测定蛋白质相对分子质量
- 格式:pptx
- 大小:471.75 KB
- 文档页数:18
测定蛋白质相对分子质量的方法
蛋白质相对分子质量可用以下几种常见的实验测定:
1.同位素掺入法:能准确测定蛋白质相对分子质量的一种方法,它的原理是利用质谱方法,将蛋白质样品中的氢原子替换成同位素氢,如²H 或³⁷Cl,用质谱分析同位素掺入后的蛋白质的改变,从而推算出蛋白质的相对分子质量。
2.SDS-PAGE:蛋白质在SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)中移动的速度与分子质量有关,可用此方法推算蛋白质的相对分子质量:根据蛋白质在凝胶上移动的时间确定其相对分子质量。
3. 光波谱法:可以通过紫外拉曼光谱(UV-Raman)或者红外谱(IR),计算结合能从而计算蛋白质分子的相对分子质量。
4.质谱分析法:利用质谱技术直接测定蛋白质的大小,包括电喷雾质谱(ESI-MS)、离子化质谱(FAIMS)和质谱分析(MS)等技术。
利用质谱技术,可以测定蛋白质的相对分子质量,从而帮助我们研究蛋白质的特性和作用。
SDS-PAGE测定蛋白质相对分子质量一、前言聚丙烯酰胺凝胶电泳聚丙烯酰胺凝胶电泳,简称PAGE,是以聚丙烯酰胺凝胶作为支持介质的一种经常使用电泳技术。
聚丙烯酰胺凝胶由单体丙烯酰胺和甲叉双丙烯酰胺聚合而成,聚合进程由自由基催化完成。
的经常使用方式有两种:化学聚合法和光聚合法。
化学聚合以过硫酸铵(APS)为催化剂,以(TEMED)为加速剂。
在聚合进程中,TEMED催化过硫酸铵产生自由基,后者引发单体聚合,同时甲叉双丙烯酰胺与丙烯酰胺链间产生甲叉键交联,从而形成三维。
PAGE依照其有无浓缩效应,分为持续系统和不持续系统两大类,持续系统电泳体系中缓冲液pH值及凝胶浓度相同,带电颗粒在电场作用下,要紧靠电荷和。
不持续系统中由于离子成份,pH,凝胶浓度及电位梯度的不持续性,带电颗粒在电场中泳动不仅有电荷效应,分子筛效应,还具有浓缩效应,因此其分离条带清楚度及分辨率均较前者佳。
不持续体系由电极缓冲液、浓缩胶及所组成。
浓缩胶是由AP 而成的大孔胶,凝胶缓冲液为的Tris-HCl。
分离胶是由AP催化聚合而成的小孔胶,凝胶缓冲液为Tris-HCl。
电极缓冲液是Tris-甘氨酸缓冲液。
2种孔径的凝胶、2种缓冲体系、3种pH 值使不持续体系形成了凝胶孔径、pH值、缓冲液离子成份的不持续性,这是样品浓缩的要紧因素。
SDS是阴离子去污剂,作为变性剂和助溶试剂,它能断裂分子内和分子间的氢键,使分子去折叠,破坏蛋白分子的二、三级结构。
而强如巯基乙醇,二硫苏糖醇能使半胱氨酸残基间的断裂。
在和凝胶中加入还原剂和SDS后,分子被成多肽链,解聚后的氨基酸侧链和SDS结合成蛋白- SDS,所带的负电荷大大超过了蛋白原有的电荷量,如此就排除不同分子间的电荷不同和结构不同。
SDS-PAGE一样采纳的是不持续缓冲系统,与持续缓冲系统相较,能够有较高的分辨率。
