四年级下学期数学培优 还原问题(一)
- 格式:doc
- 大小:29.50 KB
- 文档页数:2
例题1:把刘老师的年龄,乘4以后减去45再把所得的差除以3,然后加上5,最后得30。
刘老师今年几岁?1.还原时运算顺序和运算符号都会发生变化。
2.加变减,减变加;乘变除,除变乘。
30-5=2525×3=7575+45=120120÷4=30答:刘老师今年30岁。
练习1.一个数乘7除以3,然后加上5,最后再减3所得的结果是16。
那么这个数是多少?2.慢羊羊在黑板上写了一个数,喜洋洋将这个数乘7后,抹掉了末尾的数字0,美羊羊将喜洋洋所得的结果乘6以后,又抹掉了末尾的0,这时黑板上的数字是42。
原来的数是多少?例题2:(1)某商场卖菠萝,第一次卖掉总数的一半多2个,第二次卖掉剩余的一半多3个,此时还剩3个。
那么商场原来有菠萝多少个?(3+3)×2=12(个)(12+2)×2=28(个)答:商场共有菠萝28个。
例题2:(2)某水果店卖苹果,第一天卖出所有苹果的一半少50千克,第二天卖出第一天剩下的一半少20千克,最后还剩下100千克。
这个水果店原来有苹果多少千克?(100-20)×2=160(千克)(160-50)×2=220(千克)答:这个水果店原来有苹果220千克。
练习1.(1)某超市的西红柿做活动,上午卖出所有西红柿的一半多20千克,下午又卖出剩下的一半多30千克,此时还剩下40千克。
超市原来有西红柿多少千克?(2)龙龙有一些巧克力,上午吃了所有巧克力的一半少5块,下午又吃了剩下的一半少3块,此时还剩下10块。
龙龙原来有巧克力多少块?2.某商场做活动,第一天卖出所有商品的一半少15个,第二天卖出剩下的一半少20个,第三天又卖出第二天剩下的一半,此时还剩37个。
这个商场原来有商品多少个?例题3:某水果店上午卖出西瓜总数的一半多2个,下午又卖出剩余的一半少8个,此时还剩28个。
水果店原来有西瓜多少个?(28-8)×2=40(个)(40+2)×2=84(个)答:水果店原来有西瓜84个。
还原问题(一)【解题方法与策略】解答还原问题,我们可以根据题意,从结果出发,按它变化的相反方向一步步倒着推想,直到问题解决。
同时,可利用线段图表格帮助理解题意。
【例题讲解】【例1】王老师带着37名同学到野外春游.休息时,小强问:“王老师您今年多少岁啦?”王老师有趣地回答:“我的年龄乘以2,减去16后,再除以2,加上8,结果恰好是我们今天参加活动的总人数。
”小朋友们,你知道王老师今年多少岁吗?【练习1】小明问大明:“你今年几岁?”大明回答说:“用我的年龄数减去8,乘以2,加上6,除以5,正好等于2。
请你算一算,我今年几岁?”【例2】一群猴子吃桃子,第一天吃了总数的一半少20个,第二天又吃了剩下的一半多10个,这时还剩30个,问:树上原来有多少个桃子?【练习2】小红看一本故事书,第一天看了这本书的一半又10页,第二天看了余下的一半又10页,第三天看了10页正好看完。
这本故事书共有多少页?【例3】小芳想把一个数除以4,却错乘4,接着她想加上28,却错减去28,犯了这两个错误之后,得结果68。
如果按照正确的运算顺序计算,计算结果应该是多少?【练习3】某数加上5然后再乘4的题,由于算错,某数先乘5再加上4结果是34。
正确的答案是多少?【例4】李白街上走,提壶去打酒;遇店加一倍,见花喝一斗,三遇店和花,喝光壶中酒,试问酒壶中,原有多少酒?【练习4】李白街上走,提壶去打酒;遇店加两倍,见花喝两斗,两遇店和花,喝光壶中酒,试问酒壶中,原有多少酒?【例5】有一筐苹果,甲取出一半又1个;乙取出余下的一半又1个;丙取出再余下的一半又1个,这时筐里只剩下1个苹果。
这筐苹果共值6元6角,问每个苹果平均值多少钱?【练习5】花花买钢笔用去身上钱的一半多10元,然后买喜欢的玩具用去余下钱的一半多2元,最后给妈妈买了份小礼物用去18元。
这样花花用去了所有的钱。
请问花花原来有多少钱?【课后练习】1、少先队员采集树种子,采得的个数是一个有趣的数。
四年级数学还原问题练习题在四年级的数学学习中,还原问题是一个重要的练习题。
