522x x --+= B .42522x x ---= C .425212x x --+= D .425212x x ---=12.不等式组30{30x x +>-≥的解集是( ) A .3x >-B .3x ≥C .33x -<≤D .3x ≤13.不等式组372291x x +≥⎧⎨-<⎩的非负整数解的个数是( )A .4B .5C .6D .714.下列方程中,是一元一次方程的是( ) A .3x+2y=0B .4x=1C .21x - =1 D .3x ﹣5=3x+215.取一张长与宽之比为5:2的长方形纸板,剪去四个边长为5cm 的小正方形(如图).并用它做一个无盖的长方体形状的包装盒,要使包装盒的容积为3200cm (纸板的厚度略去不计).这张长方形纸板的长为多少厘米?( )A .24cmB .30cmC .32cmD .36cm16.一元二次方程2920x -=的一个根可能在( ) A .4,5之间B .6,7之间C .7,8之间D .9,10之间17.已知关于 x 的不等式组255332x x x t x +⎧->-⎪⎪⎨+⎪-<⎪⎩ 恰有5个整数解,则t 的取值范围是( ) A .﹣6<t <112-B .1162t -≤<-C .1162t -<≤-D .1162t -≤<-18.为满足消费者需要,红星厂一月份生产手提电脑200台,计划二、三月份共生产2500台,设二、三月份每月的平均增长率为x ,根据题意列出的方程是( )A .20021x +()=2500 B .200(1+x )+20021x +()=2500 C .20021x ()-=2500 D .200+200(1+x )+20021x +()=250019.若关于x 的一元二次方程ax 2+bx +5=0(a≠0)的一个解是x =1,则2014-a -b 的值是( ) A .2019B .2009C .2014D .201620.下列判断正确的是( ) A .若a b =,则33a b -=- B .若22 a b =,则a b = C .若b da c=,则b d = D .若a b =,则ac bc =二、填空题21.如果:□+□+△=14,□+□+△+△+△=30,则□=______.22.已知二元一次方程24x y -=,用含x 的代数式表示y 为_______.23.若23x y =⎧⎨=⎩是关于,x y 的二元一次方程1ax by -=的解,则463a b -+=_________.24.上海玩具厂2008年1月份生产玩具3000个,后来生产效率逐月提高,3月份生产玩具3630个,设平均每月增长率为x ,则可列方程________. 25.方程233x k x x=---无解,那么k 的值为________. 26.一元二次方程x(x-1)=2(1-x)的一般形式是________.27.已知4311237a b a b +=⎧⎨+=⎩,则a b +=__________.28.某单位在两个月内将开支从25万元降到16万元,如果每月降低开支的百分率均为(01)<<x x ,那么这个x 的值是________.29.一个不透明的袋子中装有6个红球和若干个黑球,这些球除了颜色外都相同,从袋子中随机摸出一个球是红球的概率为25,则袋子中有________个黑球.30.等腰三角形的一边长为4,另两边的长是关于x 的方程212=0x x k -+的两个实数根,则该等腰三角形的周长是______.31.若2|8|()0x y x y +++-=,则2x y +=_____________.32.某种商品的进价为320元,为了吸引顾客,按标价的八折出售,这时仍可盈利至少25%,则这种商品的标价最少是__________元.33.某公司2010年12月份的利润为160万元,要使2012年12月份的利润达到250万元,则平均每年增长的百分率是_________.34.已知x 2+y 2+10=2x +6y ,则x 21+21y 的值为_______35.解不等式组5323142x x x ①②+≥⎧⎪⎨-<⎪⎩,并把解表示在数轴上.36.小明要从甲地到乙地,两地相距1.8千米,已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为________.37.某气象台发现:在一段时间里有10天下了雨,且这10天中下雨有如下规律:如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天.已知这段时间里有9天晚上是晴天,7天早晨是晴天,则这段时间有______天.38.若(a+6)x+y |a|﹣5=1是关于x 、y 的二元一次方程,则a 的值是______.39.轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水流速度是3千米/小时,则轮船在静水中的速度是______________千米/小时.三、解答题40.(1)解方程组:4103235x y x y +=⎧⎨-=⎩;(2)解不等式组:()2151422x x ->-⎧⎪⎨+<⎪⎩. 41.解方程:5278x x +=+. 42.解方程:43.解不等式(组):(1)解不等式:()5522x x -<+.(2)解不等式组241342163x x x x -<-⎧⎪⎨--≤⎪⎩①②,并在数轴上表示该不等式组的解集.44.某超市采购某种商品1000件,将这种商品按采购价提高30%作为标价出售,当售完700件后,刚好是“双11”,商家决定,把余下的300件按标价出售的8.8折出售,最后这批商品共盈利12660元.问这种商品每件采购价多少元?45.计算:(1)202211(1)|4|()2--+-+ (2)解方程:2420x x --=. 46.解下列不等式组和不等式组:(1)34225x y x y +=⎧⎨-=⎩ (2)()32421152x x x x ⎧--≥⎪⎨-+>⎪⎩47.(1(3223⎛⎫+ ⎪⎝⎭;(2)解方程组:32(21)7214322x y y x x -+=-⎧⎪⎨+++=⎪⎩.48.解下列不等式,并将解集在数轴上表示出来. (1)()()52121x x +>-- (2)3136x x ->- 49.(1)解不等式组()32421132x x x x ⎧--≥⎪⎨-->⎪⎩并把它的解集在数轴上表示出来.(2)解方程31133x x x=--- .参考答案:1.B【详解】试题分析:含有两个未知数,并且所含未知项都为1次方的整式方程就叫做二元一次方程.A 、是一元一次方程,C 、是分式方程,D 、是二元二次方程,故错误;B 、符合二元一次方程的定义,本选项正确. 考点:二元一次方程的定义点评:本题属于基础应用题,只需学生熟练掌握二元一次方程的定义,即可完成. 2.D【分析】根据一元一次不等式的解法,即可得到答案. 【详解】解:∵5x 10-≤, ∵x 2≥- 故选择:D.【点睛】本题考查了一元一次不等式的解法,解题的关键是掌握一元一次不等式的解法. 3.B【分析】先根据题意理解“*”所表示的运算法则,然后根据此运算法则将535x *=化为5535x x ++=,解出即可.【详解】由题意得:535x *=,可化为:5535x x ++=, 移项合并得:5355x x +=-, 系数化为1得:5x =. 故选:B .【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解. 4.B【分析】根据不等式的性质的内容逐个判断即可. 【详解】解:A .∵m <n ,∵m-2020<n-2020,故本选项不符合题意; B .∵m <n , ∵20202020m n<,故本选项符合题意; C .∵m <n ,∵m+2020<n+2020,故本选项不符合题意; D .∵m <n ,∵2020m <2020n ,故本题选项不符合题意; 故选:B .【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键. 5.A【详解】试题分析:((+(2x-1)2=0即x 2-2+4x 2-4x+1=0,移项合并同类项可得5x 2-4x-4=0,故答案选A . 考点:一元二次方程的一般形式. 6.D【详解】试题分析:选项A ,由原方程得到:方程x 2﹣6x+32=5+32,可化为(x ﹣3)2=14,故本选项错误;选项B ,由原方程得到:方程y 2﹣2y+12=2015+12,可化为(y ﹣1)2=2016,故本选项错误;选项C ,由原方程得到:方程a 2+8a+42=﹣9+42,可化为(a+4)2=7,故本选项错误;选项D ,由原方程得到:方程x 2﹣3x+(32)2=72+(32)2,可化为2323()24x -=,故本选项正确;故选D .考点:解一元二次方程-配方法. 7.B【分析】根据方程有两个相等的根,可知它是一元二次方程且判别式的值为零,进而即可求解.【详解】∵关于x 的方程(k ﹣1)x 2﹣(k ﹣1)x +14=0有两个相等的实数根,∵k ﹣1≠0且[]21(1)4(1)04k k ----⨯=, ∵k=2. 故选B .【点睛】本题主要考查一元二次方程的判别式,熟练掌握一元二次方程的判别式与根的关系,是解题的关键. 8.C【分析】根据不等式的基本性质:不等式两边乘以同一个正数,不等号的方向不变可知,由a >b 得到an 2>bn 2的条件是n 2>0,由此得出n 的取值范围.【详解】解:∵由a >b 可得到an 2>bn 2, ∵n 2>0, 又∵n 2≥0, ∵n ≠0 故选:C .【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变. 9.B【详解】∵关于x 的一元二次方程(m ﹣2)2x 2+(2m+1)x+1=0有两个不相等的实数根, ∵∵=b 2﹣4ac >0,即(2m+1)2﹣4×(m ﹣2)2×1>0, 解这个不等式得,m >34, 又∵二次项系数是(m ﹣2)2, ∵m≠2,故M 得取值范围是m >34且m≠2. 故选B . 10.D【分析】正数即“>0”可得答案.【详解】解:“a 是正数”用不等式表示为a >0, 故选:D .【点睛】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式. 11.D【分析】由去分母的运算法则进行化简,即可得到答案. 【详解】解:∵2152236x x -+-=, 去分母化简,得:425212x x ---=; 故选:D .【点睛】本题考查了解一元一次方程的方法,解题的关键是掌握解一元一次方程的方法.12.B【详解】试题分析:由∵得:x >﹣3, 由∵得:x≥3,∵不等式组的解集是x≥3. 故选B .考点:解一元一次不等式组. 13.B【分析】先求出不等式组的解集,再求出不等式组的非负整数解,即可得出答案.【详解】解:37202912x x +≥⎧⎨-<⎩①② ∵解不等式∵得:53x -解不等式∵得:x <5, ∵不等式组的解集为553x -< ∵不等式组的非负整数解为0,1,2,3,4,共5个, 故选:B .【点睛】本题考查了解一元一次不等式组和一元一次不等式组的整数解,能求出不等式组的解集是解此题的关键. 14.B【详解】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a ,b 是常数且a≠0).根据一元一次方程的定义可得,只有选项B 符合要求,故选B. 15.B【分析】设这张长方形纸板的长为5x 厘米,宽为2x 厘米,根据包装盒的容积为3200cm ,得5(510)(210)200x x --=,解方程即可.【详解】设这张长方形纸板的长为5x 厘米,宽为2x 厘米, 根据题意,得5(510)(210)200x x --=, 解方程,得11x =(不合题意,舍去),26x =, ∵这张长方形纸板的长为30厘米. 故选:B .【点睛】本题考查了一元二次方程的应用,根据题意正确表示出长方体的底面积是解题的关键. 16.D【分析】用直接开平方法求解.然后估计方程根的取值范围.【详解】解:移项得x 2=92,开方得x 1x 2根的取值范围进行判断:∵9<10, 故选D .【点睛】本题不仅考查了一元二次方程的解法,还考查了对无理数的估算能力,对同学们有较高要求. 17.C【分析】本题首先求解不等式组的公共解集,继而按照整数解要求求解本题. 【详解】∵2553x x +->-, ∵20x <; ∵32x t x +->, ∵32x t >-;∵不等式组的解集是:2032t x <<-. ∵不等式组恰有5个整数解,∵这5个整数解只能为 15,16,17,18,19,故有143215t ≤-<, 求解得:1162t -<≤-. 故选:C .【点睛】本题考查含参不等式组的求解,解题关键在于求解不等式时需将参数当做常量进行运算,其次注意运算仔细即可. 18.B【详解】由题意可得, 200(1+x)+200(1+x) ²=2500, 故选B. 19.A【分析】已知x=1是一元二次方程的一个实数根,可将其代入该方程中,即可求出a+b 的值.【详解】∵一元二次方程为ax 2+bx+5=0(a≠0)的解是x=1,∵a+b+5=0,即a+b=-5,∵2014-a-b=2014-(a+b )=2014-(-5)=2019,故选A .【点睛】此题主要考查了方程解的定义,所谓方程的解,即能够使方程左右两边相等的未知数的值.20.D【分析】根据等式的性质解答判断即可.【详解】解:A.若a =b ,两边同时减3,得a −3=b −3,故不正确,此选项不合题意;B.由22 a b =,得a b =或a b =-,故不正确,此选项不合题意;C.若b d a c=,则bc =ad ,故不正确,此选项不合题意; D.若a =b ,则ac =bc ,故正确,此选项符合题意;故选:D .【点睛】此题考查的是等式的性质,等式两边加同一个数(或式子)结果仍得等式;等式两边乘同一个数或除以一个不为零的数,结果仍得等式.21.3【分析】本题可以将抽象的图形用未知数x 与y 来表示,那么问题就转化成求两个二元一次方程的解集.【详解】设□为x ,△为y则□+□+△=2x+y=14,□+□+△+△+△=2x+3y =30即2142330x y x y +=⎧⎨+=⎩①② 用∵-∵得:216y =,8y =把8y =代入∵得:2814x +=,3x =,即□=3故答案为3【点睛】本题解题关键,把题干的两个图形看成两个未知数,用所学的二元一次方程组的求解方式求解.22.122y x =- 【分析】先移项,再把y 的系数化为1即可.【详解】解:移项得,24y x ,将y 的系数化为1得,122y x =-. 故答案为 122y x =-. 【点睛】本题主要考查二元一次方程的变形,熟知等式的基本性质是解答此题的关键. 23.5【分析】把23x y =⎧⎨=⎩代入1ax by -=中得出231a b -=,将231a b -=代入得出46a b -的值求解即可.【详解】解:将23x y =⎧⎨=⎩代入1ax by -=得:231a b -=, ∵()462232a b a b -=-=,故4635a b -+=.故答案为:5.【点睛】本题考查解二元一次方程组的解,掌握把方程组的解代入二元一次方程是解题关键.24.23000(1)3630x +=【分析】设平均每月增长率为x ,则二月份生产玩具的数量为3000(1+x )个,三月份生产玩具的数量为3000(1+x )2个,根据题意找出等量关系:三月份生产玩具的数量是3630个,据此等量关系列出方程即可.【详解】设平均每月增长率为x ,依题意得:该方程为:3000(1+x ) 2 =3630.故答案为:23000(1)x + =3630.【点睛】本题主要考查了由实际问题抽象出一元二次方程,读懂题意,找出合适的等量关系列出方程是解题关键.25.3【分析】先将分式方程转化为整式方程,根据分式方程无解,可得3x =,进而求得k 的值. 【详解】解:233x k x x=---, 2(3)x x k =-+,26x x k =-+,6x k =-,方程无解,3x ∴=,63k ∴-=,3k ∴=,故答案为:3.