复数与复变函数
- 格式:doc
- 大小:1.67 MB
- 文档页数:24
第一讲 复数与复变函数复变函数论的出发点是复数.复数的基本定义及结论每个复数z 具有iy x +的形状,其中x 和R y ∈,1-=i 是虚数单位;x 和y 分别称为z 的实部和虚部,x ,y 分别记作z x Re =,z y Im =.复数111iy x z +=和222iy x z +=相等是指它们的实部与虚部分别相等.复数的四则运算定义为:)()()()(21212211b b i a a ib a ib a ±+±=+±+)()())((122121212211b a b a i b b a a ib a ib a ++-=++22222112222221212211)()(b a b a b a i b a b b a a ib a ib a +-+++=++复数在四则运算这个代数结构下,构成一个复数域,记为C .C 也可以看成平面2R ,我们称为复平面.复数的模定义为:22||y x z +=;复数的辐角定义为:i x yz π2arctanArg +=;复数的共轭定义为:iy x z -=;复数的三角表示定义为:)sin (cos ||Argz i Argz z z +=;在复平面中,我们可以定义一些基本集合.设),0(, +∞∈∈r C a ,a 的r -邻域),(r a U 定义为},,|| |{C z r a z z ∈<-设E a C E ∈⊂,为E 的极限点,若E r a U r ⋂>∀),(,0中有无穷个点;E a ∈为E 的内点,若0>∃r ,使得E r a U ⊂),(.开集:所有点为内点的集合;闭集: 开集的余集我们称为闭集.区域:1、D 是开集;2、D 中任意两点可以用有限条相衔接的线段所构成的折线连起来,而使这条折线上的点完全属于D .复变函数的定义:设C G⊂,如果对于G 中任意以点z ,有确定的复数w 同它对应,则称在G 上定义了一个复变函数,记为)(z f w =.注1 此定义与传统的定义不同,没有明确指出是否只有一个w 和z 对应;注2 同样可以定义函数的定义域与值域; 注3 复变函数等价于两个实变量的实值函数. 复变函数的极限:设函数)(z f w =在集合E 上确定,0z 是E 的一个聚点,a 是一个复常数.如果任给0>ε,可以找到一个与ε有关的正数0)(>=εδδ,使得当E z ∈,并且δ<-<||00z z 时,ε<-|)(|a z f ,则称a 为函数)(z f 当z 趋于0z 时的极限,记作:)()()(lim 0,0z z A z f A z f Ez z z →→=∈→当或复变函数连续性的定义: 如果)()(lim 00z f z f z z =→成立,则称)(z f 在0z 处连续;如果)(z f 在E 中每一点连续,则称)(z f 在E 上连续.如果),(),()(y x iv y x u z f +=,000iy x z +=,)(z f 在0z 处连续的充要条件为:,,),(),(lim),(),(lim00,,00,,0000y x v y x v y x u y x u y y x x y y x x ==→→→→复变函数的导数: 设函数)(z f w =在点z 的某邻域内有定义,zz ∆+0是邻域内任意一点,对于)()(00z f z z f w -∆+=∆,如果极限z z f z z f z wz z ∆-∆+=∆∆→∆→∆)()(limlim0000存在,为复数A ,则称)(z f 在0z 处可导,极限A 称为)(z f 在0z 处的导数,记作:)('0z z dz dw z f =或.解析函数: 如果)(z f 在0z 及0z 的某个邻域内处处可导,则称)(z f 在0z 处解析;如果)(z f 在区域D 内处处解析,则我们称)(z f 在D 内解析,也称)(z f 是D 的解析函数.导数的四则运算:)(')()()(')]'()([)(')('))'()((z g z f z g z f z g z f z g z f z g z f +=±=±[]2)]([)(')()()(')()('z g z g z f z g z f z g z f -=.关于解析函数的定义,有下面的注解:注解1 解析性与可导性:在一个点的可导性是一个局部概念,而解析性是一个整体概念;注解2 函数在一个点解析,是指在这个点的某个邻域内解析,因此在此点可导;反之,在一个点的可导性不能得到在这个点解析.注解3 闭区间上的解析函数是指在包含这个区域的一个更大的区域上解析; 注解4 解析性区域;注解5 四则运算法则、复合函数求导法则、反函数求导法则等可以推广到复变函数求导的情形. 关于函数的解析性,有著名的Cauchy-Riemann 条件:函数),(),()(y x iv y x u z f +=在区域D 内解析的充要条件是:1、实部),(y x u 和虚部),(y x v 在D 处可微;2、),(y x u 和),(y x v 满足:柯西-黎曼条件(简称C-R 方程)x v y u y v x u ∂∂-=∂∂∂∂=∂∂ ,关于柯西-黎曼条件,有下面的注解:注解1 解析函数的实部与虚部不是完全独立的,它们是C-R 方程的一组解; 注解2 解析函数的导数形式更简洁. 