对称性在积分中应用
- 格式:doc
- 大小:982.00 KB
- 文档页数:16
对称性在高等数学积分计算中的应用作者:刘记川来源:《课程教育研究·学法教法研究》2017年第09期【摘要】积分计算是高等数学教学中的重点和难点之一,如何进行积分计算,教学过程中对每一类积分都给出了相应的计算方法。
然而有些积分的被积函数和积分区域比较复杂,计算起来比较困难,甚至有些积分采用常规的方法无法计算。
对称性是积分计算中经常采用的积分技巧,可以把问题简单化,减少计算量。
对具有一定特性的被积函数和积分区域,对称性可以展现出高效快捷的计算优势。
【关键词】对称性积分【中图分类号】O172.2 【文献标识码】A 【文章编号】2095-3089(2017)09-0031-02积分学是高等数学教学中的重点和难点,内容包括二重积分、三重积分、曲线积分和曲面积分[1,2]。
在高等数学教学的过程中,对每一类积分都罗列出很多种计算方法。
每一类积分计算都有很多的难点,想要真正的掌握并非易事,并且各种积分之间的相互转化就更为复杂。
然而在积分计算的过程中,有些积分的积分区域比较特殊(例如:积分区域具有对称性)或者被积函数具有奇偶性,这类积分的计算运用一定的技巧,可以省掉繁琐的计算过程,从而达到简单、快捷、高效和准确的目的。
一、定义对称性主要是指积分区域的对称性。
二维平面上的区域关于坐标轴的对称以及关于直线y=x对称。
三维中是空间区域关于三个坐标面的对称以及关于面y=x,z=x和y=z的对称。
轮换对称性是对称性的一种特殊情况,二维上是关于直线y=x对称,三维上是关于面y=x,z=x 和y=z的对称。
定义1.1:坐标轴对称:区域,对任意的(x,y)∈D,如果(x,-y)∈D,则区域D关于x轴对称;如果(-x,y)∈D,则区域D关于y轴对称。
定义1.2:坐标面对称:区域,对任意的(x,y,z)∈Ω,如果(x,y,-z)∈Ω,则区域Ω关于xoy面对称;如果(x,-y,z)∈Ω,则区域Ω关于xoz面对称;如果(-x,y,z)∈Ω,则区域Ω关于yoz 面对称。
积分计算是数学中一个重要的分支,它是用来计算定积分或不定积分的。
对称性方法是积分计算中常用的一种方法,它可以将一个复杂的积分问题转换为一个更简单的积分问题。
它的基本思想是,如果一个函数具有对称性,那么它的积分值也具有对称性,我们可以利用这种对称性来简化积分计算。
比如,我们要计算函数f(x)的定积分,可以先将函数f(x)变换为具有对称性的函数g(x),然后用对称性方法来计算积分。
这样,我们就可以将原来一个复杂的积分问题转化为一个简单的积分问题,从而减少计算量,提高计算效率。
此外,对称性方法还可以用来计算不定积分。
例如,计算不定积分∫f(x)dx,我们可以先将函数f(x)变换为具有对称性的函数g(x),然后用对称性方法来计算不定积分,从而获得积分结果。
总之,对称性方法是积分计算中常用的一种方法,它可以将复杂的积分问题转换为简单的积分问题,从而有效地减少计算量,提高计算效率。
㊀㊀㊀137㊀数学学习与研究㊀2022 17对称性在积分计算中的应用对称性在积分计算中的应用Һ姚晓闺㊀陈俊霞㊀丁小婷㊀(陆军炮兵防空兵学院基础部数学教研室,安徽㊀合肥㊀230031)㊀㊀ʌ摘要ɔ在数学范围内,特别是在积分方面,对称性的应用极为普遍.在研究和计算积分类的问题时,对称性的应用对简化解题过程㊁优化计算步骤的作用十分显著,这也使其成为积分计算中一种不可或缺的手段.利用对称性计算积分主要包括两方面:一是积分区域关于坐标面㊁坐标轴和原点对称的情况下被积函数具有奇偶性的积分;二是积分区域关于积分变量具有轮换对称性的情况下的积分.本文通过对各类积分的对称性进行归纳总结,使读者能够有效理解和掌握.ʌ关键词ɔ对称性;积分区域;被积函数;积分计算;积分一㊁定积分的对称性及其应用定理㊀若f(x)在[-a,a]上可积,则(1)当f-x()=-f(x)时,ʏa-af(x)dx=0;(2)当f-x()=f(x)时,ʏa-af(x)dx=2ʏa0f(x)dx.例㊀求ʏπ0xsinx1+cos2xdx.解㊀令x=π2+t,则原式=ʏπ2-π2π2+t()cost1+sin2tdt=ʏπ2-π2tcost1+sin2tdt+π2ʏπ2-π2cost1+sin2tdt=0+πʏπ20cost1+sin2tdt=πarctansintπ20=π24.二㊁重积分的对称性及其应用1.二重积分的对称性原理二重积分具有以下对称性:定理1㊀设二元函数f(x,y)在平面区域D内连续,且D关于x轴对称,则1)当f(x,-y)=-f(x,y)时,∬Df(x,y)dxdy=0;2)当f(x,-y)=f(x,y)时,∬Df(x,y)dxdy=2∬D1f(x,y)dxdy,其中D1={(x,y)ɪDxȡ0}.当D关于y轴对称时,也有类似结论.定理2㊀设二元函数f(x,y)在平面区域D内连续,且D关于x轴和y轴都对称,则1)当f(x,-y)=-f(x,y)或f-x,y()=-f(x,y)时,∬Df(x,y)dxdy=0;2)当f(x,-y)=f-x,y()=f(x,y)时,∬Df(x,y)dxdy=4∬D1f(x,y)dxdy,其中D1={(x,y)ɪDxȡ0,yȡ0}.定理3㊀设二元函数f(x,y)在平面区域D内连续,D=D1ɣD2,且D1,D2关于原点对称,则1)当f(-x,-y)=-f(x,y)时,∬Df(x,y)dxdy=0;2)当f(-x,-y)=f(x,y)时,∬Df(x,y)dxdy=2∬D1f(x,y)dxdy.定理4㊀设二元函数f(x,y)在平面区域D内连续,D=D1ɣD2,且D1,D2关于直线y=x对称,则1)∬Df(x,y)dxdy=∬Df(y,x)dxdy;2)当f(y,x)=-f(x,y)时,有∬Df(x,y)dxdy=0;3)当f(y,x)=f(x,y)时,有∬Df(x,y)dxdy=2∬D1f(x,y)dxdy.当D1,D2关于直线y=-x对称时,也有类似结论.例1㊀求∬D(|x|+|y|)dxdy,其中D={(x,y)|x|+|y|ɤ1}.解㊀易知题中被积函数|x|+|y|为x,y的偶函数,且D区域具有对称性.记D1={(x,y)|x|+|y|ɤ1,且xȡ0,yȡ0},于是㊀㊀㊀㊀㊀138数学学习与研究㊀2022 17∬D(|x|+|y|)dxdy=4∬D1(x+y)dxdy=4ʏ10dxʏ1-x0(x+y)dy=2ʏ101-x2()dx=43.例2㊀求∬Dx1+yf(x2+y2)[]dxdy,其中D为y=x3㊁y=1㊁x=-1所围区域,f是连续函数.解㊀此题积分区域D关于坐标轴不具有对称性,根据积分区域的特点,做辅助曲线y=-x3,将D分为D1和D2,它们分别关于y轴和x轴对称,而xyf(x2+y2)关于x是奇函数,关于y也是奇函数.故∬Dxyf(x2+y2)dxdy=∬D1xyf(x2+y2)dxdy+∬D2xyf(x2+y2)dxdy=0.原式=∬Dx1+yf(x2+y2)[]dxdy=∬Dxdxdy=ʏ0-1dxʏ-x3x3xdy=-25.2.三重积分的对称性原理定理1㊀设f(x,y,z)在区域Ω上可积,Ω关于xOy面对称,Ω1是Ω在xOy面上方部分,则有∭Ωf(x,y,z)dV=0,f(x,y,-z)=-f(x,y,z);∭Ωf(x,y,z)dV=2∭Ω1f(x,y,z)dV,f(x,y,-z)=f(x,y,z).当Ω关于其他坐标面对称时,也有类似结论.定理2㊀设f(x,y,z)在区域Ω上可积,Ω关于原点对称,Ω1是Ω位于过原点O的平面一侧的部分.则有∭Ωf(x,y,z)dV=0,f(-x,-y,-z)=-f(x,y,z);∭Ωf(x,y,z)dV=2∭Ω1f(x,y,z)dV,f(-x,-y,-z)=f(x,y,z).例㊀计算三重积分∭Ω(x+z)2dV,其中Ω为区域{(x,y,z)x2+y2+z2ɤ1,zȡ0}.解㊀设Ω1表示开球{(x,y,z)x2+y2+z2ɤ1},注意到Ω关于yOz面对称,而Ω1关于三个坐标面都是对称的,所以∭Ω(x+z)2dV=∭Ωx2+2xz+z2()dV=∭Ωx2+z2()dV=12∭Ω1x2+z2()dV=13∭Ωx2+y2+z2()dV=13ʏ2π0dθʏπ0sinφdφʏ10r4dr=415π.三㊁对弧长的曲线积分的对称性及其应用定理㊀设L是平面上分段光滑的曲线,且P(x,y)在L上连续.1)若L关于x轴对称,则ʏLP(x,y)ds=0,P(x,-y)=-P(x,-y);ʏLP(x,y)ds=2ʏL1P(x,y)ds,P(x,-y)=P(x,-y).其中L1是L在上半平面的部分.当L关于y轴对称时,也有类似结论.2)若L关于原点对称,则ʏLP(x,y)ds=0,P(-x,-y)=-P(x,y);ʏLP(x,y)ds=2ʏL1P(x,y)ds,P(-x,-y)=P(x,y).其中L1是L在右半平面或上半平面部分.例㊀计算ʏL3x2+2xy+4y2()ds,其中曲线L是椭圆x24+y23=1,其周长为a.解㊀由于L关于x轴对称且2xy是关于y的奇函数,故ʏL2xyds=0,则ʏL3x2+2xy+4y2()ds=ʏL3x2+4y2()ds+ʏL2xyds=ʏL3x2+4y2()ds=ʏL12ds=12ʏL1㊃ds=12a.四㊁对面积的曲面积分的对称性及其应用定理[2]㊀设有界光滑或分片光滑曲面 关于xOy平面对称,f(x,y,z)为曲面 上的连续函数,则∬ f(x,y,z)dS=0,f(x,y,-z)=-f(x,y,z);∬f(x,y,z)dS=2∬ 1f(x,y,z)dS,f(x,y,-z)=f(x,y,z).其中 1:z=z(x,y)ȡ0.㊀㊀㊀139㊀数学学习与研究㊀2022 17当 关于yOz面㊁zOx面对称时,也有类似结论.五㊁积分区域关于积分变量具有轮换对称性情况下的积分定义㊀设ΩɪR3,如果(x,y,z)ɪΩ时,都有(z,x,y),(y,z,x)ɪΩ,,则称区域Ω关于变量x,y,z具有轮换对称性.定理1[3]㊀设积分区域Ω关于变量x,y,z具有轮换对称性,则有∭Ωf(x,y,z)dV=∭Ωf(z,x,y)dV=∭Ωf(y,z,x)dV=13∭Ω[f(x,y,z)+f(z,x,y)+f(y,z,x)]dV.推论㊀设积分区域Ω关于变量x,y,z具有轮换对称性,则有∭Ωf(x)dV=∭Ωf(z)dV=∭Ωf(y)dV.定理2㊀设积分区域D关于变量x,y具有轮换对称性,则有∬Df(x,y)dσ=∬Df(y,x)dσ=12∬D[f(x,y)+f(y,x)]dσ.对于第一类曲线积分和曲面积分,同理可得到如下定理:定理3㊀设曲线Γ关于变量x,y,z具有轮换对称性,则有ʏΓf(x,y,z)ds=ʏΓf(z,x,y)ds=ʏΓf(y,z,x)ds=13ʏΓ[f(x,y,z)+f(z,x,y)+f(y,z,x)]ds.定理4㊀设曲面 关于变量x,y,z具有轮换对称性,则有∬f(x,y,z)dS=∬f(z,x,y)dS=∬f(y,z,x)dS=13∬[f(x,y,z)+f(z,x,y)+f(y,z,x)]dS.