【点睛】本题考查了解分式方程,掌握分式方程的计算是解题的关键.26.x 2+x-2=0【分析】对方程进行去括号、移项、合并同类项,将方程化为20ax bx c ++=的形式即可.【详解】解:(1)2(1)x x x -=-2220x x x --+=220x x +-=故答案为220x x +-=【点睛】本题考查一元二次方程的一般形式,难度较低,熟练掌握去括号、移项、合并同类项以及一元二次方程的一般形式20ax bx c ++=是解题关键.27.3【分析】利用两个方程相加求解即可.【详解】解:4311237a b a b +=⎧⎨+=⎩①②, ∵+∵,得6a +6b =18,∵6(a +b )=18,a +b =3,故答案为:3.【点睛】本题主要考查了解二元一次方程组,解二元一次方程组的基本解法有加减消元法和代入消元法.28.20%【分析】利用降低后的开支=原开支×(1-降低率)2,即可得出关于x 的一元二次方程,解之取其符合题意的值即可得出结论.【详解】解:依题意得:25(1-x )2=16,解得:x 1=0.2=20%,x 2=1.8(不合题意,舍去).故答案为:20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.29.9【分析】设有x 个黑球,根据概率=符合条件的情况数目与全部情况的总数之比列出方程求解即可.【详解】解:设有x 个黑球,由题意,得6265x =+ 解得x =9,经检验,x =9是原方程的解.故答案为9.【点睛】本题考查了概率的求法及分式方程的应用.如果一个事件有n 种情况,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 30.16【分析】分为两种情况:∵腰长为4,∵底边为4,分别求出即可.【详解】解:分为两种情况:情况一:当腰为4时,则另一腰4是方程212=0x x k -+的一个解,代入4到方程中,求得=32k ,此时方程的两个解为4和8,对应的三边长为4、4、8,不能构成三角形,故舍去;情况二:当底边为4时,此时方程212=0x x k -+有两个相等的实数根,∵∵=12²-4k =0,解得k =36,此时方程的两个解为6和6,对应的三边长为6、6、4,能构成三角形,此时三角形周长为16,故答案为:16.【点睛】本题考查了一元二次方程的解及解法,等腰三角形的性质等知识点,注意要分类讨论,不要漏解.31.12-【分析】根据2|8|()0x y x y +++-=可得x 与y 的值,然后计算2x y +即可解答.【详解】解:∵2|8|()0x y x y +++-=,∵800x y x y ++=⎧⎨-=⎩, 解得:44x y =-⎧⎨=-⎩, ∵()242412x y +=-+⨯-=-;故答案为:12-.【点睛】本题考查了非负数的性质,熟练掌握是解题的关键.32.500【详解】设商品的标价为x 元,则0.8x=320(1+25%),解得:x=500.故答案:500.33.25%【详解】试题分析:设每年的增长率是X ,则有()()22225516012501164x x ⎛⎫+=⇒+== ⎪⎝⎭ 1 1.25x +=,25%x =考点:二次函数的综合题点评:在解题时要能灵运用二次函数的图象和性质求出二次函数的解析式,利用数形结合思想解题是本题的关键.34.64【详解】∵x 2+y 2+10=2x +6y ,∵x 2+y 2+10-2x -6y =0,∵(x -1)2+(y -3)2=0,∵(x -1)2≥0,(y -3)2≥0,∵x -1=0,y -3=0,解得:x =1,y =3;∵x 21+21y =121+21×3=63+1=64,故答案为:64.35.﹣1≤x <3【详解】试题分析:分别解不等式,找出解集的公共部分即可. 试题解析:5323142x x x ①②+≥⎧⎪⎨-<⎪⎩, 由∵解得1x ≥-;由∵解得3x ;< 所以,原不等式组的解集为1 3.x把不等式组的解集在数轴上表示为:.36.()21090151800x x +-≥【分析】根据跑步的路程加上步行的路程大于等于两地距离列不等式即可.【详解】解:根据题意列不等式为:()21090151800x x +-≥故答案为:()21090151800x x +-≥.【点睛】本题考查的知识点是一元一次不等式的实际应用,找出题目中的等量关系是解此题的关键.37.13【详解】分析:根据题意设有x 天早晨下雨,这一段时间有y 天;有9天下雨,即早上下雨或晚上下雨都可称之为当天下雨,∵总天数-早晨下雨=早晨晴天;∵总天数-晚上下雨=晚上晴天;列方程组解出即可.详解:设有x 天早晨下雨,这一段时间有y 天,根据题意得:7(10)9y x y x -=⎧⎨--=⎩①②, ∵+∵得:2y =26,y =13.所以一共有13天;故答案为13.点睛:考查二元一次方程组的应用,解题的关键是找出题目中的等量关系列出方程组. 38.6【分析】依据二元一次方程的定义可得到a+6≠0,|a|-5=1,从而可确定出a 的值.【详解】解:∵(a+6)x+y |a|﹣5=1是关于x 、y 的二元一次方程,∵a+6≠0,|a|-5=1.解得:a=6.故答案为6.【点睛】本题主要考查的是二元一次方程的定义,掌握二元一次方程的定义是解题的关键.39.20【分析】关键描述语为:“顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等”;本题的等量关系为:逆水航行46千米用的时间+顺水航行34千米所用的时间=静水航行时80千米所用的时间.【详解】设船在静水中的速度是x 千米/时. 则:3446x 3x 3+-+ =80x . 解得:x=20.经检验,x=20是原方程的解.【点睛】本题考查的是分式方程的应用,正确列出方程是解题的关键.40.(1)510x y =⎧⎨=-⎩;(2)20x -<<. 【分析】(1)利用加减消元法解方程组;(2)先分别解两个不等式,然后根据大于小的小于大的取中间确定不等式组的解集.【详解】(1)解:∵2⨯得:8220x y +=∵,∵+∵得: 1155x =,解得:x=5,把x=5代入∵得:y=-10 ,所以,方程组的解为:510x y =⎧⎨=-⎩ ; (2) 解:由∵得: 2x >-,由∵得: 0x <,所以,不等式组的解为:20x -<<.故答案为(1)5{10x y ==- ;(2)20x -<< .【点睛】本题考查解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.同时考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.41.3x =-【分析】先移项,再合并同类项,最后把系数化为“1”,即可得到答案.【详解】解:5278x x +=+,移项得:5782x x -=-,整理得:26x -=,解得:3x =-.【点睛】本题考查的是一元一次方程的解法,掌握“解一元一次方程的步骤与方法”是解本题的关键.42.原方程无解【详解】试题分析:先去分母,变为整式方程,解后进行检验即可试题解析:去分母:2(3x-1)+3x=1x=检验:当x=时,9x-3=0所以:x=是原方程的增根,原方程无解考点:解分式方程43.(1)3x <(2)23x -≤<,见解析【分析】(1)去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】(1)解:去括号得:5x -5<4+2x ,移项、合并得:3x <9,系数化为1得:x <3;(2)解:解∵得:x <3,解∵得:x ≥-2,则不等式组的解集为-2≤x <3,将不等式组的解集表示在数轴上如下:.【点睛】本题考查的是解一元一次不等式和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.44.这种商品每件采购价是50元.【分析】根据“利润=(售价-进价)×销售量”,将打折前、打折后两种情况的盈利相加等于总盈利,列方程求解即可.【详解】解:设此商品单价是x 元,则有:()()8.8130%700130%3001266010x x x x ⎡⎤⎡⎤+-⨯++-⨯=⎣⎦⎢⎥⎣⎦化简,整理后得:2100.14430012660x x +⨯=解得:50x =答:这种商品每件采购价是50元.【点睛】本题考查了一元一次方程解决实际问题,解题关键是根据题意找到等量关系,并正确列出方程.45.(1)4;(2)1222x x ==【分析】(1)按照乘方运算,绝对值,负整数指数幂,立方根分别计算即可; (2)用配方法解一元二次方程即可.(1)202211(1)|4|()2--+-+ 1423=++-4=;(2)2420x x --=,2446x x ∴-+=,2(2)6x ∴-=,2x ∴-=,∴1222x x ==【点睛】本题考查了实数的运算及一元二次方程的解法,解决本题的关键是熟练掌握用配方法解一元二次方程.46.(1)21x y =⎧⎨=-⎩;(2)7<-x 【分析】(1)根据代入消元法解二元一次方程组即可;(2)先分别解每一个不等式,再求出公共部分即可.【详解】解:(1)34225x y x y +=⎧⎨-=⎩①② 由∵得:25y x =-∵将∵代入∵得:()34252x x +-=,解得:2x =将2x =代入∵得:1y =-∵21x y =⎧⎨=-⎩(2)()32421152x x x x ⎧--≥⎪⎨-+>⎪⎩①② 由∵得:1x ≤由∵得:()()22151x x ->+,解得:7<-x∵不等式组的解集为:7<-x【点睛】本题考查解二元一次方程组以及解一元一次不等式组,掌握代入消元法解二元一次方程组以及不等式组的求解方法是解题关键.47.(1)7;(2)12x y =⎧⎨=⎩. 【分析】(1)首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可. (2)应用加减消元法,求出方程组的解是多少即可.【详解】解:(1(03223⎛⎫--+ ⎪⎝⎭(81=-+81=+7=-.(2)32(21)712143222x y y x x -+=-⎧⎪⎨+++=⎪⎩()() 解:由(1),得345x y -=-(3)由(2),得1x y -+=(4)343+⨯()(),得2y =(5),把(5)代人(4),得1x =∵方程组的解为12x y =⎧⎨=⎩. 【点睛】此题主要考查了实数的运算,以及解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.48.(1)x >-1,数轴见解析;(2)x>3,数轴见解析【分析】(1)先去括号,再移项、合并得到7x≥-7,然后把x 的系数化为1即可; (2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【详解】解:(1)去括号得5x+10>1-2x+2,移项得5x+2x >1+2-10,合并得7x >-7,系数化为1得x >-1;用数轴表示为:;(2)去分母,得:2x>6-(x-3),去括号,得:2x>6-x+3,移项,得:2x+x>6+3,合并同类项,得:3x>9,系数化为1,得:x>3.【点睛】此题考查解一元一次不等式,以及在数轴上表示不等式的解集,熟练掌握运算法则是解题的关键.49.(1),不等式组的解集是﹣1<x≤1,数轴表示见解析;(2)x=﹣1.【详解】试题分析:(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.试题解析:(1)()32421132x x x x ⎧--≥⎪⎨-->⎪⎩①②, 解不等式∵ ,得x≤1,解不等式∵,得x >﹣1,则不等式组的解集是﹣1<x≤1;(2)方程两边同乘x ﹣3得:3x=(x ﹣3)+1,解得:x=﹣1,检验:当x=﹣1时,x﹣3≠0,所以x=﹣1是原方程的解.。
解方程练习题及答案九年级解方程是数学中重要的一部分,也是九年级数学的基础内容之一。
通过解方程可以寻找未知数的取值,从而解决实际问题。
本文将为大家提供一些解方程练习题及答案,帮助大家巩固和提高解方程的能力。
练习题一:1. 解方程2x + 3 = 9。
2. 解方程5(y - 4) = -15。
3. 解方程3x + 4 = -7x + 6。
4. 解方程2(x + 3) - 5 = 3(x - 2) + 4。
练习题二:1. 解方程2(x - 1) + 3(2x + 1) = 7(x - 2) + 4。
2. 解方程4(x + 2) - 5(2x - 1) = 2(3x + 1)。
3. 解方程3(2x - 1) + 4 = 5(3x + 2) - 3x。
4. 解方程2(x - 3) - 3(-2x + 1) = 3(2x - 1 - 3)。
练习题三:1. 解方程 2(x - 3) + 3(4 - x) = 7 - x。
2. 解方程 5(x + 2) - 3(2x - 3) = 18 - 2(x + 4)。
3. 解方程 3(2x - 1) - 12x = -3(5x - 2)。
4. 解方程 2(3x - 1) + 5(4 - 2x) = -3x + 6。
答案及解析:练习题一:1. 解方程2x + 3 = 9。
将常数项3移到等式右边,得到2x = 9 - 3 = 6。
再除以2,得到x = 6 ÷ 2 = 3。
因此,方程的解为x = 3。
2. 解方程5(y - 4) = -15。
将常数项-15移到等式左边,得到5(y - 4) + 15 = 0。
展开括号,得到5y - 20 + 15 = 0。
化简,得到5y - 5 = 0。
再除以5,得到y - 1 = 0。
因此,方程的解为y = 1。
3. 解方程3x + 4 = -7x + 6。
将常数项4移到等式右边,得到3x = -7x + 2。
将-7x移到等式左边,得到3x + 7x = 2。
初三数学解方程练习题及答案解方程是初中数学中重要的内容之一,也是提高学生运用数学知识解决实际问题的能力的关键。
在初三阶段,学生需要掌握解一元一次方程和解一元二次方程的方法。
本文将为大家提供100道初三解方程练习题及答案,帮助大家巩固解方程的知识点。
一、解一元一次方程1.解方程2x + 5 = 15。
解:首先将方程化简为2x = 15 - 5,得到2x = 10。
然后再将2x除以2得到x = 5。
所以方程的解为x = 5。
2.解方程3(x - 4) = 15。
解:首先将方程化简为3x - 12 = 15。
然后将方程两边的常数项移动到一边,得到3x = 15 + 12,即3x = 27。
最后将方程两边除以3,得到x = 9。
所以方程的解为x = 9。
3.解方程4x + 7 = 23。
解:首先将方程化简为4x = 23 - 7,得到4x = 16。
然后将方程两边除以4,得到x = 4。
所以方程的解为x = 4。
4.解方程5(x + 2) = 35。
解:首先将方程化简为5x + 10 = 35。
然后将方程两边的常数项移动到一边,得到5x = 35 - 10,即5x = 25。
最后将方程两边除以5,得到x = 5。
所以方程的解为x = 5。
5.解方程6x - 8 = 10。
解:首先将方程化简为6x = 10 + 8,得到6x = 18。
然后将方程两边除以6,得到x = 3。
所以方程的解为x = 3。
二、解一元二次方程1.解方程x^2 + 5x + 6 = 0。
解:首先我们可以尝试因式分解。
将方程因式分解为(x + 2)(x + 3) = 0,然后分别令x + 2 = 0和x + 3 = 0,得到x = -2和x = -3。
所以方程的解为x = -2和x = -3。
2.解方程2x^2 + 3x - 2 = 0。
解:我们可以使用求根公式来解这个方程。
根据求根公式,方程的解可以表示为x = (-b ± √(b^2 - 4ac)) / (2a)。
