第七章 气体分离膜及液膜
- 格式:ppt
- 大小:544.00 KB
- 文档页数:43
第七章气态活染物控制技术基础一、填空题1、吸收法净化气态污染物是利用混合气体中各成分在吸收剂中的不同,或与吸收剂中的组分发生,从而将有害组分从气流中分离出来。
【答】溶解度,化学反应2、用水吸收HC1气体属于,用N a OH溶液吸收S02属于,用酸性溶液吸收N H3属于。
【答】物理吸收,化学吸收,化学吸收3、目前工业上常用的吸收设备可分为、和三大类。
【答】表面吸收器,鼓泡式吸收器,喷洒式吸收器4、气体扩散同时发生在气相和液相中,扩散过程既包括,也包括。
【答】分子扩散,湍流扩散5、吸收操作线斜率Ls/G s称为吸收操作的液气比,物理含义为。
【答】处理单位惰性气体所消耗的纯吸收剂的量6、常用的吸收剂有和。
【答】水,碱金属钠、钾、铵或碱土金属钙、镁等的溶液7、防治S02污染的方法主要有清洁生产工艺、采用低硫燃料、、及等。
M g2+, S二酸,氨【答】燃料脱硫,燃料固硫,烟气脱硫8、湿式石灰/石灰石-石膏法存在结垢和堵塞问题,通过在吸收液中加入C a C l2、、、等添加剂可解决此问题。
【答】浆液的p H值,吸收温度,石灰石的粒度9、影响湿式石灰/石灰石-石膏法吸收效率的主要因素有,,,流体力学状态,控制溶液过饱和,吸收剂种类等。
【答】石灰/石灰石法,氧化镁法,钠碱法10、目前应用较多的脱硫方法有、、、氨吸收法、亚硫酸钠法、柠檬酸钠法等。
【答】催化还原法(选择性、非选择性),吸收法,吸附法11、吸附设备主要有、和三种类型。
【答】固定床吸附器,移动床吸附器,流化床吸附器12、影响吸附容量的因素有、、、和。
【答】吸附剂表面积、吸附剂的孔隙大小、孔径分布、分子极性、吸附剂分子上官能团性质13、吸附区高度的计算方法有法和法。
【答】穿透曲线法;希洛夫近似法14、希洛夫方程式为。
【答】x=K L-t015、进入催化燃烧装置的气体首先要除去粉尘、液滴等有害组分,其目的为。
【答】防止中毒16、催化剂的组成为、和。
【答】主活性组分;助催化剂;载体17、催化剂的性能主要指其、和。
气体分离膜材料1 膜的发展历史人类对于膜现象有了初步认识是在1748 年,然而认识膜的功能到被挖掘,却经历了200 多年的漫长历程,才为人类服务。
人们在近几十年来,开始对膜进行科学研究。
其发展的历史大致为:30 年代微孔过滤;40 年代透析;50 年代电渗析;60 年代反渗透;70 年代超滤和液膜;80年代气体分离;90 年代渗透汽化。
同时以膜为基础的其它离过程,以及膜分离与其它分离过程结合的复合应用也日益得到重视和发展。
1979 年将气体分离推向工业化应用的基础,是孟山都(Monsanto)公司用于H₂/N₂分离的低温制氮系统(Prism)的建立。
陶氏(Dow)化学公司在1985年向市场提供以富N₂为目的空气分离器,“Generon”气体分离用于天然气、石油、化工生产等领域,大大提高了气体生产过程的经济效益。
我国从1958年研究离子交换膜开始,80年代中期我国研究的气体分离膜取得长足进步,1985 年中国科学院大连化物所首次成功研制中空纤维N₂/H₂分离器,与国外同类产品主要的性能指标接近,现已投入批量生产。
2 气体分离膜材料2.1高分子膜材料高分子膜材料一般制备简单,性能稳定,耐溶剂性能较好,而广泛的应用于膜分离领域。
用于制备气体分离膜的高分子膜材料主要有以下几种。
1)乙基纤维素EC纤维素是一种较为常见的天然高分子材料,乙基纤维素是由碱纤维素和乙基卤化物反应得到,由于EC的热稳定性好、具有较强的抗生物性能,且气体气体的渗透系数和气体渗透选择性较高,常用作空气中的氧、氮分离富集。
2)双酚A型聚砜PSF双酚A型聚砜主链上含有砜基的一种线性杂链高分子膜材料,具有优异的热稳定性、力学性质和较强的刚性及较好的化学稳定性,耐蒸汽性能好,PSF的玻化温度(Tg)为190℃。