浓缩胶的作用是有堆积作用,凝胶浓度较小,孔径较大,把较稀的样品加在浓缩胶上,通过大孔径凝胶的迁移作用而被浓缩至一个狭小的区带。
SD9 PAGE测定蛋白质相对分子质量一、前言聚丙烯酰胺凝胶电泳聚丙烯酰胺凝胶电泳,简称 PAGE是以聚丙烯酰胺凝胶作为支持介质的一种常用电泳技术。
聚丙烯酰胺凝胶由单体丙烯酰胺和甲叉双丙烯酰胺聚合而成,聚合过程由自由基催化完成。
催化聚合的常用方法有两种:化学聚合法和光聚合法。
化学聚合以过硫酸铵(APS)为催化剂,以四甲基乙二胺(TEMED 为加速剂。
在聚合过程中,TEMED催化过硫酸铵产生自由基,后者引发丙烯酰胺单体聚合,同时甲叉双丙烯酰胺与丙烯酰胺链间产生甲叉键交联,从而形成三维网状结构。
PAGE根据其有无浓缩效应,分为连续系统和不连续系统两大类,连续系统电泳体系中缓冲液 pH值及凝胶浓度相同,带电颗粒在电场作用下,主要靠电荷和分子筛效应。
不连续系统中由于缓冲液离子成分,pH,凝胶浓度及电位梯度的不连续性,带电颗粒在电场中泳动不仅有电荷效应,分子筛效应,还具有浓缩效应,因而其分离条带清晰度及分辨率均较前者佳。
不连续体系由电极缓冲液、浓缩胶及分离胶所组成。
浓缩胶是由 AP 催化聚合而成的大孔胶,凝胶缓冲液为的 Tris-HCl 。
分离胶是由 AP 催化聚合而成的小孔胶,凝胶缓冲液为 Tris-HCl 。
电极缓冲液是 Tris- 甘氨酸缓冲液。
2 种孔径的凝胶、 2 种缓冲体系、3种pH值使不连续体系形成了凝胶孔径、pH值、缓冲液离子成分的不连续性,这是样品浓缩的主要因素。
SDS是阴离子去污剂,作为变性剂和助溶试剂,它能断裂分子内和分子间的氢键,使分子去折叠,破坏蛋白分子的二、三级结构。
而强还原剂如巯基乙醇,二硫苏糖醇能使半胱氨酸残基间的二硫键断裂。
在样品和凝胶中加入还原剂和 SDS后,分子被解聚成多肽链,解聚后的氨基酸侧链和SDS结合成蛋白-SDS胶束,所带的负电荷大大超过了蛋白原有的电荷量,这样就消除了不同分子间的电荷差异和结构差异。
SDS-PAG一般采用的是不连续缓冲系统,与连续缓冲系统相比,能够有较高的分辨率。
SDS-PAGE测定蛋白质相对分子质量一、前言聚丙烯酰胺凝胶电泳聚丙烯酰胺凝胶电泳,简称PAGE,是以聚丙烯酰胺凝胶作为支持介质的一种常用电泳技术。
聚丙烯酰胺凝胶由单体丙烯酰胺和甲叉双丙烯酰胺聚合而成,聚合过程由自由基催化完成。
催化聚合的常用方法有两种:化学聚合法和光聚合法。
化学聚合以过硫酸铵(APS)为催化剂,以四甲基乙二胺(TEMED)为加速剂。
在聚合过程中,TEMED 催化过硫酸铵产生自由基,后者引发丙烯酰胺单体聚合,同时甲叉双丙烯酰胺与丙烯酰胺链间产生甲叉键交联,从而形成三维网状结构。
PAGE根据其有无浓缩效应,分为连续系统和不连续系统两大类,连续系统电泳体系中缓冲液pH值及凝胶浓度相同,带电颗粒在电场作用下,主要靠电荷和分子筛效应。
不连续系统中由于缓冲液离子成分,pH,凝胶浓度及电位梯度的不连续性,带电颗粒在电场中泳动不仅有电荷效应,分子筛效应,还具有浓缩效应,因而其分离条带清晰度及分辨率均较前者佳。