中考数学代数方程练习题库及答案解读一、一元一次方程练习题1. 解方程:3x + 5 = 20解析:将方程转化为一元一次方程的标准形式:ax + b = c根据题目要求,方程为3x + 5 = 20移项得:3x = 20 - 5计算得:3x = 15化简得:x = 52. 解方程:2(3x - 1) = 5x + 3解析:将方程转化为一元一次方程的标准形式:ax + b = c根据题目要求,方程为2(3x - 1) = 5x + 3展开得:6x - 2 = 5x + 3移项得:6x - 5x = 3 + 2计算得:x = 5二、二元一次方程练习题1. 解方程组:2x - 3y = 75x + y = 10解析:通过消元法解方程组:首先将第二个方程乘以2,得到:10x + 2y = 20然后将第一、二个方程相加,得到:12x - y = 27进一步简化,得到:y = 12x - 27将y = 12x - 27代入第一个方程中,得到:2x - 3(12x - 27) = 7化简得:2x - 36x + 81 = 7移项得:-34x = -74计算得:x ≈ 2.18将x ≈ 2.18代入y = 12x - 27,得到:y ≈ -4.64因此,方程组的解为:x ≈ 2.18,y ≈ -4.642. 解方程组:3x + 2y = 102x - y = 5解析:通过代入法解方程组:将第二个方程变形得到:y = 2x - 5将y = 2x - 5代入第一个方程中,得到:3x + 2(2x - 5) = 10化简得:7x - 10 = 10移项得:7x = 20计算得:x ≈ 2.86将x ≈ 2.86代入y = 2x - 5,得到:y ≈ 0.71因此,方程组的解为:x ≈ 2.86,y ≈ 0.71三、二元二次方程练习题1. 解方程组:x^2 + y^2 = 25x + y = 7解析:通过代入法解方程组:将第二个方程变形得到:y = 7 - x将y = 7 - x代入第一个方程中,得到:x^2 + (7 - x)^2 = 25化简得:2x^2 - 14x + 24 = 0求解二次方程2x^2 - 14x + 24 = 0,可得到两个解:x1 ≈ 2.82,x2 ≈ 4.18将解代入x + y = 7,得到两对解:解1:x1 ≈ 2.82,y1 ≈ 4.18解2:x2 ≈ 4.18,y2 ≈ 2.82因此,方程组的解为:解1:x1 ≈ 2.82,y1 ≈ 4.18;解2:x2 ≈ 4.18,y2 ≈ 2.822. 解方程组:x^2 + 4y^2 = 162x - y = 5解析:通过消元法解方程组:将第二个方程变形得到:y = 2x - 5将y = 2x - 5代入第一个方程中,得到:x^2 + 4(2x - 5)^2 = 16化简得:17x^2 - 80x + 84 = 0求解二次方程17x^2 - 80x + 84 = 0,可得到两个解:x1 ≈ 4.42,x2 ≈ 0.95将解代入2x - y = 5,得到两对解:解1:x1 ≈ 4.42,y1 ≈ 3.83解2:x2 ≈ 0.95,y2 ≈ -3.10因此,方程组的解为:解1:x1 ≈ 4.42,y1 ≈ 3.83;解2:x2 ≈ 0.95,y2 ≈ -3.10综上所述,本文提供了中考数学代数方程练习题库及答案解析,包括一元一次方程、二元一次方程和二元二次方程的例题解析。
中考数学专题复习《方程与不等式》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一 单选题1.下列等式变形错误的是( )A .若 33x y -=- 则 0x y -=B .若112x x -= 则 12x x -= C .若 13x -= 则 4x =D .若 342x x += 则 324x x -=-2.用配方法解一元二次方程2870x x +-= 则方程可化为( )A .2(4)23x +=B .2(8)23x +=C .2(4)9x +=D .2(8)9x +=3.在解方程3157246x x -+-= 时 第一步去分母 去分母后结果正确的是( ) A .12(31)12212(57)x x --⨯=+ B .3(31)1222(57)x x --⨯=+ C .3(31)322(57)x x --⨯=+D .3(31)22(57)x x --⨯=+4.下列方程为一元一次方程的是( )A .+2=3 x yB .5y =C .22x x =D .12y y+= 5.《九章算术》中记载:“今有善田一亩 价三百 恶田七亩 价五百.今并买一顷 价钱一万.问善恶田各几何?”其大意是:今有好田1亩 价值300钱 坏田7亩 价值500钱.今共买好 坏田1顷(1顷=100亩) 价钱10000钱.问好 坏田各买了多少亩?设好田买了x 亩 坏田买了y 亩 则下面所列方程组正确的是( ) A .{x +y =100300x +7500y =10000 B .{x +y =100300x +5007y =10000 C .{x +y =1007500x +300y =10000D .{x +y =1005007x +300y =100006.已知方程组35ax by ax by +=-⎧⎨-=⎩的解是12x y =-⎧⎨=⎩则2a b -的值是( ) A .3B .-3C .5D .-57.如图 由矩形和三角形组合而成的广告牌紧贴在墙面上 重叠部分(阴影)的面积是4m 2 广告牌所占的面积是 30m 2(厚度忽略不计) 除重叠部分外 矩形剩余部分的面积比三角形剩余部分的面积多2m 2 设矩形面积是xm 2 三角形面积是ym 2 则根据题意 可列出二元一次方程组为( )A .{x +y −4=30(x −4)−(y −4)=2B .{x +y =26(x −4)−(y −4)=2C .{x +y −4=30(y −4)−(x −4)=2D .{x −y +4=30x −y =28.为了奖励学习认真的同学 班主任老师给班长拿了40元钱 让其购买奖品 现有单价为4元的A 种学习用品和单价为6元的B 种学习用品可供选择 若40元钱恰好花完 则班长的购买方案有( ) A .1种B .2种C .3种D .4种9.若x y < 则下列不等式中不成立的是( )A .22x y -<-B .22x y -<-C .22x y ->- D .22x y ->-10.已知公式12111R R R =+ ( 12R R ≠ ) 则表示 1R 的公式是( ) A .212R RR RR -=B .212RR R R R =-C .1212()R R R R R +=D .212RR R R R=-二 填空题11.已知2x =是方程230x x m -+=的解 则m 的值为 . 12. 已知a =120222023+ b =120232023+ c =120242023+ 则代数式 2(a 2+b 2+c 2-ab-bc-ac )的值是 .13.若一元二次方程 22(1)310k x x k -++-= 有一个根为 0x = 则k= .14.今年春节某超市组装了甲 乙两种礼品盆 他们都是由 ,,a b c 三种零食组成 其中甲礼品盒装有3千克 a 零食 1千克 b 零食 1千克 c 零食 乙礼品盒装有2千克 a 零食 2千克 b 零食 2千克 c 零食 甲 乙两种礼品盒的成本均为盆中 ,,a b c 三种零食的成本之和.已知每千克 a 的成本为10元 乙种礼品盒的售价为60元 每盒利润率为25%甲种每盒的利润率为50%当甲 乙两种礼盒的销售利润率为13时 该商场销售甲 乙两种礼盒的数量之比是 . 三 解答题15.计算:(1)解方程组:{y =2x −5 ①7x −3y =20 ② (2)解不等式:32523x x --> (3)解不等式组:523923x x ->⎧⎨-<⎩(4)解不等式组:{5x −12≤2(4x −3)x+42<3−6x−1616.解方程:241x - + 21x + = 1xx - 17.小红和小凤两人在解关于x y 的方程组 {ax +3y =5 ,bx +2y =8 .时 小红只因看错了系数a 得到方程组的解为 {x =−1 ,y =2 . 小凤只因看错了系数b 得到方程组的解为 {x =1 ,y =4 .求a b 的值和原方程组的解.18.阅读理解下列材料然后回答问题:解方程:x²-3|x|+2=0解:(1)当x≥0时 原方程化为x²-3x+2=0 解得: 1x =2 2x =1 ( 2 )当x <0时 原方程化为x²+3x+2=0 解得: 1x =1 2x =-2. ∴原方程的根是 1x =2 2x =1 3x =1 4x =-2. 请观察上述方程的求解过程 试解方程x²-2|x-1|-1=0.19.如图 在矩形ABCD 中剪去正方形ABFE 后 剩下的矩形EFCD 与原矩形ABCD 相似.求矩形ABCD 的宽和长的比.20.为了丰富市民的文化生活 我市某景点开放夜游项目.为吸引游客组团来此夜游 特推出了如下门票收费标准:标准一:如果人数不超过20人 门票价格为60元/人标准二:如果人数超过20人 每超过1人 门票价格降低2元 但门票价格不低于50元/人.(1)当夜游人数为15人时 人均门票价格为 元 当夜游人数为25人时 人均门票价格为 元(2)若某单位支付门票费用共1232元 则该单位这次共有多少名员工去此景点夜游?21.已知 422(2)50a a b y y+--+= 是关于y 的一元一次方程.(1)求 ,a b 的值. (2)若 2a x =-是 2211632x x x m--+-+= 的解 求 b m a m +-- 的值.22.新冠疫情以来 口罩成为了生活和工作的必需品.某口罩生产企业主要生产过滤式和供气式两种口罩.有过滤式口罩机和供气式口罩机各 10 台 统计发现 去年每台过滤式口罩机的产量比每台供气式口罩机多 60 万个 过滤式口罩的出厂价为 0.2 元/个 供气式口罩的出厂价为 4 元/个 两种口罩全部售出 总销售额为 10200 万元.(1)去年每台供气式口罩机的产量为多少万个?(2)今年 为了加大口罩供应量 该企业优化了生产方法 在保持口罩机数量不变的情况下 预计每台过滤式口罩机和供气式口罩机的产量将在去年基础上分别增加 2%a 和 %a .由于过滤式口罩更受市场欢迎 出厂价将在去年的基础上上涨 %a 而供气式口罩的出厂价保持不变 两种口罩全部售出后总销售额将增加20%17a 求 a 的值. 23.定义一种新运算“a ⊗ b”:当a≥b 时 a ⊗ b=a+2b 当a <b 时 a ⊗ b=a-2b.例如:3 ⊗ (-4)=3(8)(5)+-=- ()61262430-⊗=--=- .(1)填空:(-3) ⊗ (-2)=(2)若 (34)(5)(34)2(5)x x x x -⊗+=-++ 则x 的取值范围为 (3)已知 (57)(2)1x x -⊗-> 求x 的取值范围(4)利用以上新运算化简: ()()2235102m m m m ++⊗- .答案解析部分1.【答案】B【解析】【解答】A.若 33x y -=- 则 0x y -= 正确B.若112x x -= 两边同乘以2 则 22x x -= 故错误 C.若 13x -= 则 4x = 正确 D.若 342x x += 则 324x x -=- 正确 故答案为:B.【分析】等式的基本性质:(1)等式两边同加(或减)同一个数(或式子) 结果仍相等 (2)在不等式两边同乘一个数 或除以一个不为0的数 结果仍相等。
中考数学总复习《方程(组)与不等式(组)》专项测试卷(带有答案)学校:___________班级:___________姓名:___________考号:___________1.下列方程变形中①方程3-2x 3-x -22=1去分母,得2(3-2x)-3(x -2)=1 ②方程3x +8=-4x -7移项,得3x +4x =7-8③方程7(3-x)-5(x -3)=8去括号,得21-7x -5x +15=8 ④方程37x =73,得x =1 错误的有( )A .4个B .3个C .1个D .0个2.(2023·无锡)下列4组数中,不是二元一次方程2x +y =4的解的是( )A.⎩⎪⎨⎪⎧x =1,y =2B.⎩⎪⎨⎪⎧x =2,y =0C.⎩⎪⎨⎪⎧x =0.5,y =3 D.⎩⎪⎨⎪⎧x =-2,y =4 3.二元一次方程x +3y =7的非负整数解的个数是( )A .1B .2C .3D .44.(2023·南充)关于x ,y 的方程组⎩⎪⎨⎪⎧3x +y =2m -1,x -y =n 的解满足x +y =1,则4m÷2n 的值是( )A .1B .2C .4D .85.(2023·温州)一瓶牛奶的营养成分中,碳水化合物含量是蛋白质的1.5倍,碳水化合物、蛋白质与脂肪的含量共30 g .设蛋白质、脂肪的含量分别为x(g),y(g),可列出方程为( )A.52x +y =30 B .x +52y =30 C.32x +y =30 D .x +32y =30 6.(2023·齐齐哈尔)为提高学生学习兴趣,增强动手实践能力,某校为物理兴趣小组的同学购买了一根长度为150 cm 的导线,将其全部截成10 cm 和20 cm 两种长度的导线用于实验操作(每种长度的导线至少一根),则截取方案共 有( )A .5种B .6种C .7种D .8种7.(2023春·合川区期末)已知⎩⎪⎨⎪⎧x =2,y =3是关于x ,y 的方程组⎩⎪⎨⎪⎧mx +ny =23,nx -my =-2的解,则5m +n 的平方根为( )A .-4和4B .-5和5C .-13和13D .-27和27 8.(2023·绍兴)《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛(斛:古代容量单位);大容器1个,小容器5个,总容量为2斛.问大容器、小容器的容量各是多少斛?设大容器的容量为x 斛,小容器的容量为y 斛,则可列方程组是( )A.⎩⎪⎨⎪⎧x +5y =3,5x +y =2 B.⎩⎪⎨⎪⎧5x +y =3,x +5y =2 C.⎩⎪⎨⎪⎧5x =y +3,x =5y +2 D.⎩⎪⎨⎪⎧5x =y +2,x =5y +39.我国的《九章算术》中记载道:“今有共买物,人出八,盈三;人出七,不足四.问有几人.”大意是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数有多少.设有x 人,则可列方程为 .10.(2023·丽水)古代中国的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两.今有干丝一十二斤,问生丝几何?”意思是:“今有生丝30斤,干燥后耗损3斤12两(古代中国1斤等于16两).今有干丝12斤,问原有生丝多少?”则原有生丝 斤.11.解方程:x -x -12=x +23+1.12.(2023·辽宁)某超市销售甲、乙两种驱蚊手环,某天卖出3个甲种驱蚊手环和1个乙种驱蚊手环,收入128元;另一天,以同样的价格卖出1个甲种驱蚊手环和2个乙种驱蚊手环,收入76元.(1)每个甲种驱蚊手环和每个乙种驱蚊手环的售价分别是多少元?(2)某幼儿园欲购买甲、乙两种驱蚊手环共100个,总费用不超过2 500元,那么最多可购买甲种驱蚊手环多少个?13.(2023·宜昌)为纪念爱国诗人屈原,人们有了端午节吃粽子的习俗.某顾客端午节前在超市购买豆沙粽10个,肉粽12个,共付款136元,已知肉粽单价是豆沙粽的2倍.(1)求豆沙粽和肉粽的单价;(2)超市为了促销,购买粽子达20个及以上时实行优惠,表格列出了小欢妈妈、小乐妈妈的购买数量(单位:个)和付款金额(单位:元);豆沙粽数量 肉粽数量 付款金额 小欢妈妈20 30 270小乐妈妈 30 20 230①根据表格,求豆沙粽和肉粽优惠后的单价;②为进一步提升粽子的销量,超市将两种粽子打包成A ,B 两种包装销售,每包都是40个粽子(包装成本忽略不计),每包的销售价格按其中每个粽子优惠后的单价合计.A ,B 两种包装中分别有m 个豆沙粽,m 个肉粽,A 包装中的豆沙粽数量不超过肉粽的一半.端午节当天统计发现,A ,B 两种包装的销量分别为(80-4m)包,(4m +8)包,A ,B 两种包装的销售总额为17 280元.求m 的值.参考答案1.下列方程变形中①方程3-2x 3-x -22=1去分母,得2(3-2x)-3(x -2)=1 ②方程3x +8=-4x -7移项,得3x +4x =7-8③方程7(3-x)-5(x -3)=8去括号,得21-7x -5x +15=8④方程37x =73,得x =1 错误的有( B )A .4个B .3个C .1个D .0个2.