通过这种题型的练习,学生可以培养逻辑思维和解决问题的能力。
下面是一些四年级数学还原问题的练习题,供学生们锻炼和提升自己:1. 题目:还原数描述:某个两位数水果摊上的苹果被买走一些后,剩下的数量不足原来的一半,求原来有多少个苹果?解答:假设原来有x个苹果,剩下的数量不足一半,即剩下的数量小于x/2。
根据题意可得:x - 剩下的数量 < x/2化简得:2x - 2 * 剩下的数量 < x移项得:剩下的数量 > x/2所以,原来的苹果数量x应该满足:剩下的数量大于x/2。
2. 题目:还原图形描述:下图中的图形经过旋转和缩放后,得到了图2,请根据图2还原图1的形状。
解答:图形的还原过程需要注意旋转和缩放的方法:- 旋转:可以通过观察图2和图1的旋转角度来判断,然后按照相反的角度旋转回去。
- 缩放:可以通过观察图2和图1的大小比例来判断,然后按照相反的比例进行缩放。
这样,就可以还原出与图2相同形状的图1。
3. 题目:还原等式描述:下面的等式中,缺少了一些数字,请填写适当的数字,使等式成立。
解答:对于等式的还原,需要运用数学运算法则和逻辑推理来填写缺少的数字。
例如:4 + ? = 7,根据加法运算法则可知,4和?的和等于7,所以?的值为3。
通过类似的方法,可以还原出其他等式中缺少的数字,并使等式成立。
4. 题目:还原图案描述:下图中的图案被翻转后得到了图2,请根据图2还原图1的图案。
解答:图案的还原需要注意翻转的方向和方式:- 水平翻转:将图2上下颠倒即可得到图1的图案。
- 垂直翻转:将图2左右颠倒即可得到图1的图案。
- 对角线翻转:将图2沿对角线翻转即可得到图1的图案。
根据具体的题目,选择合适的翻转方式,即可还原出与图2相同的图案。
这些还原问题的练习题,可以帮助四年级的学生巩固数学知识,培养解决问题的能力,同时也提升他们的观察力和逻辑思维能力。
第十三周还原法解题还原问题也称逆运算问题,是指已知某个数经过加、减、乘、除等运算后所得的结果,反求原数。
解答这类问题,通常利用加与减、乘与除互为逆运算的道理,根据题目叙述的顺序,从结果出发由后向前逆推运算。
本周我们主要学习以下三种解题方法及对应的情况:(1)符号还原:有明显的四则运算关系,可以用流程图表示题意;(2)线段图还原:同一个量的基础上增加或减少;(3)表格还原:多个总量之间相互交换。
符号还原请在正确的结论后面打“√”,错误的结论后面打“×”:(1)□+6=8,□=8-6 ()(2)□-6=8,□=8-6 ()(3)□÷6=8,□=8×6 ()(4)□×2=8,□=8÷2 ()☆用结果倒退求原数时要变号:“+”变“-”,“-”变“+”,“×”变“÷”,“÷”变“×”。
例1.有一位老人说:“把我的年龄加上17用4除,再减去15后用10乘,恰巧是100岁。
”这位老人今年多少岁?(100÷10+15)×4-17=83(岁)答:这位老人今年83岁。
方法总结:符号法倒退时,从结果入手,加号变减号,减号变加号,乘号变除号,除号变乘号。
练习一1、当当的爷爷今年的年龄减去15岁后,缩小4倍,再减去6之后,乘以10,恰好是100岁。
当当的爷爷今年多少岁?(画出流程图)2、小军问爸爸今年多少岁。
爸爸说:“用我的年龄减去8,除以5,再加上2,乘以4,正好是32岁。
”请算一算,小军的爸爸今年多少岁?3、小红、小丽、小敏三个人各有年历卡片若干张。
如果小红给小丽13张,小丽给小敏23张,小敏给小红3张,那么她们每人各有40张。
原来三个人各有年历卡片多少张?换个角度想一想:一个流程图能不能将三种不同的变化过程表示出来?需要画几个流程图呢?线段图还原请在正确的结论后面打“√”,错误的结论后面打“×”:(1)一个数的一半是10,那么这个数是10×2=20。