例1㊀计算二重积分∬Daf(x)+bf(y)f(x)+f(y)dσ,其中D={(x,y)x2+y2ɤ4,xȡ0,yȡ0},f(x)为D上的正值连续函数,a,b为常数.解㊀易知积分区域D关于变量x,y具有轮换对称性,由定理2,得∬Daf(x)+bf(y)f(x)+f(y)dσ=12∬Daf(x)+bf(y)f(x)+f(y)+af(y)+bf(x)f(y)+f(x)éëêêùûúúdσ=12(a+b)∬Ddσ=12(a+b)ˑ14πˑ22=(a+b)2π.例2㊀计算曲线积分ɥΓ(y2+z2)ds,其中Γ:x2+y2+z2=a2,x+y+z=0.{解㊀因为积分区域Γ关于变量x,y,z具有轮换对称性,由定理3,得ɥΓy2ds=ɥΓz2ds=13ɥΓ(x2+y2+z2)ds=13a2ɥΓds=13a2ˑ2πa=23πa3,所以,ɥΓ(y2+z2)ds=2ɥΓy2ds=43πa3.六㊁结束语本文通过实际例题有力地说明了对称性方法对计算效率的提高和优化是切实可行的.通过各类积分综合题的计算回顾了对称性的相关知识点,较好地说明了对称性在积分计算中的应用.与其他解题方法相比较,对称性由于其显著的优化作用和简单易用,在积分领域一骑绝尘,得到了广泛的应用,使读者在领略数学独特魅力的同时,还激发人们无尽的想象力,使对称性的应用充满无限的可能.ʌ参考文献ɔ[1]同济大学应用数学系.高等数学(第五版)[M].北京:高等教育出版社,2007:80-86.[2]胡纪华,王静先.对称性在曲线积分及曲面积分计算中的应用[J],江西科学,2012(1):1-4.[3]秦勇.轮换对称性在积分中的应用[J].常州工学院学报,2015(3):68-71.[4]张锴.对称性在物理问题中的应用[J].科技信息,2011(35):895-896.[5]刘洁,戴长城.对称性在积分计算中的应用[J].邵阳学院学报,2008(4):28-32.[6]曹斌,孙艳.对称性在积分计算中的应用[J].吉林师范大学学报,2012(3):130-133.[7]张东,张宁.对称性在物理学中的应用研究[J].北京联合大学学报,2006(1):21-24.[8]费时龙,张增林,李杰.多元函数中值定理的推广及应用[J].安庆师范学院学报,2011(1):88-89.。
华北水利水电学院数学实践报告华北水利水电学院对称性在积分中的应用学院:环境与市政工程学院专业:建筑环境与设备工程班级:2010108成员:王永辉 201010804朱虹光 201010810余维召 201010811对称性在积分中的应用积分的计算是积分运用中的一个难点.在某些积分的计算过程中,若能利用对称性,则可以简化积分的计算过程.本文介绍了几种常见的对称性在积分计算过程中的几个结论及其应用,并通过实例讨论了利用积分区域的对称性及被积函数的奇偶性简化重积分,曲线积分,曲面积分的计算方法.另外,对于曲面积分的计算,本文还给出了利用积分曲面关于变量的轮换对称性简化曲面积分的计算,是曲面积分的计算更加便捷.积分的对称性包括重积分,曲线积分,曲面积分的对称性.在积分计算中,根据题目的条件,充分利用积分区域的对称性及被积函数的奇偶性,往往可以达到事半功倍的效果.下面我将从积分相关的定理和结论,再结合相关的实例进行具体的探讨.本文结合积分域关于平行于坐标轴的直线,平行于坐标面的平面,平行于坐标轴对角线的直线的对称性定义,以及相应对称区域上定理中的函数约定在该区域都连续或偏导数连续定义1: 设平面区域为D ,若点),(y x ),2(y x a D -⇔∈,则D 关于直线a x =对称,对称点),(y x 与),2(y x a -是关于a x =的对称点.若点),(y x ∈D ⇔)2,(y b x -),(y x D ∈,则D 关于直线b y =对称,称点),(y x 与)2,(y b x -是关于b y =的对称(显然当0=a ,0=b 对D 关于y ,x 轴对称)定义2: 设平面区域为D ,若点),(y x D ∈⇔),(a x a y --,则D 关于a x y +=对称,称点),(y x 与),(a x a y --是关于a x y +=的对称点.若点),(y x D ∈⇔),(x a y a --D ∈,则D 关于直线z y ±=对称) 1、 二重积分的对称性定理定理1:设有界闭区域12D D D =,1D 与2D 关于y 或x 轴对称.设函数),(y x f 在有界闭区域D 上连续,那么(ⅰ)若),(y x f 是关于y (或x )的奇函数,则(,)Dif x y d σ⎰⎰0=(ⅱ)若),(y x f 是关于y (或x )的偶函数,则Df(x,y)d σ⎰⎰=2(,)Dif x y d σ⎰⎰1(=i ,)2注释:设函数),(y x f 在有界闭区域D 上连续(ⅰ)若D 关于y 轴对称,则⎰⎰⎰⎰⎪⎩⎪⎨⎧=DD x y x f d y x f y x f d y x f !),(),(2),(,0),(为偶函数关于变量,如果关于变量为奇函数如果σσ其中1D 是D 的右半部分:1D =}0|),{(≥∈x D y x(ii )若D 关于x 轴对称,则⎰⎰⎰⎰⎪⎩⎪⎨⎧=DD y y x f d y x f y x f d y x f 2),(),(2),(,0),(为偶函数关于变量,如果关于变量为奇函数如果σσ其中2D 是D 的上半部分:2D =}0|),{(≥∈y D y x定理2:设有界闭区域D 关于x 轴和y 轴均对称,函数),(y x f 在D 上连续且),(y x f 关x 和y 均为偶函数,则⎰⎰⎰⎰=DD d y x f d y x f 3),(4),(σσ其中3D 是D 的第一象限的部分:3D =}0,0|),{(≥≥∈y x D y x 定理3:则设有界闭区域D 关于原点对称,函数),(y x f 在D 上连续,则⎰⎰⎰⎰⎰⎰⎪⎩⎪⎨⎧=--=-=--=DD D y x f y x f d y x f d y x f y x f y x f d y x f 12),(),(,),(2),(2),(),(,0),(如果如果σσσ其中1D =}0|),{(≥∈x D y x ,2D =}0|),{(≥∈y D y x 例1:计算⎰⎰Dxydxdy ,其中D 由下列双纽线围成:(1) )(2)(22222y x y x -=+ (2)xy y x 2)(222=+解:(1)由于)(2)(22222y x y x -=+围成的区域关于x 轴y 轴均对称,而被积函数xy 关于x (或y 轴)为奇函数则有⎰⎰Dxydxdy 0=(2)由)(2)(22222y x y x -=+围成的区域对称于原点,而被积函数xy 是关于x ,y 的偶函数则有⎰⎰Dxydxdy =2⎰⎰1D xydxdy由极坐标知θθsin ,cos r y r x ==,代入xy y x 2)(222=+得θ2sin =r 且由xy 0>,知02sin 212>θr则20πθ≤≤于是⎰⎰Dxydxdy 61cos 2sin 220sin 03=⎰⎰dr r d θθθπθ定理4:设有界闭区域D 关于x y =对称, 函数),(y x f 在D 上连续,则Df(x,y)d σ⎰⎰=(,)Df y x d σ⎰⎰例2:设函数f(x)在]1,0[上的正值连续函数 证明:()()1()()()2Daf x bf y dxdy a b f x f y +=++⎰⎰,其中b a,为常数,1}y x,0|y){(x,D ≤≤=证明:∵积分区域D 关于x y =对称∴(,)(,)DDf x y d f y x d σσ=⎰⎰⎰⎰设()()()()Daf x bf y I dxdy f x f y +=+⎰⎰由函数关于两个变量()()()()Daf x bf y I dxdy f x f y +=+⎰⎰,以上两式相,得2()DI a b dxdy a b =+=+⎰⎰,从而1()2I a b =+一般地,有以下定理:定理5:设有界闭区域12D D D =,1D 与2D 关于直线0:=++c by ax L 对称, 函数),(y x f 在D 上连续,那么:(ⅰ)若),(y x f 是关于直线L 的奇函数,则(,)Df x y d σ⎰⎰0=(ⅱ)若),(y x f 是关于直线L 的偶函数,则(,)Df x y d σ=⎰⎰2(,)Dif x y d σ⎰⎰1(=i ,)22、三重积分的对称性定理定理6:设空间有界闭区域12Ω=ΩΩ,1Ω与2Ω关于xoy 坐标面对称,函数),,(z y x f 在Ω上连续,那么:(ⅰ)若),,(z y x f 是关于z 的奇函数,则(,,)f x y z dv Ω⎰⎰⎰=0(ⅱ)若),,(z y x f 是关于z 的偶函数,则:(,,)f x y z dv Ω⎰⎰⎰=2⎰⎰⎰Ω1),,(dv z y x f同时,若Ω关于yox 坐标面对称,),,(z y x f 关于奇函数或偶函数;或者若Ω关于xoz 坐标面对称),,(z y x f 关于y 为奇函数或偶函数,同样也有类似结论.例7:求下列曲面所界的均匀物体的重心坐标222x y z a b c++,c z =解: 若令cos ,sin ,x ar y br z z θθ===,则质量为203zcc abcM ab dz d rdr ππθ==⎰⎰⎰设重心坐标为0x ,0y ,o z 由对称性知000==y x ,而o z =22033..44z cc abc cdz d rdr abc ππθπ=⎰⎰⎰于是,重心为点(0,0,34c ) ※曲线积分的对称性1、第一型曲线积分的对称性定理定理7:设平面内光滑曲线12L L L =+,1L 与2L 关于x (或y )轴对称,函数),(y x f 在L 上连续,那么:(ⅰ)若),(y x f 是关于y (或x )的奇函数,则(,)f x y ds ⎰0=(ⅱ)若),(y x f 是关于y (或x )的偶函数,则(,)f x y ds ⎰=2(,)if x y ds ⎰1(i =,)2注:设平面分段光滑曲线L 关于y 轴对称,则10,(,)(,)(,),(,)LL f x y f x y ds f x y ds f x y x ⎧⎪=⎨⎪⎩⎰⎰如果关于变量x 为奇函数2如果关于变量为偶函数其中1L 是L 的右半段:1L =}0|),{(≥∈x D y x定理8:设平面内光滑曲线12L L L =+,1L 与2L 关于x 轴对称且方向相反,函数),(y x p 在L 上连续,那么:(ⅰ)若),(y x p 是关于x 的偶函数,则(,)p x y dx ⎰0=(ⅱ)若),(y x p 是关于y 的奇函数,则(,)2(,)ip x y dx p x y dx =⎰⎰1(i =,)2例4:求曲线积分[]22()cos(2)sin(2)xy ce xy dx xy dy -++⎰,其中c 是单位圆周221x y +=,方向为逆时针方向解: ∵曲线积分c 可分为上,下两个对称的部分,在对称点),(y x 与),(y x -上, 函数22()cos(2)xy e xy dx -+大小相同,但投影元素dx 在上半圆为负,下半圆为正∴22()cos(2)xy e xy dx -+在对称的两个半圆上大小相等,符号相反故22()cos(2)xy ce xy dx -+⎰0=类似可知22()sin(2)xy ce xy dy -+⎰0=因此[]22()cos(2)sin(2)xy ce xy dx xy dy -++⎰0=定理9:设L 是xoy 平面上关于直线a x =对称的一条曲线弧 (ⅰ)若),(y x f =),2(y x a f --,则(,)Lf x y ds ⎰0=(ⅱ)若),(y x f =),2(y x a f -,则(,)Lf x y ds ⎰=21(,)L f x y ds ⎰})|),{((1a x L y x L ≤∈=例5:计算3(2)LI y y x ds =+-⎰,其中L 是曲线22(2)4x y -+=所围成的回路解: ∵L 关于轴及直线2=x 对称∴3(2)(2)2LLLI y y ds x ds ds =+--+⎰⎰⎰设),(y x f =32y y + 则),(y x f =),(y x f -设 ),(y x g =2-x则),2(y x f --=2-x =),(y x f 即200I ++=lds ⎰=8π2、第二类曲线积分的对称性定理定理1:对于第二类曲线积分还需考虑投影元素的符号.