(2023·无锡)下列4组数中,不是二元一次方程2x +y =4的解的是( D )A.⎩⎪⎨⎪⎧x =1,y =2B.⎩⎪⎨⎪⎧x =2,y =0C.⎩⎪⎨⎪⎧x =0.5,y =3D.⎩⎪⎨⎪⎧x =-2,y =4 3.二元一次方程x +3y =7的非负整数解的个数是( C )A .1B .2C .3D .44.(2023·南充)关于x ,y 的方程组⎩⎪⎨⎪⎧3x +y =2m -1,x -y =n 的解满足x +y =1,则4m÷2n 的值是( D )A .1B .2C .4D .85.(2023·温州)一瓶牛奶的营养成分中,碳水化合物含量是蛋白质的1.5倍,碳水化合物、蛋白质与脂肪的含量共30 g .设蛋白质、脂肪的含量分别为x(g),y(g),可列出方程为( A ) A.52x +y =30 B .x +52y =30 C.32x +y =30 D .x +32y =30 6.(2023·齐齐哈尔)为提高学生学习兴趣,增强动手实践能力,某校为物理兴趣小组的同学购买了一根长度为150 cm 的导线,将其全部截成10 cm 和20 cm 两种长度的导线用于实验操作(每种长度的导线至少一根),则截取方案共 有( C )A .5种B .6种C .7种D .8种7.(2023春·合川区期末)已知⎩⎪⎨⎪⎧x =2,y =3是关于x ,y 的方程组⎩⎪⎨⎪⎧mx +ny =23,nx -my =-2的解,则5m +n 的平方根为( B )A .-4和4B .-5和5C .-13和13D .-27和27 8.(2023·绍兴)《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛(斛:古代容量单位);大容器1个,小容器5个,总容量为2斛.问大容器、小容器的容量各是多少斛?设大容器的容量为x 斛,小容器的容量为y 斛,则可列方程组是( B )A.⎩⎪⎨⎪⎧x +5y =3,5x +y =2 B.⎩⎪⎨⎪⎧5x +y =3,x +5y =2 C.⎩⎪⎨⎪⎧5x =y +3,x =5y +2 D.⎩⎪⎨⎪⎧5x =y +2,x =5y +3 9.我国的《九章算术》中记载道:“今有共买物,人出八,盈三;人出七,不足四.问有几人.”大意是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数有多少.设有x 人,则可列方程为8x -3=7x +4.10.(2023·丽水)古代中国的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两.今有干丝一十二斤,问生丝几何?”意思是:“今有生丝30斤,干燥后耗损3斤12两(古代中国1斤等于16两).今有干丝12斤,问原有生丝多少?”则原有生丝 967斤. 11.解方程:x -x -12=x +23+1. 解:去分母,得6x -3(x -1)=2(x +2)+6去括号,得6x -3x +3=2x +4+6移项合并,得x =7.12.(2023·辽宁)某超市销售甲、乙两种驱蚊手环,某天卖出3个甲种驱蚊手环和1个乙种驱蚊手环,收入128元;另一天,以同样的价格卖出1个甲种驱蚊手环和2个乙种驱蚊手环,收入76元.(1)每个甲种驱蚊手环和每个乙种驱蚊手环的售价分别是多少元?(2)某幼儿园欲购买甲、乙两种驱蚊手环共100个,总费用不超过2 500元,那么最多可购买甲种驱蚊手环多少个?解:(1)设每个甲种驱蚊手环的售价是x 元,每个乙种驱蚊手环的售价是y 元根据题意,得 ⎩⎪⎨⎪⎧3x +y =128,x +2y =76, 解得⎩⎪⎨⎪⎧x =36,y =20,答:每个甲种驱蚊手环的售价是36元,每个乙种驱蚊手环的售价是20元;(2)设购买甲种驱蚊手环m 个,则购买乙种驱蚊手环(100-m)个根据题意,得36m +20(100-m)≤2 500解得m ≤1254又∵m 为正整数∴m 的最大值为31.答:最多可购买甲种驱蚊手环31个.13.(2023·宜昌)为纪念爱国诗人屈原,人们有了端午节吃粽子的习俗.某顾客端午节前在超市购买豆沙粽10个,肉粽12个,共付款136元,已知肉粽单价是豆沙粽的2倍.(1)求豆沙粽和肉粽的单价;(2)超市为了促销,购买粽子达20个及以上时实行优惠,表格列出了小欢妈妈、小乐妈妈的购买数量(单位:个)和付款金额(单位:元);豆沙粽数量 肉粽数量 付款金额 小欢妈妈20 30 270 小乐妈妈 30 20 230①根据表格,求豆沙粽和肉粽优惠后的单价;②为进一步提升粽子的销量,超市将两种粽子打包成A ,B 两种包装销售,每包都是40个粽子(包装成本忽略不计),每包的销售价格按其中每个粽子优惠后的单价合计.A ,B 两种包装中分别有m 个豆沙粽,m 个肉粽,A 包装中的豆沙粽数量不超过肉粽的一半.端午节当天统计发现,A ,B 两种包装的销量分别为(80-4m)包,(4m +8)包,A ,B 两种包装的销售总额为17 280元.求m 的值. 解:(1)设豆沙粽的单价为x 元,肉粽的单价为2x 元由题意,得10x +12×2x =136解得x =4∴2x =8(元)答:豆沙粽的单价为4元,肉粽的单价为8元;(2)①设豆沙粽优惠后的单价为a 元,肉粽优惠后的单价为b 元由题意,得⎩⎪⎨⎪⎧20a +30b =270,30a +20b =230, 解得⎩⎪⎨⎪⎧a =3,b =7,答:豆沙粽优惠后的单价为3元,肉粽优惠后的单价为7元;②由题意,得[3m +7(40-m)]·(80-4m)+[3(40-m)+7m]·(4m +8)=17 280解得m =19或m =10∵m ≤12(40-m) ∴m ≤403∴m =10.。
专题01 中考数式计算及解方程解不等式解答题专项训练(解析版)专题解读:本专题全部精选2022中考真题计算解答题。
旨在让学生中考计算题能顺利过关!类型一实数的运算1.(2022•舟山)(11)0.解:(11)0=2﹣1=1;2.(2022•(﹣2022)0+2﹣1.解:原式=3﹣1+12=2+12=52.3.(2022•金华)计算:(﹣2022)0﹣2tan45°+|﹣2|+解:原式=1﹣2×1+2+3=1﹣2+2+3=4.4.(2022•临沂)计算:﹣23÷49×(16−13);解:(1)原式=﹣8×94×(16−26)=8×94×16=3;5.(2022•潍坊)(12103解:−22−(−1)10|−6|33(−2)−2(−2)0=41−6273−16=﹣2小莹发现小亮的计算有误,帮助小亮找出了3个错误.请你找出其他错误,参照①~③的格式写在横线上,并依次标注序号:①﹣22=4;②(﹣1)10=﹣1;③|﹣6|=﹣6; ; .请写出正确的计算过程.解:(1)④tan30°=⑤(﹣2)﹣2=22;⑥(﹣2)0=0,原式6=28,故答案为:④tan30°⑤(﹣2)﹣2=22;⑥(﹣2)0=0;28;6.(2022•达州)计算:(﹣1)2022+|﹣2|﹣(12)0﹣2tan45°.解:原式=1+2﹣1﹣2×1=1+2﹣1﹣2=0.7.(2022•4sin30°2|;解:(14sin30°2|=4×12+22+28.(2022•雅安)计算:2+|﹣4|﹣(12)﹣1;解:原式=3+4﹣2=5;9.(2022•内江)(1+|(−12)﹣1|﹣2cos45°;解:(1)原式=12×2﹣2×2=2.10.(2022•乐山)sin30°+2﹣1. 解:原式=12+3−12=3.11.(2022•眉山)计算:(3﹣π)0﹣|−14|++2﹣2.解:(3﹣π)0﹣|−14|++2﹣2=1−14+6+14=7.12.(2022•(3.14﹣π)0﹣3tan60°+|1(﹣2)﹣2.解:原式=1﹣3+1+14=+1﹣1+14=14.类型二 整式的运算及化简求值13.(2022•吉林)下面是一道例题及其解答过程的一部分,其中A 是关于m 的多项式.请写出多项式A ,并将该例题的解答过程补充完整.例:先去括号,再合并同类项:m (A )﹣6(m +1).解:m (A )﹣6(m +1)=m 2+6m ﹣6m ﹣6= m 2﹣6 .解:由题知,m (A )﹣6(m +1)=m 2+6m ﹣6m ﹣6=m 2﹣6,∵m 2+6m =m (m +6),∴A 为:m +6,故答案为:m 2﹣6.14.(2022•岳阳)已知a 2﹣2a +1=0,求代数式a (a ﹣4)+(a +1)(a ﹣1)+1的值.解:a(a﹣4)+(a+1)(a﹣1)+1=a2﹣4a+a2﹣1+1=2a2﹣4a=2(a2﹣2a),∵a2﹣2a+1=0,∴a2﹣2a=﹣1,∴原式=2×(﹣1)=﹣2.15.(2022•湖北)先化简,再求值:4xy﹣2xy﹣(﹣3xy),其中x=2,y=﹣1.解:4xy﹣2xy﹣(﹣3xy)=4xy﹣2xy+3xy=5xy,当x=2,y=﹣1时,原式=5×2×(﹣1)=﹣10.16.(2022•苏州)已知3x2﹣2x﹣3=0,求(x﹣1)2+x(x+23)的值.解:原式=x2﹣2x+1+x2+2 3 x=2x2−43x+1,∵3x2﹣2x﹣3=0,∴x2−23x=1,∴原式=2(x2−23x)+1=2×1+1=3.17.(2022•南充)先化简,再求值:(x+2)(3x﹣2)﹣2x(x+2),其中x=1.解:原式=(x+2)(3x﹣2﹣2x)=(x+2)(x﹣2)=x2﹣4,当x=11)2﹣4=﹣类型三分式的运算及化简求值18.(2022•临沂)计算:1x1−1x−1.解:原式=x−1−(x1)(x1)(x−1)=−2x2−1.19.(2022•宜宾)计算:(1−1a1)÷aa2−1.解(1−1a1)÷aa2−1=(a1a1−1a1).⋅(a1)(a−1)a=aa1⋅(a1)(a−1)a=a﹣1.20.(2022•丽水)先化简,再求值:(1+x)(1﹣x)+x(x+2),其中x=1 2.解:(1+x)(1﹣x)+x(x+2)=1﹣x2+x2+2x=1+2x,当x=12时,原式=1+2×12=1+1=2.21.(2022•聊城)先化简,再求值:a2−4a÷(a−4a−4a)−2a−2,其中a=2sin45°+(12)﹣1.解:a2−4a÷(a−4a−4a)−2a−2=(a2)(a−2)a×a(a−2)2−2a−2=a2a−2−2a−2=aa−2,∵a=2sin45°+(12)﹣1=2+2=+2,代入得:原式=+1;22.(2022•潍坊)先化简,再求值:(2x−3−1x)⋅x2−3xx26x9,其中x是方程x2﹣2x﹣3=0的根.原式=(2x−3−1x)•x(x−3)(x3)2,=x3x(x−3)×x(x−3)(x3)2,=1x3,∵x是方程x2﹣2x﹣3=0,分解因式得:(x+1)(x﹣3)=0,所以x+1=0或x﹣3=0,解得:x=﹣1或x=3,∵x≠3,∴当x=﹣1时,原式=1 2.23.(2022•达州)化简求值:a−1a2−2a1÷(a2aa2−1+1a−1),其中a1.解:原式=a−1(a−1)2÷[a(a1)(a−1)(a1)+a1(a−1)(a1)]=1a−1÷(a−1)(a=1a−1÷a1a−1=1a−1×a−1a1=1a1,把a=1代入1a1=24.化简:(1+a2−a)÷4−a2a2−4a4,并在﹣2,0,2中选择一个合适的a值代入求值.解:原式=2−a a2−a•(a−2)2(2−a)(2a)=22−a•(a−2)2(2−a)(2a)=22a,当a=﹣2或2时,原式没有意义;当a=0时,原式=220=1.25.(2022•内江)(2)先化简,再求值:(ab2−a2+1b a)÷bb−a,其中a=b=+4.解:原式=[a(b a)(b−a)+b−a(b a)(b−a)]•b−ab=b(b a)(b−a)•b−ab=1b a.当a=b=4时,原式=1 4.26.(2022•乐山)先化简,再求值:(1−1x1)÷xx22x1,其中x=26.解:(1−1x1)÷xx22x1=x1−1x1⋅(x1)2x=xx1⋅(x1)2x=x+1,当x=1.27.(2022•泰州)按要求填空:小王计算2xx2−4−1x2的过程如下:解:2xx2−4−1x2=2x(x2)(x−2)−1x2⋯⋯第一步=2x(x2)(x−2)−x−2(x2)(x−2)⋯⋯第二步=2x−x−2(x2)(x−2)⋯⋯第三步=x−2(x2)(x−2)⋯⋯第四步=1x2.……第五步小王计算的第一步是 (填“整式乘法”或“因式分解”),计算过程的第 步出现错误.直接写出正确的计算结果是 .解:2xx2−4−1x2=2x(x2)(x−2)−1x2=2x(x2)(x−2)−x−2(x2)(x−2)=2x−(x−2) (x2)(x−2)=2x−x2 (x2)(x−2)=x2(x2)(x−2)=1x−2,小王计算的第一步是因式分解,计算过程的第三步出现错误.直接写出正确的计算结果是1x−2.故答案为:因式分解,三,1x−2.类型四二次根式的运算及化简求值28.(2022•河池)计算:|﹣3﹣1(π﹣5)0.解:原式=−13−+1=23.29.(2022•解:原式==30.(2022•解:(1)原式=31.(2022•济宁)已知a =2+b =2a 2b +ab 2的值.解:∵a =2+b =2∴a 2b +ab 2=ab (a +b )=(2+(2(2+2=(4﹣5)×4=﹣1×4=﹣4.类型五 解方程(组)32.(2022•柳州)解方程组:x−y =2①2x +y =7②. 解:①+②得:3x =9,∴x =3,将x =3代入②得:6+y =7,∴y =1.∴原方程组的解为:x =3y =1.33.(2022•桂林)解二元一次方程组:x−y =1①x +y =3②. 解:①+②得:2x =4,∴x =2,把x =2代入①得:2﹣y =1,∴y =1,∴原方程组的解为:x =2y =1.34.(2022•=3x +34y =134.解:整理方程组得x−2y =3①2x +3y =13②,①×2﹣②得﹣7y =﹣7,y =1,把y=1代入①得x﹣2=3,解得x=5,∴方程组的解为x=5 y=1.35.(2022•徐州)解方程:x2﹣2x﹣1=0;解:方程移项得:x2﹣2x=1,配方得:x2﹣2x+1=2,即(x﹣1)2=2,开方得:x﹣1解得:x1=1+x2=136.(2022•齐齐哈尔)解方程:(2x+3)2=(3x+2)2.解:方程:(2x+3)2=(3x+2)2,开方得:2x+3=3x+2或2x+3=﹣3x﹣2,解得:x1=1,x2=﹣1.37.(2022•无锡)(1)解方程:x2﹣2x﹣5=0;解:(1)x2﹣2x﹣5=0,x2﹣2x=5,x2﹣2x+1=5+1,(x﹣1)2=6,∴x﹣1解得x1=1+x2=138.(2022•镇江)(1)解方程:2x−2=1xx−2+1;解:(1)去分母得:2=1+x+x﹣2,解得:x=3 2,检验:当x=32时,x﹣2≠0,∴原分式方程的解为x=3 2;39.(2022•青海)解方程:xx−2−1=4x2−4x4.解:xx−2−1=4x2−4x4,x x−2−1=4(x−2)2,x(x﹣2)﹣(x﹣2)2=4,解得:x=4,检验:当x=4时,(x﹣2)2≠0,∴x=4是原方程的根.40.(2022•西宁)解方程:4x2x−3x2−x=0.方程两边同乘以x(x+1)(x﹣1)得:4(x﹣1)﹣3(x+1)=0.去括号得:4x﹣4﹣3x﹣3=0,移项,合并同类项得:x=7.检验:当x=7时,x(x+1)(x﹣1)≠0,∴x=7是原方程的根.∴x=7.41.(2022•眉山)解方程:1x−1=32x1.解:1x−1=32x1,方程两边同乘(x﹣1)(2x+1)得:2x+1=3(x﹣1),解这个整式方程得:x=4,检验:当x=4时,(x﹣1)(2x+1)≠0,∴x=4是原方程的解.类型六解不等式(组)42.解不等式2x+3≥﹣5,并把解集在数轴上表示出来.解:移项得:2x≥﹣5﹣3,合并同类项得:2x≥﹣8,两边同时除以2得:x≥﹣4,解集表示在数轴上如下:43.解不等式:x+8<4x﹣1.解:x+8<4x﹣1,移项及合并同类项,得:﹣3x<﹣9,系数化为1,得:x>3.44.(2022•金华)解不等式:2(3x﹣2)>x+1.解:去括号得:6x﹣4>x+1,移项得:6x﹣x>4+1,合并同类项得:5x>5,∴x>1.45.(2022•湖州)解一元一次不等式组2x<x+2①x+1<2②.解:解不等式①得:x<2,解不等式②得:x<1,∴原不等式组的解集为x<1.46.(2022•自贡)解不等式组:3x<65x+4>3x+2,并在数轴上表示其解集.解:由不等式3x<6,解得:x<2,由不等式5x+4>3x+2,解得:x>﹣1,∴不等式组的解集为:﹣1<x <2,∴在数轴上表示不等式组的解集为:47.(2022•威海)解不等式组,并把解集在数轴上表示出来.4x−2≤3(x+1)1−x−12<x4.解:4x−2≤3(x+1)①1−x−12<x4②,解不等式①得:x≤5,解不等式②得:x>2,在同一条数轴上表示不等式①②的解集,如图所示,∴原不等式组的解集为2<x≤5.48.(2022•乐山)解不等式组5x+1>3(x−1)①2x−1≤x+2②.请结合题意完成本题的解答(每空只需填出最后结果).解:解不等式①,得 .解不等式②,得 .把不等式①和②的解集在数轴上表示出来:所以原不等式组解集为 .解:解不等式①,得x>﹣2.解不等式②,得x≤3.把不等式①和②的解集在数轴上表示出来:所以原不等式组解集为﹣2<x≤3,故答案为:x>﹣2,x≤3,﹣2<x≤3.。