第04讲还原问题知识点、重点、难点还原问题就是逆推问题,也就是逆向思维.对有些问题,顺着题目条件去寻求解法有一定的困难时,如果可以改变思考顺序,从问题叙述的最后结果出发,一步一步倒着思考,一步一步往回算,可以得到我们需要的结果.例题精讲例1一位老人说:“把我的年龄加上12,再除以4,再减去15后乘以10,恰好是100岁.”请问这位老人有多少岁?练习1一次数学考试后,小明问小强数学考试得多少分.小强说:“用我得的分数减去8加上10,再除以7,最后乘以4,得52.”求小强考多少分.例2小明在做一道加法题时,把个位上的5看成7,把十位上的8看成了3,结果算出的和是123,请问:正确的和是多少?练习2小明在做一道加法题时,把个位上的7看成1,把十位上的3看成了8,把百位上的6看成了9,结果算出的和是1234,请问:正确的和是多少?例3一根绳子剪去一半多6米,再剪去余下的一半,还剩45米,这根绳子原有多长?练习3妈妈买来一些桔子,小明第一天吃了一半多2个,第二天吃了剩下的一半少2个,还剩下6个,妈妈买了多少个桔子?例4学校运来36棵树,乐乐与欢欢两人争着去载,乐乐先拿了一些树,欢欢看到乐乐拿得太多,就抢了10棵,乐乐不肯,又从欢欢那里抢回来6棵,这时乐乐拿的棵树是欢欢的2倍.问:乐乐最初拿了多少棵树?练习4甲、乙、丙三组共有图书90本,乙组向甲组借3本后,又送给丙组5本,结果三组的图书数目相等.问:原来甲、乙、丙三组各有多少本书?例5一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米.问:这捆电线原有多少米?精选习题1.某数加上11,减去12,乘以13,除以14,结果等于26,这个数是多少?2.⨯125□1999183=-⨯÷,则□=__________.3.仓库中有一批面粉,第一次运走总数的一半多3吨,第二次运走剩下的一半少7吨,还剩24吨.问:原来仓库有多少吨面粉?4.有一筐梨,甲取走一半多一个,乙取走余下的一半多一个,丙再取走余下的一半多一个,这时框里剩下一个梨,如果每个梨2元,这框梨一共需多少元?。
还原问题练习题四年级1. 小明家里有12本故事书,他借给了小红5本。
请问小明家里还剩下______本故事书?解答:小明家里还剩下 7 本故事书。
2. 一条绳子长8米,小李剪掉了其中的5米,请问绳子剩下______米?解答:绳子剩下 3 米。
3. 丽丽家里有20颗苹果,她吃掉了其中的14颗,请问丽丽家里还剩下______颗苹果?解答:丽丽家里还剩下 6 颗苹果。
4. 一杯水里本来有200毫升,小华喝了其中的100毫升,请问水杯里还剩下______毫升水?解答:水杯里还剩下 100 毫升水。
5. 小明有20个小球,他放走了其中的15个,请问小明还剩下______个小球?解答:小明还剩下 5 个小球。
6. 妈妈在家里摘下来10朵玫瑰花,她插在花瓶里后,发现花瓶里有7朵玫瑰花,请问妈妈剩下______朵玫瑰花?解答:妈妈剩下 3 朵玫瑰花。
7. 弟弟手中有18支铅笔,他送给小明其中的12支,请问弟弟手中还剩下______支铅笔?解答:弟弟手中还剩下 6 支铅笔。
8. 小李和小华一起做作业,他们一共得到12颗小红花,小李得到其中的9颗,请问小华得到了______颗小红花?解答:小华得到了 3 颗小红花。
9. 妈妈种了15个花苗,其中的11个活了下来,请问妈妈种的花苗中还剩下______个?解答:妈妈种的花苗中还剩下 4 个。
10. 小明有30枚硬币,他花掉了其中的19枚,请问小明还剩下______枚硬币?解答:小明还剩下 11 枚硬币。
11. 小明有一袋糖果,里面原本有36颗,他分给小红其中的28颗,请问小明袋子里还剩下______颗糖果?解答:小明袋子里还剩下 8 颗糖果。
12. 弟弟一共有15个小汽车玩具,他分给小妹其中的9个,请问弟弟还剩下______个小汽车玩具?解答:弟弟还剩下 6 个小汽车玩具。
13. 小明从树上摘下来一串樱桃,原本有24颗,他吃掉了其中的18颗,请问小明还剩下______颗樱桃?解答:小明还剩下 6 颗樱桃。
