测定蛋白质相对分子质量
- 格式:pptx
- 大小:471.75 KB
- 文档页数:18
测定蛋白质相对分子质量的方法
蛋白质相对分子质量可用以下几种常见的实验测定:
1.同位素掺入法:能准确测定蛋白质相对分子质量的一种方法,它的原理是利用质谱方法,将蛋白质样品中的氢原子替换成同位素氢,如²H 或³⁷Cl,用质谱分析同位素掺入后的蛋白质的改变,从而推算出蛋白质的相对分子质量。
2.SDS-PAGE:蛋白质在SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)中移动的速度与分子质量有关,可用此方法推算蛋白质的相对分子质量:根据蛋白质在凝胶上移动的时间确定其相对分子质量。
3. 光波谱法:可以通过紫外拉曼光谱(UV-Raman)或者红外谱(IR),计算结合能从而计算蛋白质分子的相对分子质量。
4.质谱分析法:利用质谱技术直接测定蛋白质的大小,包括电喷雾质谱(ESI-MS)、离子化质谱(FAIMS)和质谱分析(MS)等技术。
利用质谱技术,可以测定蛋白质的相对分子质量,从而帮助我们研究蛋白质的特性和作用。
SDS-PAGE测定蛋白质相对分子质量一、前言聚丙烯酰胺凝胶电泳聚丙烯酰胺凝胶电泳,简称PAGE,是以聚丙烯酰胺凝胶作为支持介质的一种经常使用电泳技术。
聚丙烯酰胺凝胶由单体丙烯酰胺和甲叉双丙烯酰胺聚合而成,聚合进程由自由基催化完成。
的经常使用方式有两种:化学聚合法和光聚合法。
化学聚合以过硫酸铵(APS)为催化剂,以(TEMED)为加速剂。
在聚合进程中,TEMED催化过硫酸铵产生自由基,后者引发单体聚合,同时甲叉双丙烯酰胺与丙烯酰胺链间产生甲叉键交联,从而形成三维。
PAGE依照其有无浓缩效应,分为持续系统和不持续系统两大类,持续系统电泳体系中缓冲液pH值及凝胶浓度相同,带电颗粒在电场作用下,要紧靠电荷和。
不持续系统中由于离子成份,pH,凝胶浓度及电位梯度的不持续性,带电颗粒在电场中泳动不仅有电荷效应,分子筛效应,还具有浓缩效应,因此其分离条带清楚度及分辨率均较前者佳。
不持续体系由电极缓冲液、浓缩胶及所组成。
浓缩胶是由AP 而成的大孔胶,凝胶缓冲液为的Tris-HCl。
分离胶是由AP催化聚合而成的小孔胶,凝胶缓冲液为Tris-HCl。
电极缓冲液是Tris-甘氨酸缓冲液。
2种孔径的凝胶、2种缓冲体系、3种pH 值使不持续体系形成了凝胶孔径、pH值、缓冲液离子成份的不持续性,这是样品浓缩的要紧因素。
SDS是阴离子去污剂,作为变性剂和助溶试剂,它能断裂分子内和分子间的氢键,使分子去折叠,破坏蛋白分子的二、三级结构。
而强如巯基乙醇,二硫苏糖醇能使半胱氨酸残基间的断裂。
在和凝胶中加入还原剂和SDS后,分子被成多肽链,解聚后的氨基酸侧链和SDS结合成蛋白- SDS,所带的负电荷大大超过了蛋白原有的电荷量,如此就排除不同分子间的电荷不同和结构不同。
SDS-PAGE一样采纳的是不持续缓冲系统,与持续缓冲系统相较,能够有较高的分辨率。
浓缩胶的作用是有堆积作用,凝胶浓度较小,孔径较大,把较稀的样品加在浓缩胶上,通过大孔径凝胶的迁移作用而被浓缩至一个狭小的区带。
SD9 PAGE测定蛋白质相对分子质量一、前言聚丙烯酰胺凝胶电泳聚丙烯酰胺凝胶电泳,简称 PAGE是以聚丙烯酰胺凝胶作为支持介质的一种常用电泳技术。
聚丙烯酰胺凝胶由单体丙烯酰胺和甲叉双丙烯酰胺聚合而成,聚合过程由自由基催化完成。
催化聚合的常用方法有两种:化学聚合法和光聚合法。
化学聚合以过硫酸铵(APS)为催化剂,以四甲基乙二胺(TEMED 为加速剂。