20道方程题带答案解析1.题目:解方程2x+5=15。
解析:首先将方程改写为2x=15−5,得到2x=10。
进一步解得x=5。
因此,方程的解为x=5。
2.题目:解方程3(x−2)=15。
解析:首先将方程展开得到3x−6=15,然后移项得到3x=21。
解得x=7。
因此,方程的解为x=7。
3.题目:解方程 $\\frac{x}{4} = 2$。
解析:乘以4得到x=8。
因此,解为x=8。
4.题目:解方程7−2y=3。
解析:移项得到−2y=3−7,进一步得到−2y=−4,解得y=2。
因此,解为y=2。
5.题目:解方程5(3x+1)=40。
解析:展开得到15x+5=40,移项可解得15x=35,解得 $x =\\frac{35}{15} = \\frac{7}{3}$。
因此,解为 $x = \\frac{7}{3}$。
6.题目:解方程4(x+5)=3(2x+9)。
解析:展开得到4x+20=6x+27,移项得到20−27=6x−4x,解得−7=2x,最终解得 $x = -\\frac{7}{2}$。
因此,解为 $x = -\\frac{7}{2}$。
7.题目:解方程 $\\frac{x-3}{2} = \\frac{x+1}{3}$。
解析:首先通分得到3(x−3)=2(x+1),展开得到3x−9=2x+ 2,移项得到3x−2x=9+2,解得x=11。
因此,解为x=11。
8.题目:解方程2x−3=3x+2。
解析:移项得到2x−3x=2+3,解得−x=5,进一步解得x=−5。
因此,解为x=−5。
9.题目:解方程 $\\frac{x}{3} - 2 = \\frac{x}{6}$。
解析:首先通分得到2(x−6)=x,展开得到2x−12=x,移项得到2x−x=12,解得x=12。
因此,解为x=12。
10.题目:解方程5x+4=3x+10。
解析:移项得到5x−3x=10−4,解得2x=6,进一步解得x=3。
因此,解为x=3。
《方程》一、选择题1.若关于x 的一元二次方程kx2﹣2x﹣1=0 有两个不相等的实数根,则k 的取值范围是()A.k>﹣1 B.k>﹣1 且k≠0 C.k<1D.k<1 且k≠02.已知x=﹣1 是一元二次方程x2+mx﹣5=0 的一个解,则方程的另一个解是()A.1 B.﹣5 C.5 D.﹣43.小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10 颗珠子”.小刚却说:“只要把你的给我,我就有10 颗”,如果设小刚的弹珠数为x 颗,小龙的弹珠数为y 颗,则列出的方程组正确的是()A.B.C.D.5.已知A.﹣1 B.1 是二元一次方程组C.2 D.3的解,则a﹣b 的值为()6.一元二次方程5x2﹣2x=0 的解是()A.x1=0,x2= B.x1=0,x2= C.x1=0,x2= D.x1=0,x2=7.一元一次方程的解是()A.B.x=﹣1 C.x=1 D.x=﹣28.已知a,b 是关于x 的一元二次方程x2+nx﹣1=0 的两实数根,则式子的值是()A.n2+2B.﹣n2+2 C.n2﹣2D.﹣n2﹣2 9.已知方程|x|=2,那么方程的解是()A.x=2 B.x=﹣2 C.x1=2,x2=﹣2 D.x=410.设α,β 是方程x2+9x+1=0 的两根,则(α2+2009α+1)(β2+2009β+1)的值是()A.0 B.1 C.2000 D.4 000 00011. 用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A .B.C.12.D.阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=﹣,x1•x2= .根据该材料填空:已知x1,x2是方程x2+6x+3=0 的两实数根,则+ 的值为()A.4 B.6 C.8 D.1013. 右边给出的是2004 年3 月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能是()A.69 B.54 C.27 D.4014.方程(x﹣1)(x+2)=2(x+2)的根是()A.1,﹣2 B.3,﹣2 C.0,﹣2 D.115.方程x2﹣2x=0 的解是()A.x=2 B.x=0 C.x1=0,x2=﹣2 D.x1=0,x2=2 16.服装店同时销售两种商品,销售价都是100 元,结果一种赔了20%,另一种赚了20%,那么在这次销售中,该服装店()A.总体上是赚了B.总体上是赔了C.总体上不赔不赚D.没法判断是赚了还是赔了17.解分式方程,可知方程()A.解为x=2 B.解为x=4C.解为x=3D.无解二、填空题18.方程:(2x﹣1)2﹣25=0 的解为.19.定义新运算“*”,规则:a*b=,如1*2=2,* .若x2+x﹣1=0 的两根为x1,x2,则x1*x2=.20.方程x3﹣x=0 的解为.21.方程x2﹣2x﹣3=0 的解是.22.设a 和β是方程x2﹣4x﹣5=0 的二根,则α+β的值为.23.已知关于x 的一元二次方程m2x2+(2m﹣1)x+1=0 有两个不相等的实数根,则m的取值范围是.24.方程2x2﹣x﹣5m=0 有一个根为0,则它的另一个根是,m=.互为倒数,则x=.25.若2x﹣3与﹣26.若a 是方程x2﹣x+5=0 的一个根,则代数式a2﹣a 的值是.27.方程x2+2x+k=0 有两个不相等的实数根,则k 的取值范围是.28.若关于x 的分式方程有增根,则m 的值为.29.一元二次方程2x2=x 的解是.30.某列从永川到重庆的火车,包括起始和终点在内共有5 个停靠站,小王乘坐这趟列车从永川到重庆,一路上小王在他乘坐的车厢内观测到下列情况:①在起始站(第一站)以后每一站都有车厢内人数(包括小王)的一半人下车;②又有下车人数的一半人上这节车厢;③到第五站(终点站)包括小王在内还有27 人.那么起始站上车的人数是.31.家家乐奥运福娃专卖店今年3 月份售出福娃3600 个,5 月份售出4900 个,设每月平均增长率为x,根据题意,列出关于x 的方程为.32.方程x2﹣3x=0 的解是.33.某药品经过两次降价,每瓶零售价由100 元降为81 元.已知两次降价的百分率相同,则这个百分率为.34.计算2x2•(﹣3x3)的结果是.,,试求的值35.已知实数a、b(a≠b)分别满足.三、解答题36.解方程:4x2﹣3x﹣1=037.解方程:x2﹣3x﹣1=0.38.已知x1,x2是方程x2﹣2x+a=0 的两个实数根,且,求x1,x2及a 的值.39.小亮家想利用房屋侧面的一面墙,再砌三面墙,围成一个矩形猪圈,如图所示,现在已备足可以砌12 米长的墙的材料.(1)如果小亮家想围成面积为16m2的矩形猪圈,你能够教他们怎么围吗?(2)如果小亮家想围成面积为20m2的矩形猪圈,你认为可能吗?说明理由.40.宏远商贸公司有A、B 两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:(1)已知一批商品有A、B 两种型号,体积一共是20m3,质量一共是10.5 吨,求A、B 两种型号商品各有几件?(2)物流公司现有可供使用的货车每辆额定载重3.5 吨,容积为6m3,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600 元;②按吨收费:每吨货物运输到目的地收费200 元.要将(1)中的商品一次或分批运输到目的地,宏远商贸公司应如何选择运送、付费方式运费最少并求出该方式下的运费是多少元?41.解方程组:.42.已知关于x 的方程2x2﹣kx+1=0 的一个解与方程的解相同.(1)求k 的值;(2)求方程2x2﹣kx+1=0 的另一个解.43.如图,抛物线的顶点为A(2,1),且经过原点O,与x 轴的另一个交点为B.(1)求抛物线的解析式;(2)在抛物线上求点M,使△MOB 的面积是△AOB 面积的3 倍;体积(m3/件)质量(吨/件)A 型商品0.8 0.5B 型商品 2 1(3)连接OA,AB,在x 轴下方的抛物线上是否存在点N,使△OBN 与△OAB 相似?若存在,求出N 点的坐标;若不存在,说明理由.44.解方程:x2﹣6x﹣16=0.45.解方程:.《方程》参考答案与试题解析一、选择题1.若关于x 的一元二次方程kx2﹣2x﹣1=0 有两个不相等的实数根,则k 的取值范围是()A.k>﹣1 B.k>﹣1 且k≠0 C.k<1D.k<1 且k≠0【考点】根的判别式;一元二次方程的定义.【分析】根据根的判别式及一元二次方程的定义得出关于k 的不等式组,求出k 的取值范围即可.【解答】解:∵关于x 的一元二次方程kx2﹣2x﹣1=0 有两个不相等的实数根,∴,即,解得k>﹣1 且k≠0.故选B.【点评】本题考查的是根的判别式,熟知一元二次方程的根与判别式的关系是解答此题的关键.2.已知x=﹣1 是一元二次方程x2+mx﹣5=0 的一个解,则方程的另一个解是()A.1 B.﹣5 C.5 D.﹣4【考点】根与系数的关系;一元二次方程的解.【专题】计算题.【分析】由于该方程的一次项系数是未知数,所以求方程的另一解可以根据根与系数的关系进行计算.【解答】解:设方程的另一根为x1,由根据根与系数的关系可得:x1•(﹣1)=﹣5,∴x1=5;故本题选C.【点评】注意该方程的常数项为﹣5,而不是5;代入公式时一定要注意常数项的正负.3.小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10 颗珠子”.小刚却说:“只要把你的给我,我就有10 颗”,如果设小刚的弹珠数为x 颗,小龙的弹珠数为y 颗,则列出的方程组正确的是()A .B.C .D.【考点】由实际问题抽象出二元一次方程组.【专题】应用题.【分析】此题中的等量关系有:①把小刚的珠子的一半给小龙,小龙就有10 颗珠子;②把小龙的给小刚,小刚就有10 颗.【解答】解:根据把小刚的珠子的一半给小龙,小龙就有10 颗珠子,可表示为y+ =10,化简得2y+x=20;根据把小龙的给小刚,小刚就有10 颗.可表示为x+ =10,化简得3x+y=30.列方程组为.故选:A.【点评】此题要能够首先根据题意中的等量关系直接表示出方程,再结合答案中的系数都是整数,运用等式的性质进行整理化简.5.已知A.﹣1 B.1 是二元一次方程组C.2 D.3的解,则a﹣b 的值为()【考点】二元一次方程的解.【专题】计算题.代入原方程组,分别求得a、b 的【分析】根据二元一次方程组的解的定义,将值,然后再来求a﹣b 的值.【解答】解:∵已知是二元一次方程组的解,∴由①+②,得a=2,由①﹣②,得b=3,∴a﹣b=﹣1;故选:A.【点评】此题考查了二元一次方程组的解法.二元一次方程组的解法有两种:代入法和加减法,不管哪种方法,目的都是“消元”.6.一元二次方程5x2﹣2x=0 的解是()A.x1=0,x2= B.x1=0,x2= C.x1=0,x2= D.x1=0,x2=【考点】解一元二次方程﹣因式分解法.【专题】计算题.【分析】本题可对方程提取公因式x,得到两个相乘的单项式,因为方程的值为0,所以两个相乘的式子至少有一个为0,由此可解出此题.【解答】解:5x2﹣2x=x(5x﹣2)=0,∴方程的解为.故选A.x1=0,x2=【点评】本题考查一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.7.一元一次方程的解是()A.B.x=﹣1 C.x=1 D.x=﹣2【考点】解一元一次方程.【专题】计算题.【分析】方程中含有分母,可以根据等式性质,方程两边同乘各分母的最小公倍数,就可以去掉原方程的分母.【解答】解:去分母得:6x﹣3(x﹣1)=12﹣2(x+2),去括号得:6x﹣3x+3=12﹣2x﹣4,移项得:6x﹣3x+2x=12﹣4﹣3,合并得:5x=5,系数化为1 得:x=1.故选C.【点评】本题考查了一元一次方程的解法.解一元一次方程的一般步骤是:去分母;去括号;移项;合并;系数化为1.注意,去分母时,要用最小公倍数乘方程两边的每一项,不要漏乘不含分母的项.8.已知a,b 是关于x 的一元二次方程x2+nx﹣1=0 的两实数根,则式的值是(子)A.n2+2B.﹣n2+2 C.n2﹣2 D.﹣n2﹣2【考点】根与系数的关系.【专题】压轴题.【分析】欲求的值,先把此代数式变形为两根之积或两根之和的形式,然后利用一元二次方程根与系数的关系代入数值计算即可.【解答】解:由题意知,a+b=﹣n,ab=﹣1,∴== =﹣n2﹣2.故选D.【点评】将根与系数的关系与代数式变形相结合是一种经常使用的解题方法.9.已知方程|x|=2,那么方程的解是()A.x=2 B.x=﹣2 C.x1=2,x2=﹣2 D.x=4【考点】含绝对值符号的一元一次方程.【专题】计算题.【分析】绝对值方程要转化为整式方程,因为|x|=±x,所以得方程x=±2,解即可.【解答】解:因为|x|=±x,所以方程|x|=2 化为整式方程为:x=2 和﹣x=2,解得x1=2,x2=﹣2,故选C.【点评】考查绝对值方程的解法,绝对值方程要转化为整式方程来求解.要注意|x|=±x,所以方程有两个解.10.设α,β 是方程x2+9x+1=0 的两根,则(α2+2009α+1)(β2+2009β+1)的值是()A.0 B.1 C.2000 D.4 000 000【考点】根与系数的关系;一元二次方程的解.【专题】压轴题.【分析】欲求(α2+2009α+1)(β2+2009β+1)的值,先把此代数式变形为两根之积或两根之和的形式(α2+2009α+1)(β2+2009β+1)=(α2+9α+1+2000α)(β2+9β+1+2000β),再利用根与系数的关系代入数值计算即可.【解答】解:∵α,β 是方程x2+9x+1=0 的两个实数根,∴α+β=﹣9,α•β=1.(α2+2009α+1)(β2+2009β+1)=(α2+9α+1+2000α)(β2+9β+1+2000β)又∵α,β 是方程x2+9x+1=0 的两个实数根,∴α2+9α+1=0,β2+9β+1=0.∴(α2+9α+1+2000α)(β2+9β+1+2000β)=2000α•2000β=2000×2000αβ,而α•β=1,∴(α2+9α+1+2000α)(β2+9β+1+2000β)=4 000000.故选D.【点评】将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.11.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.B.C.D.【考点】一次函数与二元一次方程(组).【专题】数形结合.【分析】由于函数图象交点坐标为两函数解析式组成的方程组的解.因此本题应先用待定系数法求出两条直线的解析式,联立两个函数解析式所组成的方程组即为所求的方程组.