当积分方向与坐标正方向之间的夹角小于2π时,投影元素为正,否则为负.就(,)p x y dx ⎰而言,考察(,)p x y dx 在对称点上的符号定理2:若积分曲线T 关于x ,y ,z 具轮换对称性,则(,,)(,,)(,,)tttp x y z dz p y z x dy p z x y dx ==⎰⎰⎰=13 (,,)(,,)(,,)tp x y z dz p y z x dy p z x y dx ++⎰ 定理3:设L 是xoy 平面上关于a x =对称的一条光滑曲线弧,12L L L =+,任意),(y x ∈L ,有),2(y x a -∈2L ,且1L ,2L 在y 轴投影方向相反,则(ⅰ)若θ),(y x =-θ),2(y x a -,则(,)Lx y dy θ⎰0=(ⅱ)若θ),(y x =θ),2(y x a -,则(,)L x y dy θ⎰=2(,)Lx y dy θ⎰定理3中,若1L ,2L 在x 轴投影方向相同,其他条件不变,则有 (ⅰ)若p ),(y x =-p ),2(y x a -,则(,)Lp x y dx ⎰0=(ⅱ)若θ),(y x =θ),2(y x a -,则(,)Lp x y dx ⎰=21(,)L p x y dx ⎰例:计算I =|2|(2)(1)LLx x y dx -+--⎰⎰,其中抛物线2(2)x -上从)1,1(A 到)1,3(B 的一段弧解:I =|2|(2)(1)LLx x y dx -+--⎰⎰=12I I +因为关于2=x 对称θ),4(y x =|2|-x θ),(y x由定理3有)1)(2(),4(---=-y x y x p =),(y x p -所以2I =0,即12I I I =+0=※曲面积分的对称性定义1:若∀)(),,(321N n R D x x x x p n n n ∈⊂∈⋅⋅⋅⋅⋅有),,(1211111-+⋯⋯i x x x x x x p n)2,1(n i D n ⋯=∈成立,则称n D 关于),,(321n x x x x p ⋅⋅⋅⋅⋅具有轮换对称性.定义2:若函数),,(321n x x x x F ⋅⋅⋅⋅⋅),,(321n x x x x F ⋅⋅⋅⋅⋅≡)2,1(n i X ⋅⋅⋅⋅⋅⋅=,则称函数),,(321n x x x x F ⋅⋅⋅⋅⋅关于函数n x x x x ⋅⋅⋅⋅⋅321,,具有轮换对称性. 1、第一类曲面积分对称性定理定理1:若积分曲面S 可以分成对称的两部分12S S S =+,在对称点上被积函数的绝对值相等{即光滑曲面S 关于xoy (或yoz ,或zox )坐标面对称},则有(ⅰ)(,,)sf x y z ds ⎰⎰0=,在对称点上),,(z y x f 取相反的符号{即),,(z y x f 关于z(或x ,或y )的奇函数}(ⅱ)(,,)sf x y z ds ⎰⎰=2(,,)sf x y z ds ⎰⎰,在对称点上),,(z y x f 取相同的符号{即),,(z y x f 为关于z (或x ,或y )的偶函数}推论1:若光滑曲面S 可以分成对称的两部分12S S S =+,且关于原点对称, 则(ⅰ)(,,)sf x y z ds ⎰⎰0=,为关于z (或x ,或y )的奇函数(ⅱ)(,,)sf x y z ds ⎰⎰=81(,,)s f x y z ds ⎰⎰,),,(z y x f 为关于z (或x ,或y )的偶函数例1:计算下列面积的曲面积分,()x y z ds ∑++⎰⎰,其中∑为球面2222x y z a ++=上z h ≥)0(a h <<的部分解: 利用对称性知xds yds ∑∑=⎰⎰⎰⎰0=设xy D ={|),(y x 2222x y a h +≤-} 则()x y z ds ∑++⎰⎰=zds ∑⎰⎰=⎰⎰=aDxydxdy ⎰⎰=22()a a h π-例2:计算曲面积分x ∑⎰⎰,其中2222:x y z a ∑++=解: 令22221:x y z a ∑++=,0,0,0x a y a z a ≤≤≤≤≤≤ 则 2221:,0,0D x y a x a y a +≤≤≤≤≤ds ==∑关于原点对称,解被积函数),,(z y x f =x 为关于),,(z y x 的偶函数由推论1.1x ∑⎰⎰=8x ∑⎰⎰=a881D x dsdy ⎰⎰⎰⎰=189cos 8D d r a θθdr r d a a⎰⎰=209cos 8πθθ=a810117!!7.108!!264a a ππ= 定理2:若积分曲面∑关于x ,y ,z 具有轮换对称性,则:(,,)(,,)(,,)f x y z ds f y z x ds f z x y ds ∑∑∑==⎰⎰⎰⎰⎰⎰1(,,)(,,)(,,)3f x y z ds f y z x ds f z x y ds ∑∑∑=++⎰⎰⎰⎰⎰⎰ 例3:计算曲面积分2z ds ∑⎰⎰,其中s 是球面2222x y z a ++=解:如果按照常规方法来解,计算量比较大,如果利用对称函数的特性,非常简捷∵球面2222x y z a ++=关于x ,y ,z 具有对称性∴222x ds y ds z ds ∑∑∑==⎰⎰⎰⎰⎰⎰∴2z ds ∑⎰⎰=2221()3x y z ds ∑++⎰⎰ =21133a ds ds ∑∑=⎰⎰⎰⎰ 22214.433a a a ππ== 2、第二类曲面积分的对称性定理利用对称性计算第二类曲面积分同样需要注意投影元素的符号.现以曲面积分(,,)sf x y z ds ⎰⎰为例来讨论.当曲面指定侧上动点的法线方向与z 轴正向成锐角时,面积元素ds 在xoy 面上的投影dxdy 为正减钝角时为负.一般地,有如下定理:定理1:若积分曲面S 可以分成对称的两部分12S S S =+,在对称点上|f|的值相等,则有(ⅰ)1(,,)s f x y z dxdy ⎰⎰0=,在对称点上fdxdy 取相反的符号(ⅱ)1(,,)s f x y z dxdy ⎰⎰=21(,,)s f x y z dxdy ⎰⎰,在对称点上fdxdy 的符号相同,对于积分1(,,)s f x y z dydz ⎰⎰,1(,,)s f x y z dzdx ⎰⎰也有类似的结论定理2:若积分曲面∑关于x ,y ,z 具有轮换对称性,则:(,,)(,,)(,,)p x y z dydz p y z x dzdx p z x y dxdy ∑∑∑==⎰⎰⎰⎰⎰⎰=1(,,)(,,)(,,)3p x y z dydz p y z x dzdx p z x y dxdy ∑++⎰⎰ 例3:计算sxdydz ydxdy zdxdy ++⎰⎰,其中S 是球面2222x y z R ++=的外侧解: ∵球面2222x y z R ++=关于x ,y ,z 具有对称性∴sssxdydz ydxdz zdxdy ==⎰⎰⎰⎰⎰⎰先计算sxdydz ⎰⎰为此应分别考虑前半球面(记为1S )及后半球面(记为2S )上的曲面部分1S的方程为x =它在oyz 平面上的投影域y D 为圆域222y z R +≤,因此,若用1w S 表示前半球面的外侧则有:1S w Dyxdydz σ=⎰⎰=230023R d r R πθπ=⎰⎰ 对于在后半球面2S 上的曲面积分,由于2S的方程为:x =后外侧,故关于后半球面外侧(记为2w S )的曲面积分为:2S w xdydz =⎰⎰Dy σ=323R π 因此S xdydz =⎰⎰31243S w S wxdyxz xdydz R π+=⎰⎰⎰⎰ 3S Sxdydz ydxdz zdxdy xdyxz ++=⎰⎰⎰⎰ 334343R R ππ=⋅= ※小结应用对称性计算积分时应注意以下几点:1.必须兼顾被积函数和积分区域两个方面,只有当两个方面面都具有某种对称性是才能利用,如果只有积分区域具有某种对称性,这时根据具体情况,我们可以把被积函数经过恒等变形使之具有某种对称性,在考虑利用上述结论2.对第二类曲线积分和第二类曲面积分,在利用对称性时,尚需考虑积分路 线的方向和曲面的侧,确定投影元素的符号,需慎重3.有些问题利用轮换对称性可得到简便的解答对于重积分,曲线积分,曲面积分等定理的研究,是积分学运用的一个难点.本 文在探讨相关定理的同时,特别是巧妙的运用其对称性的特点,通过具体实例对积分运用的几个重要的定理进行了一些列研究,发现积分区域与被积函数二者均具对称性时,运用上述对称性定理可以极大地简化计算过程,尤其对于第二类曲线积分和第二类曲面积分来说,应用此方法能够 方向和曲面侧的讨论,简化了计算的过程,给积分的运算带来了便捷,.在以后的学习中,只要我们能把对称性这个重要的特点结合在实际中,相信一定会达到了事倍功半的效果.。