基本初等函数: 指数函数: 对于复数iy x z+=,定义)sin (cos exp y i y e z e w x z +===为指数函数由此有Euler 公式: y i y e iysin cos +=;指数函数的基本性质:1、函数ze w =在整个复平面内有定义并且解析,z z e e =)'(;2、指数函数ze w =是实指数函数在复平面上的解析推广;3、定义得 ,2,1,02||±±=+==k k y Arge e e z x z ,π4、0≠ze;5、指数函数的代数性质(加法定理):2121z z z z e e e +=;6、指数函数是周期i π2为的周期函数;7、指数函数的几何性质:对数函数:对数函数的基本性质:定义复对数函数是指数函数的反函数:满足方程)0(≠=z z e w 函数)(z f w =称为对数函数,记为z w Ln =.注解 1、由于对数函数是指数函数的反函数,而指数函数是周期为i π2 的周期函数,所以对数函数必然是多值函数;注解 2、0 iArg |z |ln Lnz ≠+==z z,w .多值函数的单值化:、由于iArgz z z +=||ln Ln ,而是Argz 通常正数的自然 对数,Argz 是多值函数,所以对数函数的多值性是由于幅角函数的多值性引起的,每两个函数值相差的整数倍;、象Argz 一样,取主值arg z ,则得到Ln z 的一个单值分支,记为ln z ,也称为Ln z 的主值,即z i z z arg ln ln +=,所以,,...)2,1,0(2ln ln ±±=+=k k z z π注解:当0>=x z 时,主值x z ln ln =就是实变量的对数函数. 对数函数的基本性质:1、对数函数的定义域为整个复平面去掉原点,是一个多值解析函数;2、对数函数的代数性质:Ln Ln )/Ln(2121z z z z -= Ln Ln )Ln(2121z z z z +=3、对数函数的解析性质:对数函数的主值分支在除去原点和负实数轴的复平面上解析,并且有:z zz 1d d ln =4、对数函数的几何性质: 幂函数的定义:利用对数函数,可以定义幂函数:设a 是任何复数,则定义z 的a 次幂函数为:z a ae z Ln =当a 为正实数,且0=z 时,还规定0=az .幂函数的基本性质: 1、对应于对数函数的多值性,幂函数一般是一个多值函数; 2、当a 是正整数时,幂函数是一个单值函数;3、当n 1=α(当n 是正整数)时,幂函数是一个n 值函数; 4、当n 1=α(当n 是正整数)时,幂函数是一个n 值函数; 5、当q p a =是有理数时,幂函数是一个q 值函数; 6、当a 是无理数时,幂函数是一个无穷值多值函数三角函数三角函数的定义:利用Euler 公式,我们有:y i y eiysin cos +=,y i y e iysin cos -=-,所以定义2iziz e e -+和ie e iziz 2--分别为复变量的余弦函数z cos 和正弦函数z sin .三角函数的基本性质:1、z cos 和z sin 是单值函数;2、z cos 和z sin 是以π2为周期的周期函数;3、z cos 是偶函数,z sin 是奇函数;4、212121sin cos cos sin )sin(z z z z z z ±=± 212121sin sin cos cos )cos(z z z z z z =±;5、;1cos sin22=+z z6、z cos 和z sin 在整个复平面解析,并且有:.cos )'(sin ,sin )'(cos z z z z =-=第二讲 利用积分研究解析函数----复变函数的积分设C 是复平面一条光滑简单曲线,其起点为A ,终点为B 。
Chapter 1 复数和复变函数一、复数的基本概念 (Basic concepts of complex number)形如b a i +(R b a ∈,,i =的数称为复数。
(两元素两算子与四元素四算子)1.复数(Complex number )的三种形式:1) ()ϕρϕϕρi sin i cos i e y x z =+=+=,(,,R y x ∈R ∈ϕρ,)代数式: i y x z +=;(缺点:无法表示多值函数的高相位)三角式:()ϕϕρsin i cos +=z ;(极坐标系下的表示)指数式:ϕρi e z =, 其中 ()∑∞==0!1n n i i n e ϕϕ.ϕϕϕsin i cos +=i e 称为欧拉公式。
2) 一些术语(terminology )和符号(notation):x z =Re , 实部(Real part ), y z =Im ,虚部(Imaginary part ).22mod y x z z +===ρ,模(Modulus ), ϕ称为幅角(Argument ),记作z Arg . 而将满足πϕ200≤≤或πϕπ≤≤-0的ϕ值称为幅角的主值或主幅角,记为z arg ,因此有πn z z 2arg Arg += () 2,1,0±±=n .当取ππ≤≤-z arg 时,有关系3) ()ϕρϕϕρi *sin i cos i )or (-=-=-=e y x z z ,)or (*z z 称为z 的复共轭或共轭复数(Complex conjugate of z ),当然,z 也是)or (*z z 的复共轭。