【解答】解:根据给出的图象上的点的坐标,(0,﹣1)、(1,1)、(0,2);分别求出图中两条直线的解析式为y=2x﹣1,y=﹣x+2,因此所解的二元一次方程组是.故选:D.【点评】方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.12.阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=﹣,x1•x2= .根据该材料填空:已知x1,x2是方程x2+6x+3=0 的两实数根,则+ 的值为()A.4 B.6 C.8 D.10【考点】根与系数的关系.【专题】压轴题;阅读型.【分析】根据一元二次方程的根与系数的关系得到,两根之和与两根之积,把代数式变形成与两根之和和两根之积有关的式子,代入两根之和与两根之积,求得代数式的值.【解答】解:∵x1,x2是方程x2+6x+3=0 的两实数根,∴x1+x2=﹣=﹣6,x1•x2= =3,则+ = = = =10.故本题选D.【点评】本题考查了一元二次方程根与系数的关系.解此类题目要会将代数式变形为两根之积或两根之和的形式,代入数值计算即可.一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:,x1•x2= .x1+x2=﹣13.右边给出的是2004 年3 月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能是()A.69 B.54 C.27 D.40【考点】一元一次方程的应用.【专题】图表型.【分析】一竖列上相邻的三个数的关系是:上面的数总是比下面的数小7.可设中间的数是x,则上面的数是x﹣7,下面的数是x+7.则这三个数的和是3x,因而这三个数的和一定是3 的倍数.【解答】解:设中间的数是x,则上面的数是x﹣7,下面的数是x+7.则这三个数的和是(x﹣7)+x+(x+7)=3x,因而这三个数的和一定是 3 的倍数.则,这三个数的和不可能是40.故选D.【点评】本题解决的关键是观察图形找出数之间的关系,从而找到三个数的和的特点.14.方程(x﹣1)(x+2)=2(x+2)的根是()A.1,﹣2 B.3,﹣2 C.0,﹣2 D.1【考点】解一元二次方程﹣因式分解法.【专题】计算题.【分析】因为方程两边都有x+2,所以运用分解因式法求解即可.【解答】解:原方程变形为:(x﹣1)(x+2)﹣2(x+2)=0,∴(x+2)(x﹣3)=0,∴x1=3,x2=﹣2.故选B.【点评】方程整理后,容易分解因式的,用分解因式法求解一元二次方程简单.15.方程x2﹣2x=0 的解是()A.x=2 B.x=0 C.x1=0,x2=﹣2 D.x1=0,x2=2【考点】解一元二次方程﹣因式分解法.【分析】方程右边为0,左边分解因式即可.【解答】解:原方程化为x(x﹣2)=0,x1=0,x2=2;故选D.【点评】本题考查了解一元二次方程的方法,当把方程通过移项把等式的右边化为0 后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0 的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.当化简后不能用分解因式的方法即可考虑求根公式法,此法适用于任何一元二次方程.16.服装店同时销售两种商品,销售价都是100 元,结果一种赔了20%,另一种赚了20%,那么在这次销售中,该服装店()A.总体上是赚了B.总体上是赔了C.总体上不赔不赚D.没法判断是赚了还是赔了【考点】一元一次方程的应用.【专题】销售问题.【分析】由已知可分别列一元一次方程求出盈利和亏本商品的成本价,然后计算出赚或亏多少.盈利20%就是相当于成本价的1+20%,亏本20%就是相当于成本价的1﹣20%,由此可列方程求解.【解答】解:设盈利商品的成本价为x 元,亏本的成本价为y 元,根据题意得:(1+20%)x=100,(1﹣20%)y=100,解得:x≈83,y=125,100﹣83+(100﹣125)=﹣8,所以赔8元.故选:B.【点评】此题考查的知识点一元一次方程的应用﹣销售问题,解题的关键是先由已知列一元一次方程求出两种商品的成本价.17.解分式方程,可知方程()A.解为x=2 B.解为x=4C.解为x=3D.无解【考点】解分式方程.【专题】计算题.,可变形为,可确定公【分析】本题考查分式方程的解法.分母为(x﹣2).【解答】解:原方程可变形为,两边都乘以(x﹣2),得(1﹣x)+2(x﹣2)=﹣1.解之得x=2.代入最简公分母x﹣2=0,因此原分式方程无解.故选D.【点评】本题考查分式方程的解法,此题两个分母互为相反数,因此去分母化为整式方程时要注意符号变化.同时要注意去分母时会出现增根,要检验的环节,否则容易出错.二、填空题18.方程:(2x﹣1)2﹣25=0 的解为 3 或﹣2 .【考点】解一元二次方程﹣直接开平方法.【专题】计算题.【分析】把原式变形为(x+a)2=b 的形式,用直接开平方法求出2x﹣1,然后进一步求x.【解答】解:∵(2x﹣1)2﹣25=0,∴(2x﹣1)2=25,∴2x﹣1=±5,∴x1=3,x2=﹣2.【点评】法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.19.定义新运算“*”,规则:a*b= ,如1*2=2,* .若x2+x﹣1=0的两根为x1,x2,则x1*x2= .【考点】根与系数的关系.【专题】压轴题;新定义.【分析】根据公式法求得一元二次方程的两个根,然后根据新运算规则计算x1*x2的值则可.【解答】解:在x2+x﹣1=0 中,a=1,b=1,c=﹣1,∴b2﹣4ac=5>0,所以x1= ,x2= 或x1= ,x2= .∴x1*x2= * = .【点评】本题考查了运用公式法解一元二次方程,注意定义运算规则里的两种情况.20.方程x3﹣x=0 的解为 0,1,﹣1 .【考点】解一元二次方程﹣因式分解法.【分析】首先对方程的左边进行因式分解,然后再解方程即可求出解.【解答】解:∵x3﹣x=0∴x(x+1)(x﹣1)=0∴x=0,x+1=0,x﹣1=0,∴x1=0,x2=1,x3=﹣1,∴x1=0,x2=1,x3=﹣1 都为原方程得解.故答案为:0,﹣1,1.【点评】本题主要考查用因式分法解一元二次方程,关键在于对方程的左边进行正确的因式分解.21.方程x2﹣2x﹣3=0 的解是 x1=3,x2=﹣1 .【考点】解一元二次方程﹣因式分解法.【分析】先方程左边因式分解,然后根据“两式相乘值为0,这两式中至少有一式值为0.”进行求解.【解答】解:方程x2﹣2x﹣3=0 左边因式分解,得(x﹣3)(x+1)=0解得x1=3,x2=﹣1.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.22.设a 和β是方程x2﹣4x﹣5=0 的二根,则α+β的值为4 .【考点】根与系数的关系.【专题】压轴题.【分析】由题意a 和β 是方程x2﹣4x﹣5=0 的二根,根据方程根与系数的关系可以求解.【解答】解:∵a 和β 是方程x2﹣4x﹣5=0 的二根,∴α+β=4.【点评】此题是一道典型的考查方程根与系数关系的题,比较简单.23.已知关于x 的一元二次方程m2x2+(2m﹣1)x+1=0 有两个不相等的实数根,则m的取值范围是m<且m≠0 .【考点】根的判别式.【分析】根据一元二次方程的根的判别式,建立关于m 的不等式,求出m 的取值范围.【解答】解:∵a=m,b=2m﹣1,c=1,方程有两个不相等的实数根,∴△=b2﹣4ac=(2m﹣1)2﹣4m2=1﹣4m>0,∴m<.又∵二次项系数不为0,∴m≠0即m<且m≠0.【点评】总结:(1)一元二次方程根的情况与判别式△的关系:①△>0⇔方程有两个不相等的实数根;②△=0⇔方程有两个相等的实数根;③△<0⇔方程没有实数根.(2)一元二次方程的二次项系数不为0.= 24. 方程 2x 2﹣x ﹣5m=0 有一个根为 0,则它的另一个根是,m= 0 .【考点】一元二次方程的解;根与系数的关系.【专题】方程思想.【分析】把一个根 0 代入方程可以求出 m 的值,再根据根与系数的关系,由两根之和求出另一个根.【解答】解:把 x=0 代入方程有:﹣5m=0∴m=0.设另一个根是 x 1,则:x 1+0∴x 1=故答案分别是: ,0.【点评】本题考查的是一元二次方程的解,把已知根代入方程,可以求出字母系数的值,根据根与系数的关系可以求出方程的另一个根.25.若 2x ﹣3与﹣互为倒数,则 x= 0 .【考点】解一元一次方程;倒数.【专题】计算题.【分析】根据互为倒数的两数之积为 1 可得出方程,解出即可.【解答】解:﹣ 的倒数是﹣3,∵2x ﹣3与﹣互为倒数,∴2x ﹣3=3,解得:x=0. 故填0.【点评】本题的关键在于根据题意列出方程,属于比较简单的题目.26.若a 是方程x2﹣x+5=0 的一个根,则代数式a2﹣a 的值是﹣5 .【考点】一元二次方程的解.【专题】整体思想.【分析】把a 代入方程x2﹣x+5=0,得 a 的代数式的值,从而求得代数式a2﹣a 的值.【解答】解:把x=a 代入方程x2﹣x+5=0,得a2﹣a+5=0,∴a2﹣a=﹣5.【点评】此题主要考查了方程解的定义和整体思想的运用.27.方程x2+2x+k=0 有两个不相等的实数根,则k 的取值范围是k<1 .【考点】根的判别式.【分析】一元二次方程x2+2x+k=0 有实数根,则△=b2﹣4ac>0,建立关于k 的不等式,求得k 的取值范围.【解答】解:∵a=1,b=2,c=k∴△=b2﹣4ac=22﹣4×1×k=4﹣4k>0,∴k<1.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.28.若关于x 的分式方程有增根,则m 的值为±.【考点】分式方程的增根.【专题】计算题.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0 的根.有增根,最简公分母x﹣3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出m 的值.【解答】解:方程两边都乘x﹣3,得x﹣2(x﹣3)=m2,∵原方程增根为x=3,∴把x=3 代入整式方程,得m=±.【点评】解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.29.一元二次方程2x2=x 的解是x1=0,.【考点】解一元二次方程﹣因式分解法.【分析】由于方程左右两边都含有因式x,所以看把右边的项移到左边后,利用因式分解法解方程.【解答】解:2x2=x,2x2﹣x=0,x(2x﹣1)=0,x1=0,x2= .【点评】本题考查了解一元二次方程的方法,当把方程通过移项把等式的右边化为0 后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0 的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.当化简后不能用分解因式的方法即可考虑求根公式法,此法适用于任何一元二次方程.30.某列从永川到重庆的火车,包括起始和终点在内共有5 个停靠站,小王乘坐这趟列车从永川到重庆,一路上小王在他乘坐的车厢内观测到下列情况:①在起始站(第一站)以后每一站都有车厢内人数(包括小王)的一半人下车;②又有下车人数的一半人上这节车厢;③到第五站(终点站)包括小王在内还有27 人.那么起始站上车的人数是64 .【考点】一元一次方程的应用.【专题】应用题;压轴题.【分析】设起始站上车的人数是x 人.根据题意,知第二站后车内人数是x﹣x+ x= x;第三站后车内人数是x﹣x+ x= x=()2x,依此类推,第四站剩下()3x 人,根据第四站(终点站)包括小王在内还有27 人列方程求解.【解答】解:设起始站上车的人数是x 人.)3x=27,根据题意得:(解得:x=64.则起始站上车的人数是64 人.【点评】此题能够正确理解题意,根据题意找到规律是解决问题的关键.31.家家乐奥运福娃专卖店今年3 月份售出福娃3600 个,5 月份售出4900 个,设每月平均增长率为x,根据题意,列出关于x 的方程为3600(1+x)2=4900 .【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】本题应先用x 表示出4 月份售出的个数,再表示出5 月份售出的福娃个数,令其等于4900 即可列出方程.【解答】解:4 月份售出的福娃个数为:3600(1+x),则 5 月份售出的福娃个数为:3600(1+x)2=4900.故填空答案为3600(1+x)2=4900.【点评】本题考查了一元二次方程的运用,解此类题目时常常要先解出前一个月份的个数,再列出所求月份的个数的方程,令其等于已知的条件即可.32.方程x2﹣3x=0 的解是 x1=0,x2=3 .【考点】解一元二次方程﹣因式分解法.【专题】计算题.【分析】x2﹣3x 有公因式x 可以提取,故用因式分解法解较简便.【解答】解:原式为x2﹣3x=0,x(x﹣3)=0,x=0 或x﹣3=0,x1=0,x2=3.∴方程x2﹣3x=0 的解是x1=0,x2=3.【点评】本题考查简单的一元二次方程的解法,在解一元二次方程时应当注意要根据实际情况选择最合适快捷的解法.33.某药品经过两次降价,每瓶零售价由100 元降为81 元.已知两次降价的百分率相同,则这个百分率为10% .【考点】一元二次方程的应用.【专题】增长率问题.【分析】此题可设降价的百分率为x,则第一次降价后的单价是原来的(1﹣x),第二次降价后的单价是原来的(1﹣x)2,根据题意列方程解答即可.【解答】解:降价的百分率为x,根据题意列方程得100×(1﹣x)2=81解得x1=0.1,x2=1.9(不符合题意,舍去).所以降价的百分率为0.1,即10%.故答案为:10%.【点评】找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.判断所求的解是否符合题意,舍去不合题意的解.34.计算2x2•(﹣3x3)的结果是﹣6x5.【考点】同底数幂的乘法.【专题】计算题.【分析】先把常数相乘,再根据同底数幂的乘法性质:底数不变指数相加,进行计算即可.【解答】解:2x2•(﹣3x3)=﹣6x5.故答案填:﹣6x5.【点评】本题考查了同底数幂的乘法,牢记同底数幂的乘法,底数不变指数相加是解题的关键.35.已知实数a、b(a≠b)分别满足,,试求的值.【考点】根与系数的关系.【专题】压轴题.【分析】由题意实数a、b 分别满足,,可知a,b 是方程x2﹣3x=0 的两根,可得a+b=3,ab= ,然后再代入求解.+【解答】解:∵实数a、b 分别满足,,∴a,b 是方程x2﹣3x+ =0 的两根,∴a+b=3,ab= ,∴= = = = ;故答案为.【点评】此题主要考查一元二次方程根与系数的关系,关键是要根据题意找到这个方程,此题是一道很好的题.三、解答题36.解方程:4x2﹣3x﹣1=0【考点】解一元二次方程﹣因式分解法.【分析】把方程4x2﹣3x﹣1=0 进行因式分解,可得(x﹣1)(4x+1)=0,即可解出.【解答】解:4x2﹣3x﹣1=0,(x﹣1)(4x+1)=0,x1=1,x2=﹣.【点评】运用二次三项式的因式分解法进行因式分解,可提高解题效率.37.解方程:x2﹣3x﹣1=0.【考点】解一元二次方程﹣公式法.【专题】计算题.【分析】此题比较简单,采用公式法即可求得,首先确定a,b,c 的值,然后检验方程是否有解,若有解代入公式即可求解.【解答】解:∵a=1,b=﹣3,c=﹣1,∴b2﹣4ac=(﹣3)2﹣4×1×(﹣1)=13,∴x1= ,x2= .【点评】此题考查了学生的计算能力,解题的关键是准确应用公式.38.已知x1,x2是方程x2﹣2x+a=0 的两个实数根,,求x1,x2及a 的且值.【考点】根与系数的关系.【分析】首先根据一元二次方程根与系数的关系得到x1+x2=2,x1x2=a,而x1+2x2=3﹣,根据前面的等式可以分别求出x2、x1及a 的值.【解答】解:∵x1,x2是方程x2﹣2x+a=0 的两个实数根,∴x1+x2=2 ①x1x2=a ②而x1+2x2=3﹣③∴③﹣①得,代入①得,∴a=﹣1.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.通过利用根与系数的关系可以得到关于待定系数的方程解决问题.39.小亮家想利用房屋侧面的一面墙,再砌三面墙,围成一个矩形猪圈,如图所示,现在已备足可以砌12 米长的墙的材料.(1)如果小亮家想围成面积为16m2的矩形猪圈,你能够教他们怎么围吗?(2)如果小亮家想围成面积为20m2的矩形猪圈,你认为可能吗?说明理由.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】(1)根据长方形的面积公式列方程求解即可;(2)同(1)一样列方程,看方程是否有解即可.【解答】解:(1)设垂直于墙的边长为xm,则x(12﹣2x)=16,解得x1=2,x2=4,当x=2 时,12﹣2x=8,当x=4时,12﹣2x=4,所以垂直于墙的边长为 2 米或 4 米;(2)设垂直于墙的边长为ym,则y(12﹣2y)=20,整理得,﹣2y2+12y﹣20=0,△=144﹣4×(﹣2)×(﹣20)=﹣16<0,∴此方程无解,。