在聚合过程中,TEMED催化过硫酸铵产生自由基,后者引发丙烯酰胺单体聚合,同时甲叉双丙烯酰胺与丙烯酰胺链间产生甲叉键交联,从而形成三维网状结构。
PAGE根据其有无浓缩效应,分为连续系统和不连续系统两大类,连续系统电泳体系中缓冲液 pH值及凝胶浓度相同,带电颗粒在电场作用下,主要靠电荷和分子筛效应。
不连续系统中由于缓冲液离子成分,pH,凝胶浓度及电位梯度的不连续性,带电颗粒在电场中泳动不仅有电荷效应,分子筛效应,还具有浓缩效应,因而其分离条带清晰度及分辨率均较前者佳。
不连续体系由电极缓冲液、浓缩胶及分离胶所组成。
浓缩胶是由 AP 催化聚合而成的大孔胶,凝胶缓冲液为的 Tris-HCl 。
分离胶是由 AP 催化聚合而成的小孔胶,凝胶缓冲液为 Tris-HCl 。
电极缓冲液是 Tris- 甘氨酸缓冲液。
2 种孔径的凝胶、 2 种缓冲体系、3种pH值使不连续体系形成了凝胶孔径、pH值、缓冲液离子成分的不连续性,这是样品浓缩的主要因素。
SDS是阴离子去污剂,作为变性剂和助溶试剂,它能断裂分子内和分子间的氢键,使分子去折叠,破坏蛋白分子的二、三级结构。
而强还原剂如巯基乙醇,二硫苏糖醇能使半胱氨酸残基间的二硫键断裂。
在样品和凝胶中加入还原剂和 SDS后,分子被解聚成多肽链,解聚后的氨基酸侧链和SDS结合成蛋白-SDS胶束,所带的负电荷大大超过了蛋白原有的电荷量,这样就消除了不同分子间的电荷差异和结构差异。
SDS-PAG一般采用的是不连续缓冲系统,与连续缓冲系统相比,能够有较高的分辨率。
SDS-PAGE测定蛋白质相对分子质量一、前言聚丙烯酰胺凝胶电泳聚丙烯酰胺凝胶电泳,简称PAGE,是以聚丙烯酰胺凝胶作为支持介质的一种常用电泳技术。
聚丙烯酰胺凝胶由单体丙烯酰胺和甲叉双丙烯酰胺聚合而成,聚合过程由自由基催化完成。
催化聚合的常用方法有两种:化学聚合法和光聚合法。
化学聚合以过硫酸铵(APS)为催化剂,以四甲基乙二胺(TEMED)为加速剂。
在聚合过程中,TEMED 催化过硫酸铵产生自由基,后者引发丙烯酰胺单体聚合,同时甲叉双丙烯酰胺与丙烯酰胺链间产生甲叉键交联,从而形成三维网状结构。
PAGE根据其有无浓缩效应,分为连续系统和不连续系统两大类,连续系统电泳体系中缓冲液pH值及凝胶浓度相同,带电颗粒在电场作用下,主要靠电荷和分子筛效应。
不连续系统中由于缓冲液离子成分,pH,凝胶浓度及电位梯度的不连续性,带电颗粒在电场中泳动不仅有电荷效应,分子筛效应,还具有浓缩效应,因而其分离条带清晰度及分辨率均较前者佳。
不连续体系由电极缓冲液、浓缩胶及分离胶所组成。
浓缩胶是由AP催化聚合而成的大孔胶,凝胶缓冲液为pH6.7的Tris-HCl。
分离胶是由AP催化聚合而成的小孔胶,凝胶缓冲液为pH8.9 Tris-HCl。
电极缓冲液是pH8.3 Tris-甘氨酸缓冲液。
2种孔径的凝胶、2种缓冲体系、3种pH值使不连续体系形成了凝胶孔径、pH值、缓冲液离子成分的不连续性,这是样品浓缩的主要因素。
SDS是阴离子去污剂,作为变性剂和助溶试剂,它能断裂分子内和分子间的氢键,使分子去折叠,破坏蛋白分子的二、三级结构。
而强还原剂如巯基乙醇,二硫苏糖醇能使半胱氨酸残基间的二硫键断裂。
在样品和凝胶中加入还原剂和SDS后,分子被解聚成多肽链,解聚后的氨基酸侧链和SDS结合成蛋白- SDS胶束,所带的负电荷大大超过了蛋白原有的电荷量,这样就消除了不同分子间的电荷差异和结构差异。
SDS-PAGE一般采用的是不连续缓冲系统,与连续缓冲系统相比,能够有较高的分辨率。
SDS-PAGE测定蛋白质相对分子质量一、前言聚丙烯酰胺凝胶电泳聚丙烯酰胺凝胶电泳,简称PAGE,是以聚丙烯酰胺凝胶作为支持介质的一种常用电泳技术。