文献综述信息与计算科学对称性在积分计算中的应用在数学计算中, 积分计算是一个非常重要的部分. 早在古希腊时期数学家阿基米德在《抛物线图形求积法》和《论螺线》中, 利用穷竭法, 借助于几何直观, 求出了抛物线弓形的面积及阿基米德螺线第一周围成的区域的面积, 其思想方法是分割求和,逐次逼近. 虽然当时还没有极限的概念, 不承认无限, 但他的求积方法已具有了定积分思想的萌芽.[1] 17 世纪中叶, 法国数学家费尔玛、帕斯卡均利用了“分割求和”及无穷小的性质的观点求积, 更加接近现代的求定积分的方法. 可见, 利用“分割求和”及无穷小的方法, 已被当时的数学家普遍采用.[2]17世纪下半叶牛顿和莱布尼兹创造了微积分的基本方法. 但是, 他们留下了大量的事情要后人去解决, 首先是微积分的主要内容的扩展,其次是微积分还缺少逻辑基础. 创立于17 世纪的微积分, 主要应用于天文学、力学、几何学中的计算.[3] 而到19 世纪下半叶微积分已经发展成为一门系统、严密、完整的学科. 积分概念也趋于逻辑化、严密化,形成我们现在使用的概念. 定积分的概念中体现了分割、近似、求和的极限思想. 其中分割既是将[,]a b 任意地分成n 个小间,12,,,,,i n x x x x ∆∆∆∆L L ,其中i x ∆ 表示第I 个小区间的长度, 在每个小区间上任取一点i ξ做()i i f x ξ∆并求和()i if x ξ∆∑,这体现了求和的思想, 当区间的最大长度趋于零时, 和式的极限若存在即为()f x 在[,]a b 上的定积分. 利用定积分可以解决很多实际问题,例如求由曲线围成的平面图形的面积;求由曲线绕坐标轴旋转所得旋转体的体积;平行截面面积为已知的立体的体积;求曲线的弧长以及物理中的功、水压力等等时,()ba f x dx ⎰的积分形式也可以推广: (1) 可以把积分区间[,]ab 推广到无限区间上,如[,)a +∞ 等,或者把函数推广到无界函数,也就是广义积分. (2) 可以把积分区间[,]a b 推广到一个平面区域,被积函数为二元函数, 那么积分就是二重积分; 同样当被积函数成为三元函数、积分区域变成空间区域时就是三重积分. (3) 还可以将积分范围推广为一段曲线弧或一片曲面, 即曲线积分和曲面积分. 无论积分推广到何种形式, 它始终体现了这种分割的极限思想, 比如二重积分的概念:设(,)f x y 在有界闭区域D 上有界,(1) 分割: 将D 任意分成n 个小区域i σ∆并表示面积;(2) 近似: 在每个i σ∆上任取一点(,)i i ξη作乘积;(3) 求和取极限:若各区域直径的最大值趋于零时, 和式(,)i i if ξησ∆∑的极限存在, 即为 (,)f x y 在D 上的二重积分. 由此我们发现定积分与重积分在概念的本质上是一致的, 同样三重积分亦是如此.[4]此外,不定积分与定积分之间关系为:如果函数()F x 是连续函数()f x 在区间[,]a b 上的一个原函数,则()()()ba f x dx Fb F a =-⎰, 这是牛顿—莱布尼兹公式. 这个公式进一步揭示了定积分与被积函数的原函数或不定积分之间的联系. 它表明: 一个连续函数在区间[,]a b 上的定积分等于它的任一原函数在区间[,]a b 上的增量. 这就给求解定积分提供了一个简便而有效的计算方法. [5]积分在数学分析中有很重要的地位; 积分的计算方法有许多种, 相关文献都对其有探讨,但是对对称性的研究却很少涉及. 对称性在积分运算中有着很重要的意义, 通常可以简化计算. 本文研究了对称性在积分运算中的应用. 积分在数学分析中是相当重要的一项内容,而在计算积分的过程中,我们经常会碰到积分区域或者被积函数具有某种对称性的题型.[6] 那么, 如果我们在解题中发掘或注意到问题的对称性, 并巧妙地把它们应用到积分的计算过程中去, 往往可以简化计算过程, 收到意想不到的效果, 引起感情激荡, 造成感情上的共鸣, 更好地感知、理解数学美. 特别是对于有些题目, 我们甚至可以不用计算就可以直接判断出其结果. 在积分计算中利用对称性来解题这种方法, 是一种探索性的发现方法, 它与其他方法的不同之处主要体现在其创造性功能.[7] 下面我们举出几个对称性在积分计算中的例子, 张振强他的一篇对称性在二重积分中的应用论文中介绍如何利用对称性来计算二重积分, 并提出了通过适当改造被积函数和积分区城以利用对称性来简化计算的方法. 在一般情况下, 不仅要求积分区域D 具有对称性, 而且被积分函数对于区域D 也要具有对称性. 但在特殊情况下, 即使积分区域D 不对称, 或者关于对称区域D 被积函数不具备对称性, 也可以经过一些技巧性的处理, 使之化为能用对称性来简化计算的积分.[8]常见对称形式的二重积分的简化运算有三种, 一: 积分区域D关于坐标轴对称; 二: 分区域D关于=±对称. 在进行二重积分计算时, 善于观察被积原点对称; 三: 积分区域D关于直线y x函数和积分区域的特点, 注意兼顾被积函数的奇偶性和积分区域的对称性, 恰当地利用对称性方法解题, 可以避免繁琐计算, 使二重积分问题的解答大大简化. 刘渭川, 在他的利用对称性计算曲线积分和曲面积分, 论文中提到, 借助于(平面)空间曲线及空间曲面的直观几何意义, 利用曲线, 曲面关于坐标轴及坐标面的对称性, 探讨了对于定义在具有对称性的曲线、曲面上的奇(偶)函数, 如何利用对称性计算曲线积分及曲面积分这种积分方法使得曲线(面)积分更为简便、快捷, 同时, 也有利于避免因符号处理不当而导致的积分错误. [9]因此, 在积分计算中, 可以利用对称性来帮助求解, 不过我们在应用对称性求积分时还必须注意: 必须兼顾被积函数与积分区域两个方面, 只有当两个方面的对称性相匹配时才能利用; 对于第二型曲线积分与曲面积分, 在利用对称性时, 还需考虑路线的方向和曲面的侧, 应慎重; 合理利用轮换对称性以求简便计算. [10]参考文献[1] 王仲春等编著. 数学思维与数学方法论[M]. 北京: 高等教育出版社, 1991.[2] 王寿生等编. 130 所高校研究生高等数学入学试题选解及分析[M]. 沈阳: 辽宁科技出版社, 1988.[3] 陈仲、洪祖德编. 高等数学·研究生入学试题与典型例题选解[M]. 南京: 南京大学出版社, 1986.[4] 同济大学数学教研室主编. 高等数学[M]. 北京: 高等教育出版社, 1996.[5] 林源渠. 高等数学复习指导与典型例题分析[M]. 北京: 机械工业出版社, 2002.[6] 张云艳. 轮换对称性在积分计算中的应用[J]. 毕节师范高等专科学校学报(综合版),2002, 20(3): 90~92.[7] 龚冬保. 数学考研典型题[M]. 西安: 西安交通大学出版社, 2000.[8] 陈增政, 徐进明. 利用对称性简化被积函数是线性函数解的计算[J]. 工科数学, 1994,(10): 181.[9] D. Bennis, N. Mahdou . Strongly gornstein p rojective [J], injective, and flat modules1J PureApp l Algebra, 2007; 210: 437~445.[10] I.M , Gelfand, G.E.Shilov. Generalized functions vol. I [M]. New York: Academic Press1964.。
对称性在积分中的应用摘要:对称性是宇宙中许多事物都具有的性质,大到银河星系, 小到分子原子.根据对称性, 我们就可以把复杂的东西简单化,把整体的东西部分化. 本文介绍运用数学中的对称性来解决积分中的计算问题, 主要介绍了几种常见的对称性在积分计算过程中的一些结论及其应用,并通过实例讨论了利用积分区间、积分区域、被积函数的奇偶性, 从而简化定积分、重积分、曲线积分、曲面积分的计算方法. 另外对于曲面积分的计算,本文还给出了利用轮换对称性简化积分的计算. 积分的计算是高等数学教学的难点, 在积分计算时, 许多问题用“正规” 的方法解决,反而把计算复杂化, 而善于运用积分中的对称性,往往能使计算简捷, 达到事半功倍的效果.关键词:积分对称定积分重积分曲线积分曲面积分区域对称轮换对称目录一、引言二、相关对称的定义(一)区域对称的定义(二)函数对称性定义(三)轮换对称的定义三、重积分的对称性(一)定积分中的对称性定理及应用(二)二重积分中的对称性定理及应用(三)三重积分中的对称性定理及应用四、曲线积分的对称性(一)第一曲线积分的对称性定理及应用(二)第二曲线积分的对称性定理及应用五、曲线积分的对称性(一)第一曲面积分的对称性定理及应用(二)第二曲面积分的对称性定理及应用六、小结参考文献引言积分的对称性包括重积分、曲线积分、曲面积分的对称性•在积分计算中,根据题目的条件,充分利用积分区域的对称性及被积函数的奇偶性,往往可以达到事半功倍的效果•下面我将从积分对称性的定理及结论,再结合相关的实例进行具体探讨•本文从积分区域平行于坐标轴、对角线的直线的对称性,平行于坐标面的平面等的对称性定义•二、相关的定义定义1:设平面区域为D ,若点(x, y) • D= (2a-x,y),则D关于直线x = a对称,对称点(x,y)与(2a - x,y)是关于x = a的对称点•若点(x, y) € D = (x,2b-y)-D(x, y),则D关于直线y二b对称,称点(x, y)与(x,2b - y)是关于y = b的对称(显然当a =0,b = 0对D关于y , x轴对称).定义2:设平面区域为D ,若点(x, y) • D = (y—a,x-a),则D y二x,a对称,称点(x, y)与(y - a, x - a)是关于y 二x • a 的对称点.若点(x, y) • D = (a - y,a - x)-D,贝U D关于直线y 对称.注释:空间区域关于平行于坐标面的平面对称;平面曲线关于平行于坐标轴的直线对称;平面曲面以平行于坐标面对称,也有以上类似的定义.空间对称区域.定义3: (1)若对-(x, y, z^ 1,点(x,y,-z)・1 ,则称空间区域门关于xoy面对称;利用相同的方法,可以定义关于另外两个坐标面的对称性.⑵ 若对P(x, y, z)匕0 ,二点(x, y,—z)匕O ,则称空间区域0关于z轴对称;利用相同的方法,可以定义关于另外两个坐标轴的对称性.(3)若对_(x, y, z^ 1 1, -J点(-x,-y,-z) • 11,则称空间区域门关于坐标原点对称.⑷ 若对一(x, y,z) •门,T点(y,乙x),(z, x, 1 1 ,则称空间区域门关于x, y, z具有轮换对称性.定义4:若函数f(x)在区间- a,a上连续且有f(x-a) = f(x • a),则f(x)关于x二a对称当且仅当a = 0时f (-x)二f (x),则f (x)为偶函数.若f (a - x) =-f (a x),则f(x)为关于a,0中心对称.当且仅当a=0时有f(_x)-_f(x)则f(x)为奇函数.若f (x -a) = f (x • a)且f (a -x) = - f (a x)则f (x)既关于x = a对称,又关于a,0 中心对称.定义5 若n元函数f(X i,X2,…,X n)三f (X i,X i 1,…,X n,X i,…,x:丄),(i =1,2,…,n ), 则称n元函数f (X i,X2,…,X n)关于X i,X2,…,X n具有轮换对称性•定义6:若- p(X i,X2, ,X n) D n R n( n N)有P i(X i,X i 1, ,X n,X i,厶J D n(i =1,2,…,n)成立,则称D n关于p(X i,X2,…,X n)具有轮换对称性.三、重积分的对称性(一)对称性在定积分中的应用利用函数图形的对称性可简化定积分的计算■在特殊情况下,甚至可以求出原函数不是初等函数的定积分■因此掌握对称性在积分中的方法是必要的■下面首先给出一个引理,由此得出一系列的结论,并通过实例说明这是结论的应用■引理设函数f (x)在a - h, a h上连续,则有f (x)dx = f (a x) f (a - x) dx (1)证令x二a t,有a h h hf(x)dx f(a t)dt f(a t)dta -h ' -h 0令t u,则0 0 hf (a t)dt = f (a -u)du = i f (a - u)du•山h 0将( 3)式带入(2)式,并将积分变量统一成x ,则(x)dx = ° f (a x) f (a - x)dx dx特别地,令a =0,就得公式:f(x)dx= :〔f(x) f (-x)d x由函数奇偶性的定义及上式,易知定理1设函数f (x)在[- h, h上连续,那么h h2)若 f(x)为偶函数,则f(x)dx=2 f(x)dx■_hoh3)若f(x)为奇函数,则 』f(x)dx=O次结论有广泛的应用,如能恰当地使用,对简化定积分的计算有很大的帮助,是奇函数,后一部分是偶函数,运用定理1的结论简化其计算.2一 : cosxdx 2_ cosxdx匕x 21 2 2cosxdx=2注:而对于任 意区间上的定积分问题,可以平移 到对称区间Lh,h 1上求解。