arctan 0 0,02arg 0,02arctan 0,0arctan y x x x y z x y y x y x y x ππππ>=>=-=<+<≥-+ 0,0x y ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪<<⎪⎩注意:* 复数无大小。
第一章、复数与复变函数1.1知识提要1.复数的概念形如iy x z +=的数称为复数,其中y x ,为任意实数,)1(2-=i i 称为虚单位,y x ,又称为z 的实部与虚部,记为).Im(),Re(z y z x ==iy x z +=与直角坐标系平面上的点),(y x 成一一对应,平面称复平面.22y x z +=表示复数z 的向量的长度,称复数的模.)/tan(x y Arc Argz ==θ称为z 的辐角,表示z 的向量与x 轴正向间的交角的弧度数.其中满足πθπ≤<-的0θ称为辐角z 的主值,记作.0a rcz =θ2.复数的各种表示法(1)复数iy x z +=可用复平面上点),(y x 表示。
(2)复数iy x z +=可用从原点指向点),(y x 的平面向量表示.(3)复数的三角表达式为)sin (cos θθi r z +=,其中θ,z r =为0≠z 时任一辐角值.(4)复数的指数表达式为θi re z =。
(5)复数的复球面表示.任取一与复平面切于原点的球面,原点称球面的南极,过原点且垂直平面的直线与球面的交点称为球面的北极,连接平面上任一点与球面北极的直线段与球面有一个交点,又在平面上引入一个假想点∞与球面北极对应,构成扩充复平面与球面点的一一对应,即复数与球面上点的一一对应.球面称为复球面.3.复数的代数运算(21,z z 不为零)(1)21z z =当且仅当两复数实部与虚部分别相等。
(2),0=z 当且仅当z 的实部与虚部同时为0.(3),111iy x z +=,222iy x z +=则).()(212121y y i x x z z ±+±=± (4)).()(2112212121y x y x i y y x x z z ++-=即,2121z z z z ⋅=2121Arcz Arcz z z Arg +=(5))./()()/()(/222221122222212121y x y x y x i y x y y x x z z +-+++= 即,//2121z z z z =.)/(2121Arcz Arcz z z Arg -=(6)).sin (cos θθn i n r z n n +=(7)[].1,,1,0,/)2sin(/)2cos(/1-=+++=n k n k i n k r z n n πθπθ在几何上,n z 的n 个值恰为以原点为中心,n r/1为半径的圆内接正n 边形的n 个顶点. 4.曲线与区域(1)设),()()(t iy t x t z +=,其中)(t x ,))((b t a t y ≤≤为实变量t 的单值连续函数,则)(t z z =)(b t a ≤≤表示复平面上的一条连续曲线.一条没有重点的连续曲线称简单曲线或约当曲线.如果简单曲线的起点与终点重合,称简单闭曲线.如果在b t a ≤≤上,)(t x ')(t y '连续,且对每一t 值,有[][],0)()(22≠'+'t y t x 称曲线)(t z 是光滑的.任意一条简单闭曲线分复平面为三个部分.曲线C 为边界,有界区域为C 的内部,无界区域为C 的外部.(2)复平面上的非空连通开集称为区域.区域连同其边界称闭区域.若在复平面上区域D 内任作一条简单闭曲线,其内部总属于D ,称D 为单连通域.若D 不是单连通域,则D 为多连通域.5.复变函数设G 为一个复数集,若有一个确定法则存在,使对于任一G z ∈,有一个或几个复数iv u +=ϖ与之对应,则称复变数ω是复变数z 的函数,记作).(z f =ϖ复变函数在几何上表示z 平面上一个点集G (定义集合)到ω平面上一个集合*G (函数值集合)的映射(或变换).ω称为z 的像(映像),z 称为ω的原像. 6.复变函数的极限 设)(z f =ϖ在点0z 的某去心邻域ρ<-<00z z 内有定义,A 为一确定常数.若对任给的,0>ε存在相应0>δ,使对满足δ<-<00z z 的z ,恒有ε<-A z f )(,则称A 为)(z f 当z 趋向0z 时的极限,记作.)(lim 0A z f z z =→ 由于0z z →的方式的任意性更强,因此复变函数的极限定义比一元实函数极限定义要求苛刻得多.复变函数极限的运算法则与实函数极限运算法则相同.7.复变函数的连续性如果)()(lim 00z f z f z z =→,称)(z f 在0z 连续.若)(z f 在区域D 内每一点都连续,称)(z f 在D 内连续.iv u z f +=)(在点000iy x z +=连续的充要条件为u 和v 在点),(00y x 连续.复变函数连续性的运算法则与实函数连续性运算法则相同.学习与考试要求(1) 熟练掌握复数的各种表求方法以及四则、乘幂和共轭运算.(2) 了解区域的概念.单连域、多连域的区分.(3) 了解曲线、光滑曲线、简单闭曲线的定义,能用复数的方程或不等式表示一些常见的区域和曲线.(4) 掌握复变函数的概念,理解映射的意义,理解复变函数与两个实二元函数之间的关系.(5) 了解复变函数的极限与连续性概念,知道它们与实一元函数极限与连续性的异同. 重点与难点重点是复数表示法之间的转换、区域的确定、复变函数的概念.难点是复球面概念,复变函数理解为复平面上两个集合间的映射,以及复变函数的极限与连续性。