聚丙烯酰胺凝胶由单体丙烯酰胺和甲叉双丙烯酰胺聚合而成,聚合过程由自由基催化完成。
催化聚合的常用方法有两种:化学聚合法和光聚合法。
化学聚合以过硫酸铵(APS)为催化剂,以四甲基乙二胺(TEMED)为加速剂。
在聚合过程中,TEMED催化过硫酸铵产生自由基,后者引发丙烯酰胺单体聚合,同时甲叉双丙烯酰胺与丙烯酰胺链间产生甲叉键交联,从而形成三维网状结构。
PAGE根据其有无浓缩效应,分为连续系统和不连续系统两大类,连续系统电泳体系中缓冲液pH值及凝胶浓度相同,带电颗粒在电场作用下,主要靠电荷和分子筛效应。
不连续系统中由于缓冲液离子成分,pH,凝胶浓度及电位梯度的不连续性,带电颗粒在电场中泳动不仅有电荷效应,分子筛效应,还具有浓缩效应,因而其分离条带清晰度及分辨率均较前者佳。
不连续体系由电极缓冲液、浓缩胶及分离胶所组成。
浓缩胶是由AP催化聚合而成的大孔胶,凝胶缓冲液为pH6.7的Tris-HCl。
分离胶是由AP催化聚合而成的小孔胶,凝胶缓冲液为pH8.9 Tris-HCl。
电极缓冲液是pH8.3 Tris-甘氨酸缓冲液。
2种孔径的凝胶、2种缓冲体系、3种pH值使不连续体系形成了凝胶孔径、pH值、缓冲液离子成分的不连续性,这是样品浓缩的主要因素。
SDS是阴离子去污剂,作为变性剂和助溶试剂,它能断裂分子内和分子间的氢键,使分子去折叠,破坏蛋白分子的二、三级结构。
而强还原剂如巯基乙醇,二硫苏糖醇能使半胱氨酸残基间的二硫键断裂。
在样品和凝胶中加入还原剂和SDS后,分子被解聚成多肽链,解聚后的氨基酸侧链和SDS结合成蛋白- SDS胶束,所带的负电荷大大超过了蛋白原有的电荷量,这样就消除了不同分子间的电荷差异和结构差异。
SDS-PAGE一般采用的是不连续缓冲系统,与连续缓冲系统相比,能够有较高的分辨率。
测定蛋白质含量的方法1、凯式定氮法(Kjedahl法);2、福林(Folin)-酚试剂法(Lowry法);3、双缩脲法;4、染料结合法(Bradford法)5、紫外分光光度法;6、BCA比色法1、凯式定氮法原理:在催化剂(如CuSO4,K2SO4等)存在的条件下,将植物材料与浓硫酸共热,有机物氧化分解为CO2和H2O,其中的氮转变为氨,并进一步生成(NH4)2SO4,这个过程称为消化。
在消化后的样品中,加入过量的NaOH,经强碱碱化使之分解释放出NH3,通过蒸馏借助蒸汽将NH3导入过量的硼酸溶液,再用标准的盐酸滴定,直到硼酸溶液恢复到原来的H+浓度,根据盐酸的用量即可计算出样品中总氮的含量。
优点:1、是一种测定蛋白质含量的经典方法,操作相对简单;2、实验费用较低。
缺点:1、最终测定的是总有机氮,而不是蛋白质氮;2、耗时较长;3、试剂具有腐蚀性。
适用范围:可用于所有食品的蛋白质分析2、福林(Folin)-酚试剂法此法的显色原理与双缩脲方法相同,只是加了第二种试剂,即Folin酚是试剂,以增加显色量,从而提高了检测蛋白质的灵敏度。
这两种显色反应产生深蓝色的原因是:(1)在碱性条件下,蛋白质中的肽键与铜结合生成复合物。
(2)Folin-酚试剂中的磷钼酸盐-磷钨酸盐被蛋白质中的酪氨酸和苯丙氨酸残基还原,产生深蓝色(钼兰和钨兰的混合物)。
在一定条件下,蓝色深度与蛋白的量成正比。
优点:灵敏度高,操作简单,不需要特殊仪器设备。
缺点:费时长,需要精确控制操作时间,标曲也不是严格的直线形式,专一性差,干扰物质较多。
测定蛋白质的浓度范围是25~250μg/mL。
3、双缩脲法名词解释:是肽和蛋白质所特有的,而为氨基酸所没有的一种颜色反应。