对称性在积分计算中的应用摘要:在积分计算中,运用积分区域的对称性和被积函数的奇偶性,以及轮换对称性可以简化计算.本文总结了对称性在定积分、重积分、曲线积分以及曲面积分计算中的应用.对于积分区域不具有对称性的情形,文中总结了几种方法来创造对称性,如平移变换、伸缩变换、区域划分等.关键词:对称性;奇偶性;积分计算;轮换对称引言数学是一个充满了美的世界,对称性不仅是数学美的重要特征,也是一个非常重要的艺术要素,因此很有必要去探讨一下对称性在解题这门艺术中的应用.在学习的过程中,常常发现自己在计算积分时,把简单的问题复杂化而增加了计算的难度,若在积分的计算中能充分利用积分区域的对称性和被积函数的奇偶性以及轮换对称性,就能简化计算.很多文献讨论了对称性在积分计算中的应用这个问题.如文献[3]和文献[4]主要讨论了二重积分的对称性定理及其应用,得出了当积分区域关于x轴(或y轴、或原点)对称且被积函数关于变量x(或y)为奇函数或偶函数时的对称性定理.文献[5]讨论了轮换对称性在各类积分计算中的应用.文献[6]讨论了对称性在三重积分计算中的应用,得出了当积分区域关于某个坐标面对称且被积函数是关于某变量的奇函数或偶函数时的对称性定理.文献[7]给出了积分区域关于变量x,y,z的轮换对称性定义.文献[13]将定积分、重积分、第一型曲线积分和第一型曲面积分的对称性定理写成统一的形式.当积分区域不具有对称性时,不能直接利用对称性来简化计算,但有时可以通过适当的变换化积分区域为对称区域.本文总结了几种创造对称性的方法,如伸缩变换、平移变换、区域划分等,有时候可以将两种变换结合起来使用.1.对称性在定积分计算中的应用在定积分的计算中,根据积分区间的对称性和被积函数的奇偶性,可以简化计算.定理1.1[1] 设f(x)在[?a,a]上连续,则当f(x)是奇函数时,?当f(x)是偶函数时,?a?aa?af(x)dx?0;f(x)dx?2?f(x)dx.a1周口师范本科毕业论文(设计)证明?a?af(x)dx??af(x)dx?0?a?0?af(x)dx.令x??t,有dx??dt.则?当f(x)为偶函数时,当f(x)为奇函数时,f(x)dx???f(?t)dt?a0f(?t)dt.a?a0f(?t)dt??a0f(t)dt,则?aa?aaf(x)dx?2?f(x)dx.?af(?t)dt???f(t)dt,则??af(x)dx?0.下面我们来看一个例题.例1?x3sin2x2?计算定积分I???6?x2?x???dx.2?2?x?3x?5? 2解3I??2?2xsinxx?3x?56232??2?2x(2?x)dx.2由于xsinxx?3x?5622是变量x的奇函数,由定理1.1知?2?2xsinxx?3x?56232由于x(2?x2)是变量x的偶函数,由定理1.1知?则I?0?16?16.2?2x(2?x)dx?2?x(2?x)dx?16,2202在定积分的计算中,当积分区间关于原点对称时,我们容易想到用对称性,而当积分区间为任意有限区间?a,b?时,我们往往想不到去利用对称性.实际上,积分区间?a,b?一定关于直线x?12bbaa(a?b)对称,由此我们可以得出如下定理.定理1.2[2]设f(x)在?a,b?上连续,则?f(x)dx??f(a?b?x)dx.只需令x?a?b?t即可证明此定理.这一公式对于积分的计算并没有多少的帮助,但从该公式易得如下推论.推论1设f(x)在?a,b?上连续,则? baf(x)dx??ba12[f(x)?f(a?b?x)]dx.对于有些计算起来非常困难甚至无法计算的积分,我们只需将被积函数换成[f(x)?f(a?b?x)]就能简化运算.21例2计算定积分?4ln(9?x)ln(9?x)?ln(3?x).22周口师范本科毕业论文(设计)解记f(x)?442,则f(6?x)?,由推论1知?f(x)dx??212f(x)?f(6?x)]dx?4212dx?1.我们已经总结了对称性在定积分计算中的应用,从上面的讨论中我们可以看出根据对称性确实可以简化计算,下面来讨论对称性在重积分计算中的应用.2.对称性在重积分计算中的应用2.1对称性在二重积分计算中的应用我们已经讨论了对称性在定积分计算中的应用,得出了相应的结论.对于二重积分,我们主要讨论积分区域关于x轴(或y轴)对称、关于原点对称以及轮换对称性.定理2.1.1[3]x设函数f(x,y)在xoy平面上的有界区域D上连续,且D关于轴对称.如果函数f(x,y)是关于y的奇函数,即f(x,?y)??f(x,y),(x,y)?D,则??f(x,y)d??0;如果f(x,y)是关于y的偶函数,即f(x,?y)?f(x,y),D(x,y)?D,则??f(x,y)d??2??f(x,y)d?.DD1其中D1是D在x轴上方的平面区域.同理可写出积分区域关于y轴对称的情形.证明根据二重积分的性质得??Df(x,y)d????f(x,y)d??D1??D2f(x,y)d?,其中D1??(x,y)?D|y?0?,D2??(x,y)?D|y?0?.作变量替换x?x,y??t,(x,t)?D1.则J??(x,y)?(x,t)?100?1??1.若f(x,y)为关于y的奇函数,则??D2f(x,y)d????D1f(x,?t)J?????f(x,t)d?????f(x,y)d?D1D1,3周口师范本科毕业论文(设计)??Df(x,y)d????f(x,y)d??D1D1f(x,y)d??0,若f(x,y)为关于y的偶函数,则??D2f(x,y)d????f(x,?t)Jd??D1??D1f(x,t)d????D1f(x,y)d?,??Df(x,y)d????f(x,y)d??D1??D1f(x,y)d??2??f(x,y)d?D1.综合以上可知结论成立.例3计算二重积分??y3sin2xd?,其中D是由x?y?1,x?y?1和x?0围D成的平面闭区域.解由于区域D关于x轴对称,且f(x,y)?y3sin2x是关于变量y的奇函数,则由定理2.1.1知??y3sin2xd??0.D由定理2.1.1可得如下推论.推论2设函数f(x,y)在xoy平面上的有界区域D上连续,若积分区域D既关于x轴对称,又关于y轴对称,则⑴若函数f(x,y)关于变量x,y均为偶函数,则??f(x,y)d??4??f(x,y)d?.DD1其中D1是区域D在第一象限的部分,D1??(x,y)?D|x?0,y?0?.⑵若函数f(x,y)关于变量x或变量y为奇函数,则??f(x,y)d??0.D当积分区域关于原点对称时,我们可以得到如下的定理.定理2.1.2?4?设函数f(x,y)在xoy平面上的有界区域D上连续,且D关于原点对称.如果f(?x,?y)??f(x,y),(x,y)?D,则??Df(x,y)d??0;如果f(?x,?y)?f(x,y),(x,y)?D,则??f(x,y)d??2??f(x,y)d??2??f(x,y)d?,DD1D2其中D1??(x,y)?D|x?0?,D2??(x,y)?D|y?0?.为了叙述的方便,我们给出区域关于x,y的轮换对称性的定义.定义2.1.1设D为一有界可度量平面区域(或光滑平面曲线段),如果对于任意(x,y)?D,存在(y,x)?D,则称区域D(或光滑平面曲线段)关于x,y具4周口师范本科毕业论文(设计)有轮换对称性.关于区域的轮换对称性,有如下定理.定理2.1.3[5]x,y设函数f(x,y)在xoy平面上的有界区域D上连续,且D关于具有轮换对称性,则??f(x,y)d??D??Df(y,x)d?.上面所列推论及定理的证明方法均与定理2.1.1类似,此处不再赘述,下面给出相应的例题.例4解计算二重积分I?I???(xD2?5x?3y?2)d?,其中D:x2?y2?1.??(5x?3y)d??D??Dxd??2由于D关于原点对称,且5x?3y是??2d?,D(x,y)的奇函数,则由定理2.1.2知??(5x?3y)d??0.故D2?01I???Dxd??2??2d???Dd??(rcos?)rdr?2??2094?.例5计算二重积分I???其中f(x)是区间??1,1?上的?,正值连续函数,D??(x,y)|x2?y2?1,x?0,y?0?.解由于积极分区域D关于x,y具有轮换对称性,则由定理2.1.3得I?所以I???2D1??D?????D?,a?bd??2??d??D?2(a?b).2.2对称性在三重积分计算中的应用经过分析,我们可以很容易地看到对称性在三重积分计算中的应用与二重积分非常类似,根据对称性在二重积分计算中的结论可以得到下面的定理.定理2.2.1[6]设函数f(x,y,z)是定义在空间有界区域?上的连续函数,且?关于坐标平面x?0对称,则(1)若f(x,y,z)是关于变量x的奇函数,则???f(x,y,z)dV?0;?(2)若f(x,y,z)是关于变量x的偶函数,则?1是?的前半部分,?1??(x,y,z)??|x?0?.同理可写出?关于坐标平面y?0(或z?0)对称时的情形.证明由三重积分的性质得????f(x,y,z)dV?????1f(x,y,z)dV?????2f(x,y,z)dV,其中?1??(x,y,z)??|x?0?,?2??(x,y,z)??|x?0?.作变量替换x??t,y?y,z?z,(t,y,z)??1,则?(x,y,z)?(t,y,z)?1?0001000??1.1J?(1)当f(x,y,z)为关于变量x的奇函数时,有????2f(x,y,z)dV????f(?t,y,z)JdV?????f(t,y,z)dV?????f(x,y,z)dV?1?1?1????f(x,y,z)dV?????1f(x,y,z)dV?????1f(x,y,z)dV?0.(2)当f(x,y,z)为关于变量x的偶函数时,有????2f(x,y,z)dV????f(?t,y,z)JdV??1????1?1f(t,y,z)dV?????1f(x,y,z)dV,????f(x,y,z)dV?2???f(x,y,z)dV.综合(1)和(2)可知结论成立.例6z?计算三重积分I?????(x?z)dV,其中?是由曲面z?与.解I?????xdV?????zdV,由于?关于坐标面x?0对称,且x为关于变量x的奇函数,则由定理2.2.1知???xdV?0.