复数与复变函数
复数和复变函数是数学中非常重要的概念,它们在许多领域都有广泛的应用。
在本文中,我们将介绍复数的基本概念、复变函数的定义以及它们在数学中的应用。
复数的基本概念
复数是由实数部分和虚数部分组成的数,可以表示为a + bi的形式,其中a和b是实数,i是虚数单位,满足i² = -1。
复数的加法、减法、乘法和除法运算遵循一定的规则,例如:- (a + bi) + (c + di) = (a + c) + (b + d)i
- (a + bi) * (c + di) = (ac - bd) + (ad + bc)i
复变函数的定义
复变函数是一种将复数映射到复数的函数,可以表示为f(z) = u(x, y) + iv(x, y)的形式,其中u和v是实值函数,x和y分别是复数z的实部和虚部。
复变函数具有连续性、可导性和解析性等性质,例如:
- 如果一个复变函数在某一点连续,则它在该点的邻域内也连续;
- 如果一个复变函数在某一点可导,则它在该点附近也一定可导;
- 如果一个复变函数在某一点解析,则它在该点附近也一定解析。
复数和复变函数的应用
复数和复变函数在许多领域都有广泛的应用,例如:
- 在物理学中,复数被用来描述波动现象、电磁场等物理量;
- 在工程学中,复数被用来分析电路、信号处理等问题;
- 在计算机科学中,复数被用来设计算法、加密通信等技术;
- 在数学中,复变函数被用来研究微分方程、积分方程等问题。
总之,复数和复变函数是数学中非常重要的概念,它们在许多领域都有广泛的应用。
通过学习和掌握这些概念,我们可以更好地理解和应用数学知识来解决实际问题。
复数与复变函数的性质与变换介绍:复数与复变函数是数学中的重要概念,在多个领域中有广泛的应用。
本文将探讨复数的基本性质,复变函数的定义和性质,以及复变函数在平面变换中的应用。
一、复数的基本性质1. 定义:复数由实部和虚部组成,通常表示为z=a+bi,其中a和b分别为实数,i为虚数单位,满足i²=-1。
2. 复数运算:复数加法、减法、乘法和除法的计算规则与实数运算类似,但要注意虚部的处理。
3. 共轭复数:对于复数z=a+bi,其共轭复数表示为z*=a-bi,即实部相同而虚部正负相反。
二、复变函数的定义和性质1. 复变函数的定义:复变函数是将复数集合映射到复数集合的函数。
常见的复变函数包括多项式函数、指数函数、三角函数等。
2. 复变函数的解析性:复变函数满足柯西-黎曼方程,即必须满足柯西-黎曼条件才能解析。
柯西-黎曼条件要求函数的实部和虚部满足偏导数的连续性。
3. 复变函数的调和性:对于复变函数f(z)=u(x,y)+iv(x,y),其中u和v为实部和虚部,若满足拉普拉斯方程∂²u/∂x²+∂²u/∂y²=0,则函数具有调和性。
4. 积分和保守场:复变函数的积分与实变函数类似,但存在一些特殊性质。
若复变函数f(z)在闭合曲线上的积分为零,则说明该函数是保守场。
三、复变函数的变换与应用1. 平移变换:将复变函数f(z)平移至f(z-a)的形式,其中a为实常数。
平移变换可用于调整函数在平面上的位置。
2. 缩放变换:将复变函数f(z)缩放至kf(z)的形式,其中k为实常数。
缩放变换可用于调整函数的尺度。
3. 旋转变换:将复变函数f(z)旋转θ角度至e^(iθ)f(z)的形式,其中θ为实常数。
旋转变换可用于调整函数的方向。
4. 映射:由复变函数所生成的函数族可以描述多种平面映射,如圆形映射、逆映射等。
这些映射在物理学、工程学和计算机图像处理中有重要应用。
总结:复数与复变函数是数学中重要的概念,具有多样的性质和应用。
第一章复数与复变函数一、 选择题 1.当ii z-+=11时,5075100z z z ++的值等于( )(A )i (B )i - (C )1 (D )1- 2.设复数z 满足3)2(π=+zarc ,65)2(π=-z arc ,那么=z ()(A )i 31+- (B )i +-3 (C )i 2321+-(D )i 2123+-3.复数)2(tan πθπθ<<-=i z 的三角表示式是( )(A ))]2sin()2[cos(sec θπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(sec θπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( )(A )z z z z 222≥- (B )z z z z 222=-(C )z z z z 222≤-(D )不能比较大小5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( )(A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转3π,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( )(A )2 (B )i 31+(C )i -3(D )i +37.