还原问题(一)本讲主要学习还原问题.通过本节课的学习,可以使学生掌握倒推法的解题思路以及方法,并会运用倒推法解决问题. 1. 掌握用倒推法解单个变量的还原问题.2. 了解用倒推法解多个变量的还原问题.3. 培养学生“倒推”的思想.一、还原问题 已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题.还原问题又叫做逆推运算问题.解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算.在计算过程中采用相反的运算,逐步逆推.二、解还原问题的方法在解题过程中注意两个相反:一是运算次序与原来相反;二是运算方法与原来相反.方法:倒推法。
口诀:加减互逆,乘除互逆,要求原数,逆推新数.关键:从最后结果出发,逐步向前一步一步推理,每一步运算都是原来运算的逆运算,即变加为减,变减为加,变乘为除,变除为乘.列式时还要注意运算顺序,正确使用括号.模块一、计算中的还原问题【例 1】 一个数的四分之一减去5,结果等于5,则这个数等于_____。
【考点】计算中的还原问题 【难度】1星 【题型】填空【关键词】希望杯,五年级,二试,第3题【解析】 方法一:倒推计算知道,一个数的四分之一是10,所以这个数是104=40⨯。
方法二:令这个数为x ,则1554-=x ,所以40=x 。
【答案】40【例 2】 某数先加上3,再乘以3,然后除以2,最后减去2,结果是10,问:原数是多少?【考点】计算中的还原问题 【难度】1星 【题型】解答【关键词】可逆思想方法【解析】 分析时可以从最后的结果是10逐步倒着推。
这个数没减去2时应该是多少?没除以2时应该是多例题精讲知识点拨教学目标去2,此数是:10212+=,如果没除以2,此数是:12224⨯=,如果没乘以3,此数是:2438÷=,如果没加上3,此数是:835-=,综合算式()1022335+⨯÷-=,原数是5.【答案】5【巩固】 (2008年“陈省身杯”国际青少年数学邀请赛)有一个数,如果用它加上6,然后乘以6,再减去6,最后除以6,所得的商还是6,那么这个数是 。
第15讲还原问题(一)还原问题是指条件中只说明了中间的发展过程和最后结果,要求最初状态的一类问题。
解答这类问题逆向思维很重要,通常要运用倒推法(还原法),即从最后一步出发,一步一步倒着往前推算,逐步倒着往前推算,逐步靠拢已知条件,直到问题解决。
例1.某数加上6,乘以6,减去6,除以6,其结果等于6,求某数。
例2.有一位老人说:“把我的年龄加上14后除以3,再减去26,最后用25乘,恰巧是100岁。
”这位老人今年多少岁?例3.在做一道加法式题时,某学生把个位上的5看作9,把十位上的8看作3,结果所得的和是123。
正确的答案是多少?例4.工人们修一段路,第一天修了公路全长的一半还多2千米,第二天修了余下了一半还少1千米,还剩20千米没有修完。
公路的全长是多少千米?练习与思考1.某数加上10,乘以10,减去10,除以10,结果等于10。
这个数是多少?2.《小学生数学报》少年数学爱好者俱乐部成立的年份数加上2后,缩小100倍,再扩大4倍,最后减去25,正好是55。
这个俱乐部成立于哪一年?3.有一个说:“把我的年龄加上28后除以15,再用8乘,就是32岁。
”这个人多少岁?4.小明在做一道加法计算题时,把个位上的4看作7,十位上的8看作2,结果和是306。
正确的答案应该是多少?5.王大爷去粮站买米,粮站的陈叔叔因粗心,错把一袋米少算了20千克,把另一袋米多算了3千克,合计卖给王大爷60千克米。
王大爷实际购买了多少千克米?6.一捆电线,第一次用去全长了一半多3米,第二次用去余下的一半多5米,还剩下7米。
这捆电线原来长多少米?7.有一篮鸡蛋,第一次取出一半多2个,第二次取出余下的一半多2个,第三次拿出8个,篮里还剩2个鸡蛋。
篮里原来有多少个鸡蛋?8.小刚买毛巾用去所带钱的一半,买手帕用去2元钱,买香皂用去剩余钱的一半,这时还剩4元钱。
小刚买毛巾用去多少钱?一共带了多少钱?9.某仓库运出三次原料,第一次运出总数的一半,第二次运出余下的一半,第三次运出前两次运完后余下的一半,最后把剩下的原料分给甲、乙两个工厂,甲厂得6吨,是乙厂的2倍。
还原问题(打印版)还原问题是逆解应用题,还原问题先提出一个未知量,经过一系列的运算,最后给出另一个已知量,要求求出原来的未知数量。