可用于制备复合膜的支撑层,合成氨尾气回收氢,目前已得到工业化生产。
3)聚芳醚砜PES聚芳醚砜分子中含有砜基,由于其共轭效应,具有良好的抗氧化性和热稳定性,同时具有良好加工性能的醚键,不含有对耐热性、抗氧稳定性有不利影响的异丙撑基,没有-C-C-链,不含有刚性极大的联苯结构,因而具有良好的耐溶剂性能。
气体分离膜的分离机理-概述说明以及解释1.引言1.1 概述概述气体分离膜是一种重要的分离技术,它通过特殊的膜材料和适当的分离条件,实现了对气体混合物中不同成分的有效分离。
在工业和生活的许多领域中,气体的分离和纯化是一项至关重要的任务。
传统的方法如吸附、吸收和蒸馏等虽然能够实现气体的分离,但这些方法通常存在能耗高、流程复杂和成本昂贵等问题。
相比而言,气体分离膜技术具有许多优势。
首先,它是一种低能耗的分离方式,不需要加热或冷却等额外能源消耗。
其次,气体分离膜具有结构简单、操作方便和占地面积小的特点,可以很好地适应各种应用场景。
此外,气体分离膜的分离效果高、选择性好,能够实现对不同气体分子大小、极性和溶解度等差异的有效分离。
气体分离膜的应用范围十分广泛,包括但不限于石油化工、气体纯化、空分、生物医药、环境保护等领域。
例如,在石油化工行业中,气体分离膜可以用于乙烯和丙烯的分离,提高乙烯的纯度和收率。
在环境保护方面,气体分离膜可以应用于二氧化碳捕获和回收,在减少二氧化碳排放的同时节约能源资源。
本文将重点讨论气体分离膜的分离机理。
通过对气体分离膜分子结构和分离机制的深入研究,可以更好地理解膜材料在气体分离过程中的作用方式和原理。
同时,对于分离机理的探索也有助于开发设计更高效、选择性更好的气体分离膜材料,并为未来的技术发展提供指导和借鉴。
综上所述,气体分离膜技术是一项具有重要意义和广阔应用前景的分离技术。
通过深入研究气体分离膜的分离机理,我们可以更好地理解其工作原理,为气体分离膜的设计和应用提供理论基础和技术支持。
在未来的发展中,我们可以通过进一步优化膜材料和改进分离工艺,实现更高效、节能环保的气体分离过程。
1.2文章结构文章结构是论文的框架,它描述了文章的主要部分和各个部分之间的逻辑关系。
本文分为引言、正文和结论三个部分。
引言部分旨在为读者提供关于气体分离膜的背景信息和研究重要性的概述。
其中,第1.1小节概述将简要介绍气体分离膜以及其在工业和环境领域的应用。
第九章气体分离膜第一节概述气体膜分离过程是一种以压力差为驱动力的分离过程,在膜两侧混合气体各组分分压差的驱动下,不同气体分子透过膜的速率不同,渗透速率快的气体在渗透侧富集,而渗透速率慢的气体则在原料侧富集。
气体膜分离正是利用分子的渗透速率差使不同气体在膜两侧富集实现分离的。
1831年,J.V.Mitchell系统地研究了天然橡胶的透气性,用高聚物膜进行了氢气和二氧化碳混合气的渗透实验,发现了不同种类气体分子透过膜的速率不同的现象,首先提出了用膜实现气体分离的可能性。
1866年,T.Craham研究了橡胶膜对气体的渗透性能,并提出了现在广为人知的溶解—扩散机理。
虽然在100多年前就发现了利用膜实现气体分离的可能性,但由于当时的膜渗透速率很低,膜分离难以与传统的分离技术如深冷分离法、吸附分离法等竞争,未能引起产业界的足够重视。
从20世纪50年代起,科研工作者开始进行气体分离膜的应用研究。
1950年S.Weller和W.A.Steier用乙基纤维素平板膜进行空气分离,得到氧浓度为32%~36%的富氧空气。
1954年 D.W.Bubaker和K.Kammermeyer发现硅橡胶膜对气体的渗透速率比乙基纤维素大500倍,具有优越的渗透性。
1965年S.A.Stern等为从天然气中分离出氦进行了含氟高分子膜的试验,并进行了工业规模的设计,采用三级膜分离从天然气中浓缩氦气。
同年美国Du Pont公司首创了中空纤维膜及其分离装置并申请了从混合气体中分离氢气、氦气的专利。