则?I?????zdV??2?0?40d??d??rcos?rsin?dr?201?8.与二重积分类似,我们也可得到如下结论.6周口师范本科毕业论文(设计)定理2.2.2设函数f(x,y,z)是定义在空间有界区域?上的连续函数,且?关于原点对称,则(1)若f(?x,?y,?z)??f(x,y,z),(x,y,z)??,则???f(x,y,z)dV?0;?(2)若f(?x,?y,?z)?f(x,y,z),(x,y,z)??,则????f(x,y,z)dV?2???f(x,y,z)dV?2???f(x,y,z)dV?2???f(x,y,z)dV?1?2?3.其中?1??(x,y,z)??|x?0?,?2??(x,y,z)??|y?0?,?3??(x,y,z)??|z?0?为了方便叙述,我们先给出一个空间几何体关于x,y,z的轮换对称性定义.定义2.2.1[7]设?是一有界可度量的集几何体(?可为空间区域、空间曲线或曲面块),且它的边界光滑,若对任意的(x,y,z)??,都存在(y,z,x)??,存在(z,x,y)??,则称?关于x,y,z具有轮换对称性.关于空间区域的轮换对称性,我们有如下的定理.定理2.2.3设函数f(x,y,z)是定义在空间有界区域?上的连续函数,且?关于x,y,z具有轮换对称性,则???f(x,y,z)dV????f(y,z,x)dV???????f(z,x,y)dV.例7解计算三重积分???xyzdV,其中?:x2?y2?z2?4.?由于?关于原点对称,且xyz是关于(x,y,z)奇函数,由定理2.2.2知???xyzdV??0.例8[8]解计算???(x?y?z)2d?.其中?为正方体0?x?1,0?y?1,0?z?1.<B< body>。
关于对称性在积分中的应用作者:杨昌海来源:《今日湖北·中旬刊》2014年第02期在积分的计算中充分利用积分区域的对称性及被积函数的奇偶性,往往能使计算简捷,达到事半功倍的效果。
Q1:对称性在积分中的应用主要体现在哪些方面?对称性在积分中的应用非常广泛,不仅在定积分,二重积分,还在线、面积分上也有应用。
Q2:什么样的定积分,可以应用对称性求解?有些什么样的结论?如何应用?定积分是积分学的基本内容,定积分的计算方法很重要且多种多样,有的方法不对,计算更繁琐,若能恰当应用对称性,即可简化定积分的计算。
应用对称性,有下面的结论:定理1 设f(x)在[-a,a]上连续,则(1)若f(x)为奇函数,则 .(2)若f(x)为偶函数,则 .例1 求积分 .解:虽然被积函数非奇非偶,但可以把它分成两个部分和,前一部分是偶函数,后一部分是奇函数,因此,可用定理1的结论简化其计算。
这样的例子很多,有的直接应用定理1,有的通过定积分性质拆项后再应用定理1,达到简化积分运算。
Q3:对于无穷限的广义积分,是否也有相应的应用对称性求解的方法?有些什么样的结论?如何应用?对于无穷限的广义积分,根据被积函数的奇偶性也有一些结论:由定理1,很容易得到下面的结论:推论1 设f(x)在(-∞,∞)上连续, F(x)是f(x)的一个原函数,且无穷限非正常积分f(x)dx收敛,则有(1)若f(x)为奇函数,则f(x)dx=0.(2)若f(x)为偶函数,则f(x)dx=.证明:因为f(x)在(-∞,∞)上连续, f(x)在任何区间[a,A](a再由定积分的性质得:.若f(x)为奇函数,则 F(x)是一个偶函数,所以F(-A)=F(A)若f(x)为偶函数,则一定有一个奇函数F(x),所以F(-A)=-F(A) .Q4:如果积分区间不是关于原点对称,是否也有相应的应用对称性求解的方法?有些什么样的结论?如何应用?我们知道,若函数f(x)在其定义域内满足f(-x)=f(x),那么f(x)的图形关于y轴对称;若函数f(x)满足f(x)=-f(x),那么 f(x)的图形关于原点对称。
对称性在二重积分计算中的应用在对称图形的积分计算中,对称性可以将积分区域划分为若干个相同或相似的子区域,从而简化积分计算。
例如,当积分区域具有关于x轴的对称性时,可以将整个积分区域划分为上下两个对称的子区域,然后只计算其中一个子区域的积分,再乘以2即可得到整个积分的结果。
同样地,对于具有关于y轴或原点对称性的积分区域,也可以利用对称性进行类似的简化。
这种方法可以大大减少计算量,并且适用于各种形式的对称图形,如关于斜线对称、关于点对称等。
另外,对称性还可以用来简化函数的积分计算。
如果被积函数具有关于一些轴的对称性,则可以将函数在整个积分区域上的积分转化为仅在一个子区域上的积分。
例如,当被积函数具有关于y轴的对称性时,可以将积分区域限定在y轴右侧的一个子区域上,然后只计算在该子区域上的积分,最后再乘以2得到整个积分的结果。
同样地,对于具有关于x轴或原点对称性的函数,也可以利用对称性进行类似的简化。
这种方法常常用于计算一些特殊函数的积分,如奇偶函数的积分等。
此外,对称性还可以通过坐标变换来进行利用。
通过适当的坐标变换,可以将原始的积分区域变换为具有对称性的新区域,在新区域上进行积分计算。
例如,当积分区域关于x轴对称时,可以利用变换u=x-y和v=x+y将原始区域变换为关于v轴对称的新区域,在新区域上进行积分计算,最后再进行恢复变换得到原始区域的积分结果。
通过这种方式,可以将积分区域的形状简化为对称的形状,从而方便进行积分计算。
在实际问题中,对称性在二重积分计算中的应用也十分广泛。
例如,在求解物体的质量、重心、转动惯量等物理量时,常常可以利用对称性简化计算过程。
又如在求解电荷分布、电场、电势等电磁问题中,对称性也可以起到重要的作用。
此外,对称性还可以用于求解微分方程的特解问题,通过对微分方程和边界条件的对称性进行分析,可以得到特殊的对称函数解,从而简化问题的求解过程。
综上所述,对称性在二重积分计算中的应用是十分广泛的。
对称性在积分计其中用^TOBY-MMUT-URRUY-UOOY-DBUYI-0128)毕业设计(论文)题目:对称性在积分计算中应用学院:数理学院专业名称:信息与计算科学学号:学生姓名:鲍品指导教师:张晓燕2011年5月20日对称性在积分计算中的应用摘要对称性的应用很广泛,尤其在数学,物理学,化学等方面都有体现⑴。
本论文主要是探讨一下对称性在积分计算中的应用。
积分在微积分学中既是重点又是难点,待别是在解决积分计算问题上,方法比较灵活。
常见的积分方法有换元法和分部积分法,这些方法在解决一般的问题上还是奏效的,但是对于复杂的微积分计算和证明问题就显得有些心有余而力不足。
假如我们稍仔细地观察题目,很多时候我们会发现积分区域或被积函数具有某种对称性。
如果我们将对称性巧妙地应用到解决这类问题中去,不仅简化了计算过程而且还节省计算时间。
利用对称性解题方法比较灵活也十分重要。
接下来本论文将从定积分,重积分,曲线积分以及曲面积分四大方面入手,深入探讨对称性在积分计算中的应用。
最后分析利用对称性解题的条件与优势,总结出应用相关性质解题时要注意哪些方面。
关键词定积分,重积分,曲线积分,曲面积分,对称性,奇偶性AbstractThe application of symmetry is very widespread, particularly in mathematics, physics, chemistry and other aspects of embodied・ This paper is to explore the symmetry in the integral calculation.Integral calculus is difficult in both the focus, especially in solving the problem of integral calculation, the method more flexible. The common integral method are the substitution of variables and the integration by parts. These methods are effective in the solution general question, but appear regarding the complex calculus computation and the proof question somewhat has more desire than energy. If we carefully observe the subject a little, usually we will find regional integration or product function has a symmetry. If we applied the symmetry skillfully to solve such problems, this not only simplifies the calculation process but also save computing time・More flexible use of problem-solving approach symmetry is also important, Then the paper will be integral, double integral, curve and surface integrals four points in a bid to further investigate the symmetry in the integral calculation. Finally, we solve problems by analyzing the symmetry of the conditions of use and advantages, summed up the nature of problem solving application related to the attention of what・Key wordsdefinite integral, heavy integral, curvilinear integral, surface integral, symmetry, parity 目录1、绪论 (1)研究背景 (1)研究意义 (1)研究的思路及结构的安排 (2)2.对称性在定积分计算中的应用23、对称性在重积分计算中的应用 (3)二重积分计算 (3)三重积分计算4.对称性在曲线积分计算中的应第一型曲线积分计算 (9)第二型曲线积分计算 (10)5.对称性在曲面积分计算中的应11第一型曲面积分计算 (11)第二型曲面积分计算 (13)6.对称性解题方法总结 (15)7、致谢 (16)8、参考文献 (17)1、绪论研究背景众所周知,对称性能给人以美的享受,客观世界中的许多事物都具有对称性。