不连续体系由电极缓冲液、浓缩胶及分离胶所组成。
浓缩胶是由AP催化聚合而成的大孔胶,凝胶缓冲液为pH6.7的Tris-HCl。
分离胶是由AP催化聚合而成的小孔胶,凝胶缓冲液为pH8.9 Tris-HCl。
电极缓冲液是pH8.3 Tris-甘氨酸缓冲液。
2种孔径的凝胶、2种缓冲体系、3种pH值使不连续体系形成了凝胶孔径、pH值、缓冲液离子成分的不连续性,这是样品浓缩的主要因素。
SDS是阴离子去污剂,作为变性剂和助溶试剂,它能断裂分子内和分子间的氢键,使分子去折叠,破坏蛋白分子的二、三级结构。
而强还原剂如巯基乙醇,二硫苏糖醇能使半胱氨酸残基间的二硫键断裂。
在样品和凝胶中加入还原剂和SDS后,分子被解聚成多肽链,解聚后的氨基酸侧链和SDS结合成蛋白- SDS胶束,所带的负电荷大大超过了蛋白原有的电荷量,这样就消除了不同分子间的电荷差异和结构差异。
SDS-PAGE一般采用的是不连续缓冲系统,与连续缓冲系统相比,能够有较高的分辨率。
SDS-PAGE测定蛋白质相对分子质量一、前言聚丙烯酰胺凝胶电泳聚丙烯酰胺凝胶电泳,简称PAGE,是以聚丙烯酰胺凝胶作为支持介质的一种常用电泳技术。
聚丙烯酰胺凝胶由单体丙烯酰胺和甲叉双丙烯酰胺聚合而成,聚合过程由自由基催化完成。
催化聚合的常用方法有两种:化学聚合法和光聚合法。
化学聚合以过硫酸铵(APS)为催化剂,以四甲基乙二胺(TEMED)为加速剂。
在聚合过程中,TEMED催化过硫酸铵产生自由基,后者引发丙烯酰胺单体聚合,同时甲叉双丙烯酰胺与丙烯酰胺链间产生甲叉键交联,从而形成三维网状结构。
PAGE根据其有无浓缩效应,分为连续系统和不连续系统两大类,连续系统电泳体系中缓冲液pH值及凝胶浓度相同,带电颗粒在电场作用下,主要靠电荷和分子筛效应。
不连续系统中由于缓冲液离子成分,pH,凝胶浓度及电位梯度的不连续性,带电颗粒在电场中泳动不仅有电荷效应,分子筛效应,还具有浓缩效应,因而其分离条带清晰度及分辨率均较前者佳。
不连续体系由电极缓冲液、浓缩胶及分离胶所组成。
浓缩胶是由AP催化聚合而成的大孔胶,凝胶缓冲液为pH6.7的Tris-HCl。
分离胶是由AP催化聚合而成的小孔胶,凝胶缓冲液为pH8.9 Tris-HCl。
电极缓冲液是pH8.3 Tris-甘氨酸缓冲液。
2种孔径的凝胶、2种缓冲体系、3种pH值使不连续体系形成了凝胶孔径、pH值、缓冲液离子成分的不连续性,这是样品浓缩的主要因素。
SDS是阴离子去污剂,作为变性剂和助溶试剂,它能断裂分子内和分子间的氢键,使分子去折叠,破坏蛋白分子的二、三级结构。
而强还原剂如巯基乙醇,二硫苏糖醇能使半胱氨酸残基间的二硫键断裂。
在样品和凝胶中加入还原剂和SDS后,分子被解聚成多肽链,解聚后的氨基酸侧链和SDS结合成蛋白- SDS胶束,所带的负电荷大大超过了蛋白原有的电荷量,这样就消除了不同分子间的电荷差异和结构差异。
SDS-PAGE一般采用的是不连续缓冲系统,与连续缓冲系统相比,能够有较高的分辨率。