解题时,从最后一个已知量出发,逐步进行逆推性运算,即原来是加的,运算时就减;原来是减的,运算时就加;原来是乘的,运算时就除;原来是除的,运算时就乘。
列综合算式时,要特别注意运算顺序,为此要正确使用括号。
如小莉要把一个包装精美的盒子打开。
她先拆开最外层的彩纸;接着打开纸盒,纸盒里有一个绒布盒;再打开绒布盒一看,里面是两支“派克”金笔。
妈妈说,这礼物是送给大学老师的,要小莉把它重新包装起来。
小莉是按这样的顺序做的:先把两支笔放入绒布盒→盖上绒布盒,并把它放进纸盒→盖上纸盒,并用彩纸封好。
小莉重新包装的步骤(顺序)恰好与她打开这盒礼物的顺序相反。
这是生活中常会遇到的“还原问题”。
在数学中,还原问题也很多。
[经典例题]【例1】某人去银行取款,第一次取了存款的一半多50元,第二次取了余下的一半多100元。
这时他的存折上还剩1250元。
他原有存款多少元?【分析】从上面那个“重新包装”的事例中,我们应受到启发:要想还原,就得反过来做(倒推)。
由“第二次取余下的一半多100元”可知,“余下的一半少100元”是1250元,从而“余下的一半”是1250+100=1350(元)余下的钱(余下一半钱的2倍)是:1350×2=2700(元)用同样道理可算出“存款的一半”和“原有存款”。
综合算式是:[(1250+100)×2+50]×2=5500(元)还原问题的一般特点是:已知对某个数按照一定的顺序施行四则运算的结果,或把一定数量的物品增加或减少的结果,要求最初(运算前或增减变化前)的数量。
解还原问题,通常应当按照与运算或增减变化相反的顺序,进行相应的逆运算。
【例2】有26块砖,兄弟2人争着去挑,弟弟抢在前面,刚摆好砖,哥哥赶来了。
哥哥看弟弟挑得太多,就拿来一半给自己。
四年级还原问题应用题30道一、基础题型(1 10题)1. 一个数加上5,乘以5,减去5,除以5,结果还是5,这个数是多少?解析:我们从后往前逐步计算。
除以5结果是5,那么在除以5之前的数是公式;减去5是25,那么在减去5之前的数是公式;乘以5是30,那么在乘以5之前的数是公式;加上5是6,这个数就是公式。
2. 某数加上6,再乘以6,然后减去6,最后除以6,结果是100,求这个数。
解析:从后往前推,除以6后是100,那么除以6之前是公式;减去6是600,那么减去6之前是公式;乘以6是606,那么乘以6之前是公式;加上6是101,这个数就是公式。
3. 有一位老人说:“把我的年龄加上14后除以3,再减去26,最后乘20,恰巧是100岁。
”这位老人的年龄是多少岁?解析:从结果100岁开始倒推,乘20是100岁,那么乘20之前是公式岁;减去26是5岁,那么减去26之前是公式岁;除以3是31岁,那么除以3之前是公式岁;加上14是93岁,这个老人的年龄就是公式岁。
4. 一个数先减去12,再除以5,然后加上10,最后乘以4,结果是100。
这个数是多少?解析:从结果100开始倒推,乘以4是100,那么乘以4之前是公式;加上10是25,那么加上10之前是公式;除以5是15,那么除以5之前是公式;减去12是75,这个数就是公式。
5. 某数加上3,乘以3,减去3,除以3,结果等于3。
这个数是多少?解析:从后往前推,除以3结果是3,那么除以3之前是公式;减去3是9,那么减去3之前是公式;乘以3是12,那么乘以3之前是公式;加上3是4,这个数就是公式。
6. 小明在做一道加法题时,把一个加数个位上的5看作9,十位上的8看作3,结果和是123。
正确的和是多少?解析:把个位上的5看作9,相当于把一个加数看多了公式;把十位上的8看作3,相当于把这个加数看少了公式。
也就是错误的计算比正确的计算少了公式。
所以正确的和是公式。
7. 小马虎在做一道减法题时,把减数十位上的2看成了5,结果得到的差是342。
还原问题【知识梳理】还原问题是逆解应用题,一般特点是:已知对某个数按照一定的顺序进行四则运算的结果,或把一定数量的物品增加或减少的结果,要求最初(运算前或增减变化前)的数量。