对称性在积分中的应用摘要:对称性是宇宙中许多事物都具有的性质,大到银河星系,小到分子原子.根据对称性,我们就可以把复杂的东西简单化,把整体的东西部分化.本文介绍运用数学中的对称性来解决积分中的计算问题,主要介绍了几种常见的对称性在积分计算过程中的一些结论及其应用,并通过实例讨论了利用积分区间、积分区域、被积函数的奇偶性,从而简化定积分、重积分、曲线积分、曲面积分的计算方法.另外对于曲面积分的计算,本文还给出了利用轮换对称性简化积分的计算.积分的计算是高等数学教学的难点,在积分计算时,许多问题用“正规”的方法解决,反而把计算复杂化,而善于运用积分中的对称性,往往能使计算简捷,达到事半功倍的效果.关键词:积分对称定积分重积分曲线积分曲面积分区域对称轮换对称目录一、引言二、相关对称的定义(一)区域对称的定义(二)函数对称性定义(三)轮换对称的定义三、重积分的对称性(一)定积分中的对称性定理及应用(二)二重积分中的对称性定理及应用(三)三重积分中的对称性定理及应用四、曲线积分的对称性(一)第一曲线积分的对称性定理及应用(二)第二曲线积分的对称性定理及应用五、曲线积分的对称性(一)第一曲面积分的对称性定理及应用(二)第二曲面积分的对称性定理及应用六、小结参考文献谢词一、 引言积分的对称性包括重积分、曲线积分、曲面积分的对称性.在积分计算中,根据题目的条件,充分利用积分区域的对称性及被积函数的奇偶性,往往可以达到事半功倍的效果.下面我将从积分对称性的定理及结论,再结合相关的实例进行具体探讨.本文从积分区域平行于坐标轴、对角线的直线的对称性,平行于坐标面的平面等的对称性定义.二、相关的定义定义1: 设平面区域为D ,若点),(y x ),2(y x a D -⇔∈,则D 关于直线a x =对称,对称点),(y x 与),2(y x a -是关于a x =的对称点.若点),(y x ∈D ⇔)2,(y b x -),(y x D ∈,则D 关于直线b y =对称,称点),(y x 与)2,(y b x -是关于b y =的对称(显然当0=a ,0=b 对D 关于y ,x 轴对称).定义2: 设平面区域为D ,若点),(y x D ∈⇔),(a x a y --,则D a x y +=对称,称点),(y x 与),(a x a y --是关于a x y +=的对称点.若点),(y x D ∈⇔),(x a y a -- D ∈,则D 关于直线z y ±=对称.注释:空间区域关于平行于坐标面的平面对称;平面曲线关于平行于坐标轴的直线对称;平面曲面以平行于坐标面对称,也有以上类似的定义. 空间对称区域.定义3:(1)若对Ω∈∀),,(z y x ,∃点Ω∈-),,(z y x ,则称空间区域Ω关于xoy 面对称;利用相同的方法,可以定义关于另外两个坐标面的对称性.(2)若对Ω∈∀),,(z y x ,∃点Ω∈-),,(z y x ,则称空间区域Ω关于z 轴对称;利用相同的方法,可以定义关于另外两个坐标轴的对称性.(3)若对Ω∈∀),,(z y x ,∃点Ω∈---),,(z y x , 则称空间区域Ω关于坐标原点对称. (4)若对Ω∈∀),,(z y x ,∃点Ω∈),,(),,,(y x z x z y ,则称空间区域Ω关于z y x ,,具有轮换对称性.定义4:若函数)(x f 在区间()a a ,-上连续且有)()(a x f a x f +=-,则)(x f 关于a x =对称当且仅当0=a 时)()(x f x f =-,则)(x f 为偶函数.若)()(x a f x a f +-=-,则)(x f 为关于()0,a 中心对称.当且仅当0=a 时有)()(x f x f -=-则)(x f 为奇函数.若)()(a x f a x f +=-且)()(x a f x a f +-=-则)(x f 既关于a x =对称,又关于()0,a 中心对称.定义5若n 元函数),,,,,,(),,,(11121-+≡i x x x x x f x x x f n i i n , (n i ,,2,1 =),则称n 元函数),,,(21n x x x f 关于n x x x ,,,21 具有轮换对称性.定义6:若)(),,,(21N n R D x x x p nnn ∈⊂∈∀ 有),,,,,,(1111-+i x x x x x p n i i nD ∈),,2,1(n i =成立,则称n D 关于),,,(21n x x x p 具有轮换对称性.三、重积分的对称性(一)对称性在定积分中的应用利用函数图形的对称性可简化定积分的计算.在特殊情况下,甚至可以求出原函数不是初等函数的定积分.因此掌握对称性在积分中的方法是必要的.下面首先给出一个引理,由此得出一系列的结论,并通过实例说明这是结论的应用. 引理 设函数)(x f 在[]h a h a +-,上连续,则有[]⎰⎰+--++=ha ha hdx x a f x a f dx x f 0)()()( (1)证令t a x +=,有 ⎰⎰⎰+--+++=h a ha h hhdt t a f dt t a f dx x f 0)()()( (2)令u t -=,则⎰⎰⎰--=--=+000)()()(hhhdu u a f du u a f dt t a f (3)将(3)式带入(2)式,并将积分变量统一成x ,则[]⎰⎰-++=+-hh a ha dx dx x a f x a f dx x f 0)()()(特别地,令0=a ,就得公式[]dx x f x f dx x f hhh⎰⎰--+=0)()()(由函数奇偶性的定义及上式,易知定理1 设函数)(x f 在[]h h ,-上连续,那么2) 若)(x f 为偶函数,则⎰⎰-=hh hodx x f dx x f )(2)(3) 若)(x f 为奇函数,则⎰-=hhdx x f 0)(次结论有广泛的应用,如能恰当地使用,对简化定积分的计算有很大的帮助,例1 求xdx x x I cos 1122223⎰-+++=ππ解:虽然被奇函数非奇非偶,但可以把它分成两部分x x x cos 123+和x cos ,前一部分是奇函数,后一部分是偶函数,运用定理1的结论简化其计算.⎰⎰--++=222223cos cos 1ππππxdx dx x x x I =⎰2cos 2πxdx=2注:而对于任意区间上的定积分问题,可以平移到对称区间[]h h ,-上求解。
下面我们把定理1推广到更一般的情况.定理2 设函数)(x f 连续1)若)(x f y =的图像关于直线a x =对称,即)()(a x f a x f +=-,则对一切0>h ,有⎰⎰+-+=ha ha ha odx x f dx x f )(2)(2)若)(x f y =的图像关于原点()0,a 中心对称,即)()(x a f x a f +-=-,则对一切0>h ,有⎰+-=ha ha dx x f 0)(证 1)由(1)式及已知条件)()(a x f a x f +=-,有⎰⎰⎰+-+=+=ha ha ha oh dt t f dx x a f dx x f )(2)(2)(02)有(1)式及已知条件)()(x a f x a f +-=-,有⎰⎰+-==ha ha hdx dx x f 00)(0例2 求⎰+=π2cos 1sin dx xxx I解: 由于x sin 及x 2cos 11+都关于2π=x 对称,)2(π-x 关于)0,2(π点中心对称,因此x cod xx 21sin )2(+-π关于点)0,2(π点中心对称,有区间[]π,0关于2π=x 对称,故由定理2的2)有01sin )2(02=+-=⎰ππdx xcod x x I 于是 41sin ]2)2[(1sin 20202πππππ=++-=+=⎰⎰dx xcod x x dx x cod x x I 本例中的被积函数)cos 1(sin 2x x x +原函数不是初等函数,所以不能直接利用牛顿—莱布尼兹公式,但利用对称性却能容易地求出其值.以上我们研究的是一个函数图像本身的对称性在积分中的应用,下面来看看两个函数图像之间的对称关系是如何在定积分中的应用的.定理3 设)(x f ,)(x g 都是连续1)若)(x f 与)(x g 关于直线a x =对称,即)()(a x g a x f +=-,则对一切0>h ,有⎰⎰+-+=ha ha ha odx x g dx x f )(2)(2)若)(x f 与)(x g 的图像关于原点()0,a 中心对称,即)()(x a f x a f +-=-,则对一切0>h ,有⎰⎰+-+-=ha ha ha ha dx x g dx x f )()(例3 求⎰-+=axa x dxI 022解:设t a x sin =,]2,0[π∈t ,则⎰⎰+=-+=222cos sin cos πdt tt tx a x dx I a而由定理3可证⎰⎰+=+2020cos sin cos cos sin sin ππdt t t tdt tt t ,故⎰⎰==++=20202cos sin cos sin 2πππdt dt t t t t I故4π=I .注:定理3可以推广到更一般的情况. 定理4 设)(x f 与)(x h 都连续,则1) ⎰⎰-=aadx x a u f dx x u f 00)]([)]([;2).)]([)]}([)]([{0⎰⎰-=-+aadx x a u f a dx x a u f x u f x例4 计算⎰⋅--20cos sin 31cos sin πdx xx xx n n解:令x x x x x f n n cos sin 31cos sin )(⋅--=,则xx xx x f n n cos sin 31sin cos )2(⋅--=-π所以0)2()(=-=x f x f π,由定理3得0cos sin 31cos sin 20=⋅--⎰πdx xx xx n n .我们可以看出这些都是教材中常见的等式,我们使用对称性给出了它们的简洁证明,并有一定的规律可循.另外,取各种连续函数)(x f ,又可以从已知的公式中到处许多公式.(二)重积分中的对称性定理及应用在二重积分的计算中利用对称性不仅要求积分区域D 具有对称性,而且被积函数对于区域D 也要有有对称性.但在特殊情况下区域D 不对称,或者关于对称区域D 的被积函数不具备对称性,也可以经过一些变化使之能用对称性来计算.定理5 设二元函数),(y x f 在平面区域D 连续,且D 关于x 轴对称,则 1)当),(),(y x f y x f -=-(即),(y x f 是关于y 的奇函数)时,有⎰⎰=Ddxdy y x f 0),(2)当),(),(y x f y x f =-(即),(y x f 是关于y 的偶函数)时,有⎰⎰⎰⎰=DD dxdy y x f dxdy y x f 0),(2),(1,其中1D 是由x 轴分割D 所得到的一半区域.例5 计算⎰⎰+=Ddxdy y xy I )(3,其中D 为由x y 22=与2=x 围城的区域. 