《方程》一、选择题1.若关于x 的一元二次方程kx2﹣2x﹣1=0 有两个不相等的实数根,则k 的取值范围是()A.k>﹣1 B.k>﹣1 且k≠0 C.k<1D.k<1 且k≠02.已知x=﹣1 是一元二次方程x2+mx﹣5=0 的一个解,则方程的另一个解是()A.1 B.﹣5 C.5 D.﹣43.小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子”.小刚却说:“只要把你的给我,我就有10 颗”,如果设小刚的弹珠数为x 颗,小龙的弹珠数为y 颗,则列出的方程组正确的是()A.B.C.D.5.已知A.﹣1 B.1 是二元一次方程组C.2 D.3的解,则a﹣b 的值为()6.一元二次方程5x2﹣2x=0 的解是()A.x1=0,x2=B.x1=0,x2=C.x1=0,x2=D.x1=0,x2=7.一元一次方程的解是()A.B.x=﹣1 C.x=1 D.x=﹣28.已知a,b 是关于x 的一元二次方程x2+nx﹣1=0 的两实数根,则式子A.n2+2B.﹣n2+2 C.n2﹣2 D.﹣n2﹣29.已知方程|x|=2,那么方程的解是()A.x=2 B.x=﹣2 C.x1=2,x2=﹣2 D.x=4的值是()10.设α,β是方程x2+9x+1=0 的两根,则(α2+2009α+1)(β2+2009β+1)的值是()A.0 B.1 C.2000 D.4 000 00011.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.B.C.D.12.阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=﹣,x1•x2= .根据该材料填空:已知x1,x2是方程x2+6x+3=0的两实数根,则+ 的值为()A.4 B.6 C.8 D.1013.右边给出的是2004 年3 月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能是()A.69 B.54 C.27 D.4014.方程(x﹣1)(x+2)=2(x+2)的根是()A.1,﹣2 B.3,﹣2 C.0,﹣2 D.115.方程x2﹣2x=0 的解是()A.x=2 B.x=0 C.x1=0,x2=﹣2 D.x1=0,x2=216.服装店同时销售两种商品,销售价都是100 元,结果一种赔了20%,另一种赚了20%,那么在这次销售中,该服装店()A.总体上是赚了B.总体上是赔了C.总体上不赔不赚D.没法判断是赚了还是赔了17.解分式方程,可知方程()A.解为x=2 B.解为x=4C.解为x=3D.无解二、填空题18.方程:(2x﹣1)2﹣25=0 的解为.19.定义新运算“*”,规则:a*b=,如1*2=2,* .若x2+x﹣1=0的两根为x1,x2,则x1*x2=.20.方程x3﹣x=0 的解为.21.方程x2﹣2x﹣3=0 的解是.22.设a 和β是方程x2﹣4x﹣5=0 的二根,则α+β的值为.23.已知关于x 的一元二次方程m2x2+(2m﹣1)x+1=0 有两个不相等的实数根,则m 的取值范围是.24.方程2x2﹣x﹣5m=0 有一个根为0,则它的另一个根是,m= .25.若2x﹣3 与﹣互为倒数,则x= .26.若a 是方程x2﹣x+5=0 的一个根,则代数式a2﹣a 的值是.27.方程x2+2x+k=0 有两个不相等的实数根,则k 的取值范围是.28.若关于x 的分式方程有增根,则m 的值为.29.一元二次方程2x2=x 的解是.30.某列从永川到重庆的火车,包括起始和终点在内共有5 个停靠站,小王乘坐这趟列车从永川到重庆,一路上小王在他乘坐的车厢内观测到下列情况:①在起始站(第一站)以后每一站都有车厢内人数(包括小王)的一半人下车;②又有下车人数的一半人上这节车厢;③到第五站(终点站)包括小王在内还有27 人.那么起始站上车的人数是.31.家家乐奥运福娃专卖店今年3 月份售出福娃3600 个,5 月份售出4900 个,设每月平均增长率为x,根据题意,列出关于x 的方程为.32.方程x2﹣3x=0 的解是.33.某药品经过两次降价,每瓶零售价由100 元降为81 元.已知两次降价的百分率相同,则这个百分率为.34.计算2x2•(﹣3x3)的结果是.35.已知实数a、b(a≠b)分别满足,,试求的值.三、解答题36.解方程:4x2﹣3x﹣1=037.解方程:x2﹣3x﹣1=0.38.已知x1,x2是方程x2﹣2x+a=0 的两个实数根,且,求x1,x2及a 的值.39.小亮家想利用房屋侧面的一面墙,再砌三面墙,围成一个矩形猪圈,如图所示,现在已备足可以砌12 米长的墙的材料.(1)如果小亮家想围成面积为16m2的矩形猪圈,你能够教他们怎么围吗?(2)如果小亮家想围成面积为20m2的矩形猪圈,你认为可能吗?说明理由.40.宏远商贸公司有A、B 两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:体积(m3/件)质量(吨/件)A 型商品0.8 0.5B 型商品 2 1(1)已知一批商品有A、B 两种型号,体积一共是20m3,质量一共是10.5 吨,求A、B 两种型号商品各有几件?(2)物流公司现有可供使用的货车每辆额定载重3.5 吨,容积为6m3,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600 元;②按吨收费:每吨货物运输到目的地收费200 元.要将(1)中的商品一次或分批运输到目的地,宏远商贸公司应如何选择运送、付费方式运费最少并求出该方式下的运费是多少元?41.解方程组:.的解相同.42.已知关于x 的方程2x2﹣kx+1=0 的一个解与方程(1)求k 的值;(2)求方程2x2﹣kx+1=0 的另一个解.43.如图,抛物线的顶点为A(2,1),且经过原点O,与x 轴的另一个交点为B.(1)求抛物线的解析式;(2)在抛物线上求点M,使△MOB 的面积是△AOB 面积的3 倍;(3)连接OA,AB,在x 轴下方的抛物线上是否存在点N,使△OBN 与△OAB 相似?若存在,求出N 点的坐标;若不存在,说明理由.45.解方程:.《方程》参考答案与试题解析一、选择题1.若关于x 的一元二次方程kx2﹣2x﹣1=0 有两个不相等的实数根,则k 的取值范围是()A.k>﹣1 B.k>﹣1 且k≠0 C.k<1D.k<1 且k≠0【考点】根的判别式;一元二次方程的定义.【分析】根据根的判别式及一元二次方程的定义得出关于k 的不等式组,求出k 的取值范围即可.【解答】解:∵关于x 的一元二次方程kx2﹣2x﹣1=0 有两个不相等的实数根,∴,即,解得k>﹣1 且k≠0.故选B.【点评】本题考查的是根的判别式,熟知一元二次方程的根与判别式的关系是解答此题的关键.2.已知x=﹣1 是一元二次方程x2+mx﹣5=0 的一个解,则方程的另一个解是()A.1 B.﹣5 C.5 D.﹣4【考点】根与系数的关系;一元二次方程的解.【专题】计算题.【分析】由于该方程的一次项系数是未知数,所以求方程的另一解可以根据根与系数的关系进行计算.【解答】解:设方程的另一根为x1,由根据根与系数的关系可得:x1•(﹣1)=﹣5,∴x1=5;故本题选C.【点评】注意该方程的常数项为﹣5,而不是5;代入公式时一定要注意常数项的正负.3.小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子”.小刚却说:“只要把你的给我,我就有10 颗”,如果设小刚的弹珠数为x 颗,小龙的弹珠数为y 颗,则列出的方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【专题】应用题.【分析】此题中的等量关系有:①把小刚的珠子的一半给小龙,小龙就有10 颗珠子;②把小龙的给小刚,小刚就有10 颗.【解答】解:根据把小刚的珠子的一半给小龙,小龙就有10 颗珠子,可表示为y+ =10,化简得2y+x=20;根据把小龙的给小刚,小刚就有10 颗.可表示为x+ =10,化简得3x+y=30.列方程组为.故选:A.【点评】此题要能够首先根据题意中的等量关系直接表示出方程,再结合答案中的系数都是整数,运用等式的性质进行整理化简.5.已知A.﹣1 B.1 是二元一次方程组C.2 D.3的解,则a﹣b 的值为()【考点】二元一次方程的解.【专题】计算题.【分析】根据二元一次方程组的解的定义,将代入原方程组,分别求得a、b 的值,然后再来求a﹣b 的值.【解答】解:∵已知是二元一次方程组的解,∴由①+②,得a=2,由①﹣②,得b=3,∴a﹣b=﹣1;故选:A.【点评】此题考查了二元一次方程组的解法.二元一次方程组的解法有两种:代入法和加减法,不管哪种方法,目的都是“消元”.6.一元二次方程5x2﹣2x=0 的解是()A.x1=0,x2=B.x1=0,x2=C.x1=0,x2=D.x1=0,x2=【考点】解一元二次方程﹣因式分解法.【专题】计算题.【分析】本题可对方程提取公因式x,得到两个相乘的单项式,因为方程的值为0,所以两个相乘的式子至少有一个为0,由此可解出此题.【解答】解:5x2﹣2x=x(5x﹣2)=0,∴方程的解为x1=0,x2= .故选A.【点评】本题考查一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.7.一元一次方程的解是()A.B.x=﹣1 C.x=1 D.x=﹣2【考点】解一元一次方程.【专题】计算题.【分析】方程中含有分母,可以根据等式性质,方程两边同乘各分母的最小公倍数,就可以去掉原方程的分母.【解答】解:去分母得:6x﹣3(x﹣1)=12﹣2(x+2),去括号得:6x﹣3x+3=12﹣2x﹣4,移项得:6x﹣3x+2x=12﹣4﹣3,合并得:5x=5,系数化为1 得:x=1.故选C.【点评】本题考查了一元一次方程的解法.解一元一次方程的一般步骤是:去分母;去括号;移项;合并;系数化为1.注意,去分母时,要用最小公倍数乘方程两边的每一项,不要漏乘不含分母的项.的值是()8.已知a,b 是关于x 的一元二次方程x2+nx﹣1=0 的两实数根,则式子A.n2+2B.﹣n2+2 C.n2﹣2 D.﹣n2﹣2【考点】根与系数的关系.【专题】压轴题.【分析】欲求的值,先把此代数式变形为两根之积或两根之和的形式,然后利用一元二次方程根与系数的关系代入数值计算即可.【解答】解:由题意知,a+b=﹣n,ab=﹣1,∴== =﹣n2﹣2.故选D.【点评】将根与系数的关系与代数式变形相结合是一种经常使用的解题方法.9.已知方程|x|=2,那么方程的解是()A.x=2 B.x=﹣2 C.x1=2,x2=﹣2 D.x=4【考点】含绝对值符号的一元一次方程.【专题】计算题.【分析】绝对值方程要转化为整式方程,因为|x|=±x,所以得方程x=±2,解即可.【解答】解:因为|x|=±x,所以方程|x|=2 化为整式方程为:x=2 和﹣x=2,解得x1=2,x2=﹣2,故选C.【点评】考查绝对值方程的解法,绝对值方程要转化为整式方程来求解.要注意|x|=±x,所以方程有两个解.10.设α,β是方程x2+9x+1=0 的两根,则(α2+2009α+1)(β2+2009β+1)的值是()A.0 B.1 C.2000 D.4 000 000【考点】根与系数的关系;一元二次方程的解.【专题】压轴题.【分析】欲求(α2+2009α+1)(β2+2009β+1)的值,先把此代数式变形为两根之积或两根之和的形式(α2+2009α+1)(β2+2009β+1)=(α2+9α+1+2000α)(β2+9β+1+2000β),再利用根与系数的关系代入数值计算即可.【解答】解:∵α,β 是方程x2+9x+1=0 的两个实数根,∴α+β=﹣9,α•β=1.(α2+2009α+1)(β2+2009β+1)=(α2+9α+1+2000α)(β2+9β+1+2000β)又∵α,β 是方程x2+9x+1=0 的两个实数根,∴α2+9α+1=0,β2+9β+1=0.∴(α2+9α+1+2000α)(β2+9β+1+2000β)=2000α•2000β=2000×2000αβ,而α•β=1,∴(α2+9α+1+2000α)(β2+9β+1+2000β)=4 000 000.故选D.【点评】将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.11.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.B.C.D.【考点】一次函数与二元一次方程(组).【专题】数形结合.【分析】由于函数图象交点坐标为两函数解析式组成的方程组的解.因此本题应先用待定系数法求出两条直线的解析式,联立两个函数解析式所组成的方程组即为所求的方程组.【解答】解:根据给出的图象上的点的坐标,(0,﹣1)、(1,1)、(0,2);分别求出图中两条直线的解析式为y=2x﹣1,y=﹣x+2,因此所解的二元一次方程组是.故选:D.【点评】方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.12.阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=﹣,x1•x2= .根据该材料填空:已知x1,x2是方程x2+6x+3=0的两实数根,则+ 的值为()A.4 B.6 C.8 D.10【考点】根与系数的关系.【专题】压轴题;阅读型.【分析】根据一元二次方程的根与系数的关系得到,两根之和与两根之积,把代数式变形成与两根之和和两根之积有关的式子,代入两根之和与两根之积,求得代数式的值.【解答】解:∵x1,x2是方程x2+6x+3=0 的两实数根,∴x1+x2=﹣=﹣6,x1•x2= =3,则+ = = = =10.故本题选D.【点评】本题考查了一元二次方程根与系数的关系.解此类题目要会将代数式变形为两根之积或两根之和的形式,代入数值计算即可.一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=﹣,x1•x2= .13.右边给出的是2004 年3 月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能是()A.69 B.54 C.27 D.40【考点】一元一次方程的应用.【专题】图表型.【分析】一竖列上相邻的三个数的关系是:上面的数总是比下面的数小7.可设中间的数是x,则上面的数是x﹣7,下面的数是x+7.则这三个数的和是3x,因而这三个数的和一定是3 的倍数.【解答】解:设中间的数是x,则上面的数是x﹣7,下面的数是x+7.则这三个数的和是(x﹣7)+x+(x+7)=3x,因而这三个数的和一定是 3 的倍数.则,这三个数的和不可能是40.故选D.【点评】本题解决的关键是观察图形找出数之间的关系,从而找到三个数的和的特点.14.