【例题精讲】【例1】某数加上3,乘以5,再减去8,等于12,求某数。
( 1 )【例2】马小虎做一道整数减法题时,把减数个位上的1看成7,把减数十位上的7看成1,结果得出差是111,问正确答案是多少?( 57 )例3.在☑里填上适当的数。
20×□÷8+16=26例4.粮库内有一批大米,第一次运出总数的一半多3吨,第二次运出剩下的一半多5吨,还剩下4吨,问粮库原有大米多少吨?( 42 )【基础巩固】一、填空1、某数加2,乘5,再减3得27。
这个数是_______。
42、某数加上10,乘以10,减去10,除以10,结果等于10,这个数是_______。
13、有人说:“把我的年龄加上28后除以15,再用8乘,就是32岁。
”这个人应是___32__岁。
4、一根钢管,第一次截去2米,第二次截去剩下的一半,还剩下5米.这根钢管原来长12 米5、一个数经过自加、自减、自乘、自除得到的四个数之和是100,这个数是_9___。
二、应用题2、联通公司出售手机,第一个月售了的比总数的一半多2部,第二个月售出的比第一个月剩下的一半多15部,还剩75部。
原有手机多少部?( 364 )3、耕一块地,第一天耕的比整块地的一半少5公顷,第二天耕的比余下的一半多2公顷,第三天耕了20公顷后还剩下5公顷。
这块地有多少公顷?( 98 )4、小芳在做一道加法题时,由于粗心,将个位上的5看作9,把十位上的8看作3,结果所得的和是123。
正确的答案应是多少?( 169 )【培优训练】1、A、B、C三个仓库共存粮180吨,如果从A仓库调6吨给B仓库,又从B仓库调10吨给C仓库,这时三个仓库的存粮吨数相等。
问A、B、C三个粮仓原来各存粮多少吨?A:66 B:50 C:642、工人们修一条路,第一天修的公路比全长的一半还多2千米,第二天修的比余下的一半还少1千米,还剩20千米没有修。
四年级下学期数学培优还原问题(一)
有一位老人说:“把我的年龄加上12,再用4除,再减去15后乘以10,恰好是100岁。
”这位老人有多少岁呢?解这个题目要从所叙述的最后结果出发,利用已给条件一步步倒着推算,同学们不难看出,这位老人的年龄是
(100÷10+15)×4—12=88(岁)。
从这一例子可以看出,对于有些问题,当顺着题目条件的叙述去寻找解法时,往往有一定的困难,但是,如果改变思考顺序,从问题叙述的最后结果出发,一步一步倒着思考,一步一步往回算,原来加的用减,减的用加,原来乘的用除,除的用乘,那么问题便容易解决。
这种解题方法叫做还原法或逆推法,用还原法解题的问题叫做还原问题。
例1有一个数,把它乘以4以后减去46,再把所得的差除以3,然后减去10,最后得4。
问:这个数是几?
例2小马虎在做一道加法题目时,把个位上的5看成了9,把十位上的8看成了3,结果得到的“和”是123。
问:正确的结果应是多少?
例3学校运来36棵树苗,乐乐与欢欢两人争着去栽,乐乐先拿了若干树苗,欢欢看到乐乐拿得太多,就抢了10棵,乐乐不肯,又从欢欢那里抢回来6棵,这时乐乐拿的棵数是欢欢的2倍。
问:最初乐乐拿了多少棵树苗?
例4甲、乙、丙三组共有图书90本,乙组向甲组借3本后,又送给丙组5本,结果三个组拥有相等数目的图书。
问:甲、乙、丙三个组原来各有多少本图书?
例5一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米,这捆电线原有多少米?
练习
1.某数加上11,减去12,乘以13,除以14,其结果等于26,这个数是多少?
2.乙数是48,刚是甲数的6倍多6,求甲数是多少?
3.在125×□÷3×8—1=1999中,□内应填入什么数?
4.小乐爷爷今年的年龄数减去15后,除以4,再减去6之后,乘以10,恰好是100。
问:小乐爷爷今年多少岁?
5.粮库内有一批面粉,第一次运出总数的一半多3吨,第二次运出剩下的一半少7吨,还剩24吨。
问:粮库里原有面粉多少吨?
6.有一筐梨,甲取一半又一个,乙取余下的一半又一个,丙再取余下的一半又一个,这时筐里只剩下一个梨。
这筐梨共值8.80元,那么每个梨值多少钱?。