使得22zz=成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数8.设z 为复数,则方程i z z +=+2的解是()(A )i +-43 (B )i +43 (C )i -43 (D )i --43 9.满足不等式2≤+-iz iz 的所有点z 构成的集合是( )(A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232=-+i z 所代表的曲线是()(A )中心为i 32-,半径为2的圆周(B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周(D )中心为i 32-,半径为2的圆周11.下列方程所表示的曲线中,不是圆周的为( ) (A )221=+-z z(B )433=--+z z(C ))1(11<=--a azaz(D ))0(0>=-+++c c a a z a z a z z12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ()(A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.00)Im()Im(lim0z z z z x x --→()(A )等于i (B )等于i - (C )等于0 (D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( )(A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续(C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续15.设C z ∈且1=z ,则函数zz z z f 1)(2+-=的最小值为()(A )3- (B )2- (C )1- (D )1二、填空题1.设)2)(3()3)(2)(1(i i i i i z++--+=,则=z2.设)2)(32(i i z +--=,则=z arg3.设43)arg(,5π=-=i z z ,则=z4.复数22)3sin 3(cos )5sin 5(cos θθθθi i -+的指数表示式为5.以方程i z 1576-=的根的对应点为顶点的多边形的面积为6.不等式522<++-z z 所表示的区域是曲线 的内部7.方程1)1(212=----zi iz 所表示曲线的直角坐标方程为8.方程iz i z +-=-+221所表示的曲线是连续点 和 的线段的垂直平分线9.对于映射zi =ω,圆周1)1(22=-+y x 的像曲线为10.=+++→)21(lim 421z z iz三、若复数z 满足03)21()21(=+++-+z i z i z z ,试求2+z 的取值范围.四、设0≥a,在复数集C 中解方程a z z =+22.五、设复数i z ±≠,试证21z z +是实数的充要条件为1=z 或0)(=z IM .六、对于映射)1(21zz +=ω,求出圆周4=z 的像. 七、试证1.)0(0221≠≥z z z 的充要条件为2121z z z z +=+;2.)),,2,1,,,0(021n j k j k z z z j =≠≠≥的充要条件为 nn z z z z z z +++=+++ 2121.八、若0)(lim 0≠=→A z f x x ,则存在0>δ,使得当δ<-<00z z 时有A z f 21)(>.九、设iy x z +=,试证y x z y x +≤≤+2.十、设iy x z +=,试讨论下列函数的连续性:1.⎪⎩⎪⎨⎧=≠+=0,00,2)(22z z y x xyz f 2.⎪⎩⎪⎨⎧=≠+=0,00,)(223z z y x y x z f .第二章 解析函数一、选择题: 1.函数23)(zz f =在点0=z 处是( )(A )解析的 (B )可导的(C )不可导的 (D )既不解析也不可导 2.函数)(z f 在点z 可导是)(z f 在点z 解析的( )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既非充分条件也非必要条件 3.下列命题中,正确的是( )(A )设y x ,为实数,则1)cos(≤+iy x(B )若0z 是函数)(z f 的奇点,则)(z f 在点0z 不可导(C )若v u ,在区域D 内满足柯西-黎曼方程,则iv u z f +=)(在D 内解析(D )若)(z f 在区域D 内解析,则)(z if 在D 内也解析4.下列函数中,为解析函数的是( )(A )xyi y x 222-- (B )xyi x +2(C ))2()1(222x x y i y x+-+- (D )33iy x +5.函数)Im()(2z z z f =在=z 处的导数( )(A )等于0 (B )等于1 (C )等于1- (D )不存在 6.若函数)(2)(2222x axy y i y xy x z f -++-+=在复平面内处处解析,那么实常数=a( )(A )0 (B )1 (C )2 (D )2-7.