方程(x﹣1)(x+2)=2(x+2)的根是()A.1,﹣2 B.3,﹣2 C.0,﹣2 D.1【考点】解一元二次方程﹣因式分解法.【专题】计算题.【分析】因为方程两边都有x+2,所以运用分解因式法求解即可.【解答】解:原方程变形为:(x﹣1)(x+2)﹣2(x+2)=0,∴(x+2)(x﹣3)=0,∴x1=3,x2=﹣2.故选B.【点评】方程整理后,容易分解因式的,用分解因式法求解一元二次方程简单.15.方程x2﹣2x=0 的解是()A.x=2 B.x=0 C.x1=0,x2=﹣2 D.x1=0,x2=2【考点】解一元二次方程﹣因式分解法.【分析】方程右边为0,左边分解因式即可.【解答】解:原方程化为x(x﹣2)=0,x1=0,x2=2;故选D.【点评】本题考查了解一元二次方程的方法,当把方程通过移项把等式的右边化为0 后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0 的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.当化简后不能用分解因式的方法即可考虑求根公式法,此法适用于任何一元二次方程.16.服装店同时销售两种商品,销售价都是100 元,结果一种赔了20%,另一种赚了20%,那么在这次销售中,该服装店()A.总体上是赚了B.总体上是赔了C.总体上不赔不赚D.没法判断是赚了还是赔了【考点】一元一次方程的应用.【专题】销售问题.【分析】由已知可分别列一元一次方程求出盈利和亏本商品的成本价,然后计算出赚或亏多少.盈利20%就是相当于成本价的1+20%,亏本20%就是相当于成本价的1﹣20%,由此可列方程求解.【解答】解:设盈利商品的成本价为x 元,亏本的成本价为y 元,根据题意得:(1+20%)x=100,(1﹣20%)y=100,解得:x≈83,y=125,100﹣83+(100﹣125)=﹣8,所以赔8 元.故选:B.【点评】此题考查的知识点一元一次方程的应用﹣销售问题,解题的关键是先由已知列一元一次方程求出两种商品的成本价.17.解分式方程,可知方程()A.解为x=2 B.解为x=4C.解为x=3D.无解【考点】解分式方程.【专题】计算题.【分析】本题考查分式方程的解法.,可变形为,可确定公分母为(x﹣2).【解答】解:原方程可变形为,两边都乘以(x﹣2),得(1﹣x)+2(x﹣2)=﹣1.解之得x=2.代入最简公分母x﹣2=0,因此原分式方程无解.故选D.【点评】本题考查分式方程的解法,此题两个分母互为相反数,因此去分母化为整式方程时要注意符号变化.同时要注意去分母时会出现增根,要检验的环节,否则容易出错.二、填空题18.方程:(2x﹣1)2﹣25=0 的解为 3 或﹣2 .【考点】解一元二次方程﹣直接开平方法.【专题】计算题.【分析】把原式变形为(x+a)2=b 的形式,用直接开平方法求出2x﹣1,然后进一步求x.【解答】解:∵(2x﹣1)2﹣25=0,∴(2x﹣1)2=25,∴2x﹣1=±5,∴x1=3,x2=﹣2.【点评】法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.19.定义新运算“*”,规则:a*b=,如1*2=2,* .若x2+x﹣1=0 的两根为x1,x2,则x1*x2= .【考点】根与系数的关系.【专题】压轴题;新定义.【分析】根据公式法求得一元二次方程的两个根,然后根据新运算规则计算x1*x2的值则可.,x 2= 或 x 1= * = . 【解答】解:在 x 2+x ﹣1=0 中,a=1,b=1,c=﹣1,∴b 2﹣4ac=5>0,所以x 1= ,x 2= . ∴x 1*x 2=【点评】本题考查了运用公式法解一元二次方程,注意定义运算规则里的两种情况.20.方程 x 3﹣x=0 的解为 0,1,﹣1 .【考点】解一元二次方程﹣因式分解法.【分析】首先对方程的左边进行因式分解,然后再解方程即可求出解.【解答】解:∵x 3﹣x=0∴x (x +1)(x ﹣1)=0∴x=0,x +1=0,x ﹣1=0,∴x 1=0,x 2=1,x 3=﹣1,∴x 1=0,x 2=1,x 3=﹣1 都为原方程得解.故答案为:0,﹣1,1.【点评】本题主要考查用因式分法解一元二次方程,关键在于对方程的左边进行正确的 因式分解.21.方程 x 2﹣2x ﹣3=0 的解是 x 1=3,x 2=﹣1 .【考点】解一元二次方程﹣因式分解法.【分析】先方程左边因式分解,然后根据“两式相乘值为 0,这两式中至少有一式值为 0.” 进行求解.【解答】解:方程 x 2﹣2x ﹣3=0 左边因式分解,得m < 且 m ≠0 (x ﹣3)(x +1)=0解得 x 1=3,x 2=﹣1.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法, 配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.22. 设 a 和 β 是方程 x 2﹣4x ﹣5=0 的二根,则 α+β 的值为 4 .【考点】根与系数的关系.【专题】压轴题.【分析】由题意 a 和 β 是方程 x 2﹣4x ﹣5=0 的二根,根据方程根与系数的关系可以求解.【解答】解:∵a 和 β 是方程 x 2﹣4x ﹣5=0 的二根,∴α+β=4.【点评】此题是一道典型的考查方程根与系数关系的题,比较简单.23. 已知关于 x 的一元二次方程 m 2x 2+(2m ﹣1)x +1=0 有两个不相等的实数根,则 m 的取值范围是 .【考点】根的判别式.【分析】根据一元二次方程的根的判别式,建立关于 m 的不等式,求出 m 的取值范围.【解答】解:∵a=m ,b=2m ﹣1,c=1,方程有两个不相等的实数根,∴△=b 2﹣4ac=(2m ﹣1)2﹣4m 2=1﹣4m >0,∴m < .又∵二次项系数不为 0,∴m ≠0即 m < 且 m ≠0.【点评】总结:(1)一元二次方程根的情况与判别式△的关系:①△>0⇔方程有两个不相等的实数根;②△=0⇔方程有两个相等的实数根;③△<0⇔方程没有实数根.(2)一元二次方程的二次项系数不为0.24.方程2x2﹣x﹣5m=0 有一个根为0,则它的另一个根是,m= 0 .【考点】一元二次方程的解;根与系数的关系.【专题】方程思想.【分析】把一个根0 代入方程可以求出m 的值,再根据根与系数的关系,由两根之和求出另一个根.【解答】解:把x=0 代入方程有:﹣5m=0∴m=0.设另一个根是x1,则:x1+0=∴x1=故答案分别是:,0.【点评】本题考查的是一元二次方程的解,把已知根代入方程,可以求出字母系数的值,根据根与系数的关系可以求出方程的另一个根.25.若2x﹣3 与﹣互为倒数,则x= 0 .【考点】解一元一次方程;倒数.【专题】计算题.【分析】根据互为倒数的两数之积为 1 可得出方程,解出即可.【解答】解:﹣的倒数是﹣3,∵2x﹣3 与﹣互为倒数,∴2x﹣3=3,解得:x=0.故填0.【点评】本题的关键在于根据题意列出方程,属于比较简单的题目.±26. 若 a 是方程 x 2﹣x +5=0 的一个根,则代数式 a 2﹣a 的值是 ﹣5 .【考点】一元二次方程的解.【专题】整体思想.【分析】把 a 代入方程 x 2﹣x +5=0,得 a 的代数式的值,从而求得代数式 a 2﹣a 的值.【解答】解:把 x=a 代入方程 x 2﹣x +5=0,得a 2﹣a +5=0,∴a 2﹣a=﹣5.【点评】此题主要考查了方程解的定义和整体思想的运用.27. 方程 x 2+2x +k=0 有两个不相等的实数根,则 k 的取值范围是 k <1 .【考点】根的判别式.【分析】一元二次方程 x 2+2x +k=0 有实数根,则△=b 2﹣4ac >0,建立关于 k 的不等式,求得 k 的取值范围.【解答】解:∵a=1,b=2,c=k∴△=b 2﹣4ac=22﹣4×1×k=4﹣4k >0,∴k <1.【点评】总结:一元二次方程根的情况与判别式△的关系:(1) △>0⇔方程有两个不相等的实数根;(2) △=0⇔方程有两个相等的实数根;(3) △<0⇔方程没有实数根.28. 若关于 x 的分式方程 有增根,则 m 的值为 .【考点】分式方程的增根.【专题】计算题.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为 0 的根.有增根,最简公分母x﹣3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出m 的值.【解答】解:方程两边都乘x﹣3,得x﹣2(x﹣3)=m2,∵原方程增根为x=3,∴把x=3 代入整式方程,得m=±.【点评】解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.29.一元二次方程2x2=x 的解是x1=0,.【考点】解一元二次方程﹣因式分解法.【分析】由于方程左右两边都含有因式x,所以看把右边的项移到左边后,利用因式分解法解方程.【解答】解:2x2=x,2x2﹣x=0,x(2x﹣1)=0,x1=0,x2= .【点评】本题考查了解一元二次方程的方法,当把方程通过移项把等式的右边化为0 后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0 的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.当化简后不能用分解因式的方法即可考虑求根公式法,此法适用于任何一元二次方程.30.某列从永川到重庆的火车,包括起始和终点在内共有5 个停靠站,小王乘坐这趟列车从永川到重庆,一路上小王在他乘坐的车厢内观测到下列情况:①在起始站(第一站)以后每一站都有车厢内人数(包括小王)的一半人下车;②又有下车人数的一半人上这节车厢;③到第五站(终点站)包括小王在内还有27 人.那么起始站上车的人数是64 .【考点】一元一次方程的应用.【专题】应用题;压轴题.【分析】设起始站上车的人数是x 人.根据题意,知第二站后车内人数是x﹣x+ x= x;第三站后车内人数是x﹣x+ x= x=()2x,依此类推,第四站剩下()3x 人,根据第四站(终点站)包括小王在内还有27 人列方程求解.【解答】解:设起始站上车的人数是x 人.根据题意得:()3x=27,解得:x=64.则起始站上车的人数是64 人.【点评】此题能够正确理解题意,根据题意找到规律是解决问题的关键.31.家家乐奥运福娃专卖店今年3 月份售出福娃3600 个,5 月份售出4900 个,设每月平均增长率为x,根据题意,列出关于x 的方程为3600(1+x)2=4900 .【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】本题应先用x 表示出4 月份售出的个数,再表示出5 月份售出的福娃个数,令其等于4900 即可列出方程.【解答】解:4 月份售出的福娃个数为:3600(1+x),则 5 月份售出的福娃个数为:3600(1+x)2=4900.故填空答案为3600(1+x)2=4900.【点评】本题考查了一元二次方程的运用,解此类题目时常常要先解出前一个月份的个数,再列出所求月份的个数的方程,令其等于已知的条件即可.32.方程x2﹣3x=0 的解是 x1=0,x2=3 .【考点】解一元二次方程﹣因式分解法.【专题】计算题.【分析】x2﹣3x 有公因式x 可以提取,故用因式分解法解较简便.【解答】解:原式为x2﹣3x=0,x(x﹣3)=0,x=0 或x﹣3=0,x1=0,x2=3.∴方程x2﹣3x=0 的解是x1=0,x2=3.【点评】本题考查简单的一元二次方程的解法,在解一元二次方程时应当注意要根据实际情况选择最合适快捷的解法.33.某药品经过两次降价,每瓶零售价由100 元降为81 元.已知两次降价的百分率相同,则这个百分率为10% .【考点】一元二次方程的应用.【专题】增长率问题.【分析】此题可设降价的百分率为x,则第一次降价后的单价是原来的(1﹣x),第二次降价后的单价是原来的(1﹣x)2,根据题意列方程解答即可.【解答】解:降价的百分率为x,根据题意列方程得100×(1﹣x)2=81解得x1=0.1,x2=1.9(不符合题意,舍去).所以降价的百分率为0.1,即10%.故答案为:10%.【点评】找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.判断所求的解是否符合题意,舍去不合题意的解.34.计算2x2•(﹣3x3)的结果是﹣6x5 .【考点】同底数幂的乘法.【专题】计算题.【分析】先把常数相乘,再根据同底数幂的乘法性质:底数不变指数相加,进行计算即可.【解答】解:2x2•(﹣3x3)=﹣6x5.故答案填:﹣6x5.【点评】本题考查了同底数幂的乘法,牢记同底数幂的乘法,底数不变指数相加是解题的关键.35.已知实数a、b(a≠b)分别满足,,试求的值.【考点】根与系数的关系.【专题】压轴题.【分析】由题意实数a、b 分别满足,,可知a,b 是方程x2﹣3x+ =0 的两根,可得a+b=3,ab=,然后再代入求解.【解答】解:∵实数a、b 分别满足,,=0 的两根,∴a,b 是方程x2﹣3x+∴a+b=3,ab= ,∴= = = = ;故答案为.【点评】此题主要考查一元二次方程根与系数的关系,关键是要根据题意找到这个方程,此题是一道很好的题.三、解答题36.解方程:4x2﹣3x﹣1=0【考点】解一元二次方程﹣因式分解法.【分析】把方程4x2﹣3x﹣1=0 进行因式分解,可得(x﹣1)(4x+1)=0,即可解出.【解答】解:4x2﹣3x﹣1=0,(x﹣1)(4x+1)=0,x1=1,x2=﹣.【点评】运用二次三项式的因式分解法进行因式分解,可提高解题效率.37.解方程:x2﹣3x﹣1=0.【考点】解一元二次方程﹣公式法.【专题】计算题.【分析】此题比较简单,采用公式法即可求得,首先确定a,b,c 的值,然后检验方程是否有解,若有解代入公式即可求解.【解答】解:∵a=1,b=﹣3,c=﹣1,∴b2﹣4ac=(﹣3)2﹣4×1×(﹣1)=13,∴x1= ,x2= .【点评】此题考查了学生的计算能力,解题的关键是准确应用公式.38.已知x1,x2是方程x2﹣2x+a=0 的两个实数根,且,求x1,x2及a 的值.【考点】根与系数的关系.【分析】首先根据一元二次方程根与系数的关系得到x1+x2=2,x1x2=a,而x1+2x2=3﹣,根据前面的等式可以分别求出x2、x1及a 的值.【解答】解:∵x1,x2是方程x2﹣2x+a=0 的两个实数根,∴x1+x2=2 ①x1x2=a ②而x1+2x2=3﹣③∴③﹣①得,代入①得,∴a=﹣1.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.通过利用根与系数的关系可以得到关于待定系数的方程解决问题.39.小亮家想利用房屋侧面的一面墙,再砌三面墙,围成一个矩形猪圈,如图所示,现在已备足可以砌12 米长的墙的材料.(1)如果小亮家想围成面积为16m2的矩形猪圈,你能够教他们怎么围吗?(2)如果小亮家想围成面积为20m2的矩形猪圈,你认为可能吗?说明理由.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】(1)根据长方形的面积公式列方程求解即可;(2)同(1)一样列方程,看方程是否有解即可.【解答】解:(1)设垂直于墙的边长为xm,则x(12﹣2x)=16,解得x1=2,x2=4,当x=2 时,12﹣2x=8,当x=4 时,12﹣2x=4,所以垂直于墙的边长为 2 米或 4 米;(2)设垂直于墙的边长为ym,则y(12﹣2y)=20,整理得,﹣2y2+12y﹣20=0,△=144﹣4×(﹣2)×(﹣20)=﹣16<0,∴此方程无解,所以不能够围成.(本题也可以用二次函数说明,面积的最大值为18)(7 分)【点评】本题考查了一元二次方程的应用,对于面积问题应熟记各种图形的面积公式.注意根据根的判别式来判断方程是否有解.40.宏远商贸公司有A、B 两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:。