气体膜分离技术的真正突破是在70年代末,1979年美国的Monsanto公司研制出“Prism”气体膜分离裝置,“Prism”装置采用聚砜-硅橡胶复合膜,以聚砜非对称膜中空纤维作为底膜,在其中空纤维外表面真空涂覆一层致密的硅橡胶膜。
聚砜底膜起分离作用,底膜的皮层仅有0.2μm左右,远比均质膜薄,因此其渗透速率大大提高;硅橡胶涂层起到修补底膜皮层上的孔缺陷的作用,以保证气体分离膜的高选择性。
膜分离原理
膜分离系统的工作原理就是利用一种高分子聚合物(膜材料通常是聚酰亚胺或聚砜)薄膜来选择'过滤'进料气而达到分离的目的。
当两种或两种以上的气体混合物通过聚合物薄膜时,各气体组分在聚合物中的溶解扩散系数的差异,导致其渗透通过膜壁的速率不同。
由此,可将气体分为'快气'(如H2O、H2、He等)和'慢气'(如N2、CH4及其它烃类等)。
当混合气体在驱动力—膜两侧相应组分分压差的作用下,渗透速率相对较快的气体优先透过膜壁而在低压渗透侧被富集,而渗透速率相对较慢的气体则在高压滞留侧被富集。
快气慢气
各气体渗透量可表示为
上式中Qi:气体组分i的渗透量
(P/l)i:气体组分i的渗透系数
A:膜面积
P:原料气压力
p:渗透气压力
x i:气体组分i在原料气中的体积分数
y i:气体组分i在渗透气中的体积分数
从上式可以看出:膜的分离选择性(各气体组分渗透量的差异)、膜面积和膜两侧的分压差构成了膜分离的三要素。
其中,膜分离的选择性取决于制造商选用的膜材料及制备工艺,是决定膜分离系统性能和效率的关键因素。
分离器结构
膜分离系统的核心部件是一构型类似于管壳式换热器的膜分离器,数万根细小的中空纤维丝浇铸成管束而置于承压管壳内。
混合气体进入分离器后沿纤维的一侧轴向流动,'快气'不断透过膜壁而在纤维的另一侧富集,通过渗透气出口排出,而滞留气则从与气体入口相对的另一端非渗透气
出口排出。
气体膜分离概述气体膜分离是一种常用的分离技术,用于分离混合气体中的不同组分。
该技术基于气体分子在薄膜上的渗透性差异来实现分离。
气体膜分离广泛应用于气体纯化、气体分离、气体浓缩等领域,具有高效、低成本、易操作等优点。
原理气体膜分离的原理是基于不同气体分子在膜材料上的渗透性差异。
膜材料常用的有聚合物膜、无机材料膜等。
当混合气体与膜接触时,其中的不同组分气体会因为渗透速率的不同而在膜的两侧产生浓度差。
这样,通过调整操作条件,如压力、温度等,就可以实现对不同组分气体的分离。
膜材料聚合物膜聚合物膜是气体膜分离中常用的一种膜材料。
聚合物膜可以通过改变聚合物的化学结构和物理性质来实现对不同气体的选择性吸附和渗透。
常用的聚合物膜材料包括聚丙烯、聚氨酯、聚醚酯等。
这些材料具有良好的膜形态稳定性和气体分离性能。
无机材料膜除了聚合物膜,无机材料膜也被广泛应用于气体膜分离。
无机材料膜通常具有更好的化学和热稳定性,适用于处理高温、高压气体。
常见的无机材料膜包括硅膜、石墨烯膜、陶瓷膜等。
这些材料具有良好的气体分离性能和长寿命。
操作条件气体膜分离的操作条件对分离效果有重要影响。
压力压力是气体膜分离中重要的操作参数。
增加进料气体的压力可以增加分离效果,因为压力差会促进气体分子渗透膜的速率。
温度温度对气体分子的扩散速率有重要影响。
一般来说,提高温度可以促进气体分子在膜上的扩散和渗透,从而增强分离效果。
但是,过高的温度可能导致膜材料的性能衰减。
膜面积膜面积也对气体膜分离的效果有影响。
增加膜面积可以增加分离效率和处理能力。
可以通过增加膜片数量或增大膜的尺寸来增加膜面积。
应用领域气体膜分离技术具有广泛的应用领域。
气体纯化气体膜分离可以用于气体纯化过程,将混合气体中的杂质气体分离出来,得到纯净的气体。
例如,将混合气体中的二氧化碳分离出来,可以得到高纯度的氮气。
这在工业和实验室中都有广泛应用。
气体分离气体分离是气体膜分离的主要应用之一。
通过调整操作条件和膜材料的选择,可以实现对不同气体组分的分离。