如果)(z f '在单位圆1<z 内处处为零,且1)0(-=f ,那么在1<z 内≡)(z f ( )(A )0 (B )1 (C )1- (D )任意常数 8.设函数)(z f 在区域D 内有定义,则下列命题中,正确的是(A )若)(z f 在D 内是一常数,则)(z f 在D 内是一常数(B )若))(Re(z f 在D 内是一常数,则)(z f 在D 内是一常数(C )若)(z f 与)(z f 在D 内解析,则)(z f 在D 内是一常数 (D )若)(argz f 在D 内是一常数,则)(z f 在D 内是一常数9.设22)(iy x z f +=,则=+')1(i f ( )(A )2 (B )i 2 (C )i +1 (D )i 22+ 10.ii 的主值为( )(A )0 (B )1 (C )2πe (D )2π-e11.ze 在复平面上( )(A )无可导点 (B )有可导点,但不解析 (C )有可导点,且在可导点集上解析 (D )处处解析 12.设z z f sin )(=,则下列命题中,不正确的是( ) (A ))(z f 在复平面上处处解析 (B ))(z f 以π2为周期(C )2)(iziz e e z f --=(D ))(z f 是无界的13.设α为任意实数,则α1( )(A )无定义 (B )等于1(C )是复数,其实部等于1 (D )是复数,其模等于1 14.下列数中,为实数的是( ) (A )3)1(i -(B )i cos (C )i ln (D )i e23π-15.设α是复数,则( )(A )αz 在复平面上处处解析 (B )αz 的模为αz(C )αz 一般是多值函数 (D )αz 的辐角为z 的辐角的α倍 二、填空题 1.设i f f +='=1)0(,1)0(,则=-→zz f z 1)(lim2.设iv u z f +=)(在区域D 内是解析的,如果v u +是实常数,那么)(z f 在D 内是3.导函数xv i x u z f ∂∂+∂∂=')(在区域D 内解析的充要条件为 4.设2233)(y ix y x z f ++=,则=+-')2323(i f 5.若解析函数iv u z f +=)(的实部22y x u -=,那么=)(z f6.函数)Re()Im()(z z z z f -=仅在点=z 处可导7.设z i z z f )1(51)(5+-=,则方程0)(='z f 的所有根为 8.复数ii 的模为9.=-)}43Im{ln(i 10.方程01=--ze的全部解为三、设),(),()(y x iv y x u z f +=为iyx z +=的解析函数,若记)2,2()2,2(),(izz z z iv i z z z z u z z w -++-+=,则0=∂∂z w . 四、试证下列函数在z 平面上解析,并分别求出其导数 1.;sinh sin cosh cos )(y x i y x z f -=2.);sin cos ()sin cos ()(y ix y y ie y y y x e z f x x ++-=五、设023=+-ze zw w ,求22,dzwd dz dw .六、设⎪⎩⎪⎨⎧=≠++=0,00,)()(422z z y x iy x xy z f 试证)(z f 在原点满足柯西-黎曼方程,但却不可导. 七、已知22y x vu -=-,试确定解析函数iv u z f +=)(.八、设s 和n 为平面向量,将s 按逆时针方向旋转2π即得n.如果iv u z f +=)(为解析函数,则有s v n u n v s u ∂∂-=∂∂∂∂=∂∂,(s∂∂与n∂∂分别表示沿s ,n 的方向导数). 九、若函数)(z f 在上半平面内解析,试证函数)(z f 在下半平面内解析.十、解方程i z i z 4cos sin =+.第三章 复变函数的积分一、选择题: 1.设c 为从原点沿x y =2至i +1的弧段,则=+⎰cdz iy x )(2( )(A )i 6561- (B )i 6561+- (C )i 6561-- (D )i 6561+ 2.设c 为不经过点1与1-的正向简单闭曲线,则dz z z zc⎰+-2)1)(1(为( )(A )2i π (B )2iπ-(C )0 (D )(A)(B)(C)都有可能3.设1:1=z c 为负向,3:2=z c 正向,则=⎰+=dz zzc c c 212sin ( ) (A )i π2- (B )0 (C )i π2(D )i π44.设c 为正向圆周2=z ,则=-⎰dz z zc2)1(cos ( ) (A )1sin - (B )1sin (C )1sin 2i π- (D )1sin 2i π5.设c 为正向圆周21=z ,则=--⎰dz z z z c23)1(21cos( ) (A ))1sin 1cos 3(2-i π (B )0 (C )1cos 6i π (D )1sin 2i π-6.设ξξξξd ze zf ⎰=-=4)(,其中4≠z ,则=')i f π(( )(A )i π2- (B )1- (C )i π2 (D )1 7.设)(z f 在单连通域B内处处解析且不为零,c为B内任何一条简单闭曲线,则积分dz z f z f z f z f c⎰+'+'')()()(2)( ( )(A )于i π2 (B )等于i π2- (C )等于0 (D )不能确定8.