一般含有两个或两个以上的肽键化合物与CuSO4碱性溶液都能发生双缩脲反应,而生成紫红色或蓝紫色的复合物,利用这个反应借助分光光度计可以测定蛋白质的含量。
(2肽只有一个肽键,故要发生双缩脲反应至少是三肽)原理:紫色络合物颜色的深浅与蛋白浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可以用来测定蛋白质的含量。
蛋白质相对分子质量的测定——SDS-聚丙烯酰胺凝胶电泳法一、实验目的1、学会SDS-聚丙烯酰胺凝胶电泳法原理。
2、掌握用SDS-聚丙烯酰胺凝胶电泳法测定蛋白质相对分子质量的操作技术。
二、实验原理SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)是对蛋白质进行量化,比较及特性鉴定的一种经济、快速、而且可重复的方法。
该法主要依据蛋白质的分子量对其进行分离。
SDS与蛋白质的疏水部分相结合,破坏其折叠结构,并使其稳定地存在于一个广泛均一的溶液中。
SDS-蛋白质复合物的长度与其分子量成正比。
由于在样品介质和聚丙烯酰胺凝胶中加入离子去污剂和强还原剂后,蛋白质亚基的电泳迁移率主要取决于亚基分子量的大小,而电荷因素可以被忽略。
SDS-PAGE因易于操作和广泛的用途,使它成为许多研究领域中一种重要的分析技术。
Acr和bis单独存在或混合在一起时是稳定的,但在具有自由基团体系时就能聚合。
引发自由基的方法有化学法和光化学法两种。
化学法的引发剂是过硫酸铵(Ap),催化剂十四甲基乙二胺(TEMED);光化学法是以光敏感物核黄素来代替过硫酸铵,在紫外光照射下引发自由基团。
采用不同浓度的acr、bis、Ap、TEMED使之聚合,产生不同孔径的凝胶。
因此可按分离物质的大小、形状来选择凝胶浓度。
SDS是十二烷基硫酸钠(sodium dodecyl sulfate)的简称,它是一种阴离子表面活性剂,加入到电泳系统中能使蛋白质的氢键和疏水键打开,并结合到蛋白质分子上(在一定条件下,大多数蛋白质与SDS的结合比为1.4gSDS/1g蛋白质),使各种蛋白质-SDS复合物都带上相同密度的负电荷,其数量远远超过了蛋白质分子原有的电荷量,从而掩盖了不同种类蛋白质间原有的电荷差别。
这样就使电泳迁移率只取决于分子大小这一因素,于是根据标准蛋白质分子量的对数和迁移率所作的标准曲线,可求得未知物的分子量。
三、实验器材及数据30%分离胶储存液、10%浓缩胶储存液、分离胶缓冲液、浓缩胶缓冲液、电泳缓冲液、样品溶解液、染色液、脱色液;标准蛋白,样品蛋白;电泳槽,移液管1ml,烧杯100ml四、注意事项1、acr和bis均为神经毒剂,对皮肤有刺激作用,操作时应戴口罩和手套,纯化应在通风处内进行。
测定蛋白质相对分子量的方法
《测定蛋白质相对分子量的方法》
测定蛋白质相对分子量是生物学研究中常用的技术之一,它可以帮助研究者了解蛋白质的结构、功能和互作关系。
测定蛋白质相对分子量的方法主要有电泳、沉淀和放射免疫测定等。
电泳是最常用的测定蛋白质相对分子量的方法,它通过将蛋白质电泳到电泳凝胶板上,然后将凝胶板置于电压场中,使蛋白质在凝胶中移动,根据蛋白质在凝胶中的移动距离来测定其相对分子量。
沉淀法是另一种测定蛋白质相对分子量的方法,它是通过将蛋白质溶液与沉淀剂混合,使蛋白质沉淀,然后测定沉淀物的质量来计算蛋白质的相对分子量。
放射免疫测定是一种特殊的测定蛋白质相对分子量的方法,它是通过将蛋白质混合物接种到动物体内,使其产生免疫反应,然后收集抗体,测定抗体的浓度来计算蛋白质的相对分子量。
以上是测定蛋白质相对分子量的几种方法,它们都能够帮助研究者更好地了解蛋白质的结构、功能和互作关系。