解:如图所示几,积分区域D 关于x 轴对称,且 图形待定),()(),(3y x f y xy y x f -=+-=-即),(y x f 是关于y 的奇函数,由定理5有0)(3=+=⎰⎰Ddxdy y xy I 类似地推出下面的定理:定理6 设二元函数),(y x f 在平面区域D 连续,且D 关于y 轴对称,则 1) 若),(),(y x f y x f =-,则⎰⎰⎰⎰=2),(2),(D Ddxdy y x f dxdy y x f2)若),(),(y x f y x f -=-,则0),(⎰⎰=Ddxdy y x f其中2D 是由y 轴分割D 所得到的一半区域.例6 计算⎰⎰+=Dd y x f xy I σ)(223,,其中D 为=y 3x ,1=y 所围成的区域,)(u f 是连续函数.图形待定解:如图几,作辅助线=y 3x ,它把区域D 分成1D ,2D 两部分,其中(){}331,10|,y x y y y x D ≤≤-≤≤=,(){}332,10|,x y x x y x D ≤≤-≤≤=,在1D 上,())(,223y x f xy y x F +=满足),(),(y x F y x F -=-,而1D 关于y 轴对称,因而0)(1223=+⎰⎰D d y x f xy σ. 在2D 上,),(),(y x F y x F -=-,且2D 关于x 轴对称,因而0)(2223=+⎰⎰D d y x f xy σ 因此0)(21223=+=+=⎰⎰⎰⎰⎰⎰D D Dd y x f xyI σ例7 计算二重积分⎰⎰+=Ddxdy y x I |)||(|,其中D :2||||≤+y x解:如图所示几,D 关于x 轴和y 轴均对称,且被积函数关于x 和y 是偶函数,即有),(),(),(y x f y x f y x f =-=-由定理5,6,得 ⎰⎰⎰⎰+=+=1|)||(|4|)||(|D Ddxdy y x dxdy y x I其中1D 是D 的第一象限部分,2有对称性知,⎰⎰⎰⎰=11||||D D dxdy y dxdy x ,故38||8|)||(|4|)||(|4111==+=+=⎰⎰⎰⎰⎰⎰D D D dxdy x dxdy y x dxdy y x I 图形待定 定理7 设平面区域21D D D +=,且1D ,2D 关于原点对称,则当D 上连续函数满足1)),(),(y x f y x f =--时,有⎰⎰⎰⎰=DD dxdy y x f dxdy y x f 1),(2),(2)),(),(y x f y x f -=--时,有⎰⎰=Ddxdy y x f 0),(.例8 计算二重积分dxdy y x D)(33+⎰⎰,区域D :122≤+y x 解:如图所示几,区域D 关于原点对称,对于被积函数33),(y x y x f +=,有),()()()(),(3333y x f y x y x y x f -=+-=-+-=--由定理7,得⎰⎰=Ddxdy y x f 0),(定理8 设二元函数),(y x f 在平面区域D 上连续,且21D D D +=,且1D ,2D 关于直线x y =对称,则1)⎰⎰⎰⎰=DDdxdy x y f dxdy y x f ),(),(;⎰⎰⎰⎰=12),(),(D D dxdy y x f dxdy y x f .2)当),(),(y x f x y f -=时,有⎰⎰=Ddxdy y x f 0),(.3)当),(),(y x f x y f =时,有⎰⎰⎰⎰=DD dxdy y x f dxdy y x f 1),(2),(例9 求⎰⎰+=Ddxdy b y a x I )(2222,区域D :122≤+y x解:积分区域关于直线x y =对称,由定理8,得⎰⎰⎰⎰+=+=DD dxdy b x a y dxdy b y a x I )()(22222222,故])()([21)(222222222222⎰⎰⎰⎰⎰⎰+++=+=DD D dxdy b x a y dxdy b y a x dxdy b y a x Idr r d b a dxdy y x b a D ⎰⎰⎰⎰+=++=10320222222)11(21)()11(21πθ).11(4224b a R +=π相似地,我们可得以下定理:定理9 设二元函数),(y x f 在平面区域D 上连续,且21D D D +=,且1D ,2D 关于直线x y -=对称,则1)),(),(y x f x y f -=--时,有⎰⎰=Ddxdy y x f 0),(;2) ),(),(y x f x y f =--时,有⎰⎰⎰⎰=DD dxdy y x f dxdy y x f 1),(2),(.例题略.注:在进行二重积分计算式,我们要善于观察被积函数的积分区域的特点,既要注意被积函数的奇偶性也要注意积分区域的对称性.恰当地利用积分中的对称性,可以避免计算的繁琐,时二重积分的解答大大简化.(三)三重积分的对称性定理及应用在三重积分中我们也有类似的结论.定理10 设空间有界闭区域21Ω⋃Ω=Ω,1Ω与2Ω关于xoy 坐标平面对称,函数),,(z y x f 在Ω上连续,那么:1)若),,(z y x f 是关于z 的奇函数,则⎰⎰⎰Ω=0),,(dv z y x f2)若),,(z y x f 是关于z 的偶函数,则⎰⎰⎰⎰⎰⎰ΩΩ=1),,(2),,(dv z y x f dv z y x f同样地,若积分区域分别关于yoz ,zox 坐标平面对称,也有类似的结论:推论1 1)若),,(z y x f 是关于x 的奇函数,则⎰⎰⎰Ω=0),,(dv z y x f2)若),,(z y x f 是关于x 的偶函数,则⎰⎰⎰⎰⎰⎰ΩΩ=1),,(2),,(dv z y x f dv z y x f推论2 1)若),,(z y x f 是关于y 的奇函数,则⎰⎰⎰Ω=0),,(dv z y x f2)若),,(z y x f 是关于y 的偶函数,则⎰⎰⎰⎰⎰⎰ΩΩ=1),,(2),,(dv z y x f dv z y x f例10 计算三重积分dv z y x z y x z I ⎰⎰⎰Ω++++++=222222)1ln(,其中Ω是由球面1222=++z y x 所围成的空间闭区域.解:积分区域Ω关于xoy 面对称,被积函数1)1ln(222222++++++z y x z y x z 是z 的奇函 所以0)1ln(222222=++++++=⎰⎰⎰Ωdv z y x z y x z I 定理10 若空间区域Ω具有轮换对称性,若),,(),,(),,(111y x z f x z y f z y x f ==, 则⎰⎰⎰⎰⎰⎰ΩΩ=1),,(3),,(1dv z y x f dv z y x f .在有些问题中,尤其对于三重积分,在被积函数及积分区域都没有对称性的时,而被积函数具有轮换对称性,我们利用轮换对称性可以使问问题得到简便的计算.下面我们给出例子.例11 求dxdydz c z b y a x I V )(222222++=⎰⎰⎰,其中V 是椭球体.1222222≤++c z b y a x解:由于dxdydz c z dxdydz b y dxdydz a x I VV V ⎰⎰⎰⎰⎰⎰⎰⎰⎰++=222222,其中⎰⎰⎰⎰⎰-=XV a a Vdydz dx a x dxdydz a x 2222,这里x V 表示椭球面为2222221a x c z b y -≤+ 它的面积为 )1()1)(1(222222ax bc a x c a x b -=--ππ.于是 abc dx x x a bc dxdydz a x a a Vππ1541()22222=-=⎰⎰⎰⎰-.同理利用轮换对称性可得abc dxdydz b y V π15422=⎰⎰⎰,abc dxdydz c z Vπ15422=⎰⎰⎰ 所以 abc abc dxdydz c z b y a x I Vππ54)154(3)(222222==++=⎰⎰⎰.四、对称性在曲线积分中的定理及应用(一)第一型曲线积分1、平面曲线积分⎰Lds y x f ),(的计算若曲线L 关于X 轴对称,记L 位于X 周上半部分的1L ,则: 3) 当),(),(y x f y x f =-时,⎰⎰=1),(2),(L Lds y x f ds y x f4)当),(),(y x f y x f -=-时,⎰=Lds y x f 0),(同理能得到关于Y 轴对称的式子. 例12 求ds y x I L⎰+=22,其中L 为圆周222R y x =+.解:因为曲线L 关于y 轴对称,记位于y 轴上方部分为1L ,而被积函数满足:),(),(y x f y x f =-所以 22222221R ds y x ds y x I L L=+=+=⎰⎰注:对于一般情况我们可以得出引理引理:设L 关于直线a x =对称的一条曲线弧,则 1)若),2(),(y x a f y x f --=,则⎰=Lds y x f 0),(.2)若),2(),(y x a f y x f -=,则⎰⎰=1),(2),(L Lds y x f ds y x f ,其中}|),{(1a x L y x L ≤∈=.例13 计算⎰-+=Lds x y y I )3(5,其中L 是曲线1)2(22=+-y x 所围成的回路.解:因为L 关于x 轴和直线2=x 对称,故 ⎰⎰⎰---+=LLLds ds x ds y y I 2)2(35设5),(y y y x f +=,则),(),(y x f y x f -=-; 设2),(-=x y x g ,则),(2),4(y x g x y x g =-=--. 所以有 π82002)2(35=-+=---+=⎰⎰⎰⎰LLLLds ds ds x ds y y I .2、空间曲线积分⎰Γds z y x F ),,(的计算若积分曲线Γ关于xoy 面对称,记Γ位于xoy 面上半部分为1Γ,则 1) 当),,(),,(z y x F z y x F =-时,⎰⎰ΓΓ=-1),,(2),,(ds z y x F ds z y x F2) 当),,(),,(z y x F z y x F -=-时,0),,(=-⎰Γds z y x F同理可得关于yoz ,zox 面对称的式子.例题略.(二)第二型曲线积分对于第二型曲线积分还需要我们考虑投影元素的符号.当积分方向与坐标方向之间的夹角小于2π时,投影元素的符号为正,否则为负,就⎰L dx y x f ),(而言,只需考察dxy x f ),(在对称点的符号.但第二类曲线积分有关对称性的结论与第一型曲线积分结论恰好相反:定理11 设积分曲线L 是平面分段光滑曲线,若曲线L 关于x 轴对称,且L 在x 轴上半部分与下半部分走向相反,曲线1L ,2L 分别是L 位于x 轴上、下方的部分,则1)0),(=⎰Lds y x f ,当),(),(y x f y x f =-时;2),),(2),(1⎰⎰=L Lds y x f ds y x f 当),(),(y x f y x f -=-时.其中, ),(),(y x f y x f =-表示),(y x f 是y 的偶函数,),(),(y x f y x f -=-表示),(y x f 是y 的奇函数。