设c 是从0到i 21π+的直线段,则积分=⎰cz dz ze ( )(A )21eπ-(B) 21eπ-- (C)i e21π+(D) i e21π-9.设c 为正向圆周0222=-+x y x ,则=-⎰dz z z c1)4sin(2π( ) (A )i π22 (B )i π2 (C )0 (D )i π22-10.设c 为正向圆周i a i z ≠=-,1,则=-⎰cdz i a zz 2)(cos ( )(A )ie π2 (B )ei π2 (C )0 (D )i i cos11.设)(z f 在区域D 内解析,c 为D 内任一条正向简单闭曲线,它的内部全属于D .如果)(z f 在c 上的值为2,那么对c 内任一点0z ,)(0z f ( )(A )等于0 (B )等于1 (C )等于2 (D )不能确定 12.下列命题中,不正确的是( ) (A )积分⎰=--ra z dz az 1的值与半径)0(>r r 的大小无关 (B )2)(22≤+⎰cdz iy x ,其中c 为连接i -到i 的线段 (C )若在区域D 内有)()(z g z f =',则在D 内)(z g '存在且解析(D )若)(z f 在10<<z 内解析,且沿任何圆周)10(:<<=r r z c 的积分等于零,则)(z f 在0=z 处解析13.设c 为任意实常数,那么由调和函数22y x u-=确定的解析函数iv u z f +=)(是 ( )(A)c iz+2(B ) ic iz +2 (C )c z +2 (D )ic z +214.下列命题中,正确的是( )(A )设21,v v 在区域D 内均为u 的共轭调和函数,则必有21v v =(B )解析函数的实部是虚部的共轭调和函数 (C )若iv u z f +=)(在区域D 内解析,则xu∂∂为D 内的调和函数 (D )以调和函数为实部与虚部的函数是解析函数 15.设),(y x v 在区域D 内为),(y x u 的共轭调和函数,则下列函数中为D 内解析函数的是( ) (A )),(),(y x iu y x v + (B )),(),(y x iu y x v -(C )),(),(y x iv y x u - (D )xv i x u ∂∂-∂∂二、填空题1.设c 为沿原点0=z到点i z +=1的直线段,则=⎰cdz z 22.设c 为正向圆周14=-z ,则=-+-⎰c dz z z z 22)4(233.设⎰=-=2)2sin()(ξξξξπd zz f ,其中2≠z ,则=')3(f4.设c 为正向圆周3=z ,则=+⎰cdz zzz 5.设c 为负向圆周4=z ,则=-⎰c zdz i z e 5)(π 6.解析函数在圆心处的值等于它在圆周上的 7.设)(z f 在单连通域B 内连续,且对于B 内任何一条简单闭曲线c 都有0)(=⎰cdz z f ,那么)(z f 在B 内8.调和函数xy y x =),(ϕ的共轭调和函数为9.若函数23),(axy x y x u +=为某一解析函数的虚部,则常数=a10.设),(y x u 的共轭调和函数为),(y x v ,那么),(y x v 的共轭调和函数为三、计算积分 1.⎰=+-R z dz z z z)2)(1(62,其中1,0≠>R R 且2≠R ; 2.⎰=++22422z z z dz. 四、设)(z f 在单连通域B 内解析,且满足)(1)(1B x z f ∈<-.试证1.在B 内处处有0)(≠z f ;2.对于B 内任意一条闭曲线c ,都有0)()(=''⎰cdz z f z f 五、设)(z f 在圆域R a z <-内解析,若)0()()(max R r r M z f ra z <<==-,则),2,1()(!)()( =≤n rr M n a f nn . 六、求积分⎰=1z z dz z e ,从而证明πθθπθ=⎰0cos )cos(sin d e .七、设)(z f 在复平面上处处解析且有界,对于任意给定的两个复数ba ,,试求极限⎰=+∞→--R z R dz b z a z z f ))(()(lim并由此推证)()(b f a f =(刘维尔Liouville 定理).八、设)(z f 在)1(><R R z 内解析,且2)0(,1)0(='=f f ,试计算积分⎰=+122)()1(z dz z z f z 并由此得出⎰πθθθ202)(2cos d e f i 之值.九、设iv u z f +=)(是z 的解析函数,证明222222222))(1()(4))(1ln())(1ln(z f z f yz f xz f +'=∂+∂+∂+∂.十、若)(22y x u u +=,试求解析函数iv u z f +=)(.第四章 级 数一、选择题:1.设),2,1(4)1( =++-=n n nia n n ,则n n a ∞→lim ( ) (A )等于0 (B )等于1 (C )等于i (D )不存在 2.下列级数中,条件收敛的级数为( )(A )∑∞=+1)231(n ni (B )∑∞=+1!)43(n nn i(C ) ∑∞=1n nni (D )∑∞=++-11)1(n n n i3.下列级数中,绝对收敛的级数为( )(B )∑∞=+1)1(1n n in (B )∑∞=+-1]2)1([n nn i n (C)∑∞=2ln n nn i (D )∑∞=-12)1(n n n n i4.若幂级数∑∞=0n nnz c在i z 21+=处收敛,那么该级数在2=z 处的敛散性为( )(A )绝对收敛 (B )条件收敛 (C )发散 (D )不能确定5.设幂级数∑∑∞=-∞=01,n n n n nn znc z c 和∑∞=++011n n n z n c 的收敛半径分别为321,,R R R ,则321,,R R R 之间的关系是( )(A )321R R R << (B )321R R R >> (C )321R R R <= (D )321R R R ==6.设10<<q ,则幂级数∑∞=02n n n z q 的收敛半径=R ( )(A )q(B )q1(C )0 (D )∞+7.幂级数∑∞=1)2(2sinn n z n n π的收敛半径=R ( ) (A )1 (B )2 (C )2 (D )∞+8.幂级数∑∞=++-011)1(n n n z n 在1<z 内的和函数为(A ))1ln(z +(B ))1ln(z -(D )z+11ln(D) z-11ln9.设函数ze zcos 的泰勒展开式为∑∞=0n nn zc ,那么幂级数∑∞=0n nnz c的收敛半径=R ( )(A )∞+(B )1 (C )2π (D )π10.级数+++++22111z z z z的收敛域是( ) (A )1<z (B )10<<z (C )+∞<<z 1 (D )不存在的11.函数21z 在1-=z 处的泰勒展开式为( )(A ))11()1()1(11<++-∑∞=-z z n n n n(B ))11()1()1(111<++-∑∞=--z z n n n n(C ))11()1(11<++-∑∞=-z z n n n (D ))11()1(11<++∑∞=-z z n n n12.函数z sin ,在2π=z 处的泰勒展开式为( )(A ))2()2()!12()1(012+∞<--+-∑∞=+ππz z n n n n(B ))2()2()!2()1(02+∞<---∑∞=ππz z n n n n(C ))2()2()!12()1(0121+∞<--+-∑∞=++ππz z n n n n(D ))2()2()!2()1(021+∞<---∑∞=+ππz z n n n n13.设)(z f 在圆环域201:R z z R H <-<内的洛朗展开式为∑∞-∞=-n nnz z c)(0,c 为H 内绕0z 的任一条正向简单闭曲线,那么=-⎰c dz z z z f 20)()(( )(A)12-ic π (B )12ic π (C )22ic π (D ))(20z fi 'π14.若⎩⎨⎧--==-+= ,2,1,4,2,1,0,)1(3n n c n n n n ,则双边幂级数∑∞-∞=n nn zc 的收敛域为( )(A )3141<<z (B )43<<z (C )+∞<<z 41 (D )+∞<<z 3115.设函数)4)(1(1)(++=z z z z f 在以原点为中心的圆环内的洛朗展开式有m 个,那么=m ( )(A )1 (B )2 (C )3 (D )4 二、填空题 1.若幂级数∑∞=+0)(n nni z c在i z =处发散,那么该级数在2=z 处的收敛性为 .2.设幂级数∑∞=0n nnzc与∑∞=0)][Re(n nnz c的收敛半径分别为1R 和2R ,那么1R 与2R 之间的关系是 . 3.幂级数∑∞=+012)2(n n nz i 的收敛半径=R4.设)(z f 在区域D 内解析,0z 为内的一点,d 为0z 到D 的边界上各点的最短距离,那么当d z z <-0时,∑∞=-=00)()(n n n z z c z f 成立,其中=n c .5.函数z arctan 在0=z 处的泰勒展开式为.6.设幂级数∑∞=0n nnzc的收敛半径为R,那么幂级数∑∞=-0)12(n nn nz c 的收敛半径为 .7.双边幂级数∑∑∞=∞=--+--112)21()1()2(1)1(n n n nnz z 的收敛域为 .8.函数zzee1+在+∞<<z 0内洛朗展开式为 .9.设函数z cot 在原点的去心邻域R z <<0内的洛朗展开式为∑∞-∞=n nnz c,那么该洛朗级数收敛域的外半径=R . 10.函数)(1i z z -在+∞<-<i z 1内的洛朗展开式为 .三、若函数211z z --在0=z处的泰勒展开式为∑∞=0n nn z a ,则称{}n a 为菲波那契(Fibonacci)数列,试确定n a 满足的递推关系式,并明确给出n a 的表达式. 四、试证明 1.);(11+∞<≤-≤-z ez e e zz z2.);1()1(1)3(<-≤-≤-z ze e ze z五、设函数)(z f 在圆域R z <内解析,∑==nk kk n z k f S 0)(!)0(试证1.)()(21)(111R r z d z z f iz S n rn n n <<--=+=++⎰ξξξξξπξ.2.)()()(2)((11R r z d z f iz z S z f r n n n <<-=-⎰=++ξξξξπξ)。