当前位置:文档之家› 土壤容重、孔隙度、含水率等测定方法

土壤容重、孔隙度、含水率等测定方法

土壤容重、孔隙度、含水率等测定方法
土壤容重、孔隙度、含水率等测定方法

1.土壤含水量(含水率)测定

采用酒精燃烧法测定。

操作步聚:

(1)取小铝盒若干,洗净后烘干,用天平称出每—铝盒重量(逐一标量记录)

(2)在标准地内挖土壤剖面,分20cm 一层。在分层的土壤剖面上用铝盒自下而上刮一层土(约半盒、注意避开根系和石砾等杂物),马上称重(得出湿土重十铝盒重)

(3)倒入酒精8-12ml ,振荡铝盒使与土壤混合均匀(如土壤很湿要用小刀拌匀成泥浆),点燃酒精,在火焰将熄灭时,用小刀轻拔土壤,使其充分燃烧,烧完后再加入3~4ml 进行第二次燃烧(如土壤粘重、含水量较大,再加入2~3ml 酒精进行第三次燃烧)。

冷却后,马上称出重量(得干土重十盒重)。每层重复三次。

(4)土壤含水量及现有贮水量计算

①土壤含水量(重量)=%重(干土重+盒重)-盒干土重+盒重)(湿土重+盒重)-(100?

=水分重/干土重×l00%

②土壤含水量(体积)=)

()容重(土壤含水量(重量%)33g/cm 1g/cm ? =%土壤体积

水分体积100? (注:水的容重一般取lg /cm 3)

2.土壤物理性质测定

采用环刀法

操作步聚:

(1)首先量取环刀的高度和内径,计算出其容积(标记、做好记录):

V =πr 2H

式中:V —环刀体积(cm 3)

R —环刀内半径(cm)

H —环刀高度(cm)

将环刀在天平上称重(做好标记、记录)。

(2)选择标准地,在测定地点做一平台(山地),挖土壤剖面,分层取样测定(按20cm —层),每层设三个重复。

(3)打入环刀(一定要垂直打入,且不能晃动),待土壤至环刀下沿齐平时,在环刀上垫—滤纸层后把盖盖好,挖出环刀,用刀削平底部土壤,垫好滤纸,盖好下盖。迅速称重(得:自然土重十环刀重)

(注:第(3)步测完后马上测定该层土壤含水量,见土壤含水量测定)可测出土壤容重。

(4) 将环刀样品带回室内,拿掉上盖(保留滤纸)。将环刀放入盛水的容器中(2—3mm 水层,随水减少,逐渐加水,保持此水层)。大约2小时左右(人不能离开)至土层滤纸一湿,取出环刀(用滤纸吸干)盖好上盖马上称重(得:经浸水2小时左右带土环刀重)。然后放回原处,每隔l 小时取出反复称重,直到恒重,可测出土壤毛管孔隙度。

(5)将环刀土样继续放入盛水容器中,往容器加水至水面与环刀上层齐平。净置6小时后取出环刀。稍置10秒钟。使多余水流出,用干布将环刀擦干后称重。(得:浸水6小时带土环刀重),然后再将环刀放回容器中,放置4~5小时后,再次称重,直到恒重。可测得土壤总孔隙度。

(6)土壤物理性质指标的计算

①环刀内干土重(g)=1

g +土壤含水量(重量%))-环刀重((自然土重+环刀重) ②土壤容重(g/cm 3)=)

环刀容积()环刀内干土重(

3cm g ③土壤毛管孔隙度(容积)

=%)环刀容积())-环刀内干土重()-环刀重(小时左右带土环刀重(吸水100cm g g g 23

? ④毛管最大持水量(重量)(又称田间持水量)

= %)环刀内干土重())-环刀内干土重()-环刀重(小时左右带土环刀重(吸水100g g g g 2?

(注:在数值上土壤毛管孔隙度(%)=毛管最大持水量(%)×土壤容重(g/cm 3))

⑤土壤总孔隙度(体积)

=%)环刀容积())-环刀内干土重()-环刀重(小时左右带土环刀重(浸水100cm g g g 63

? ⑥土壤饱和含水量(重量)

=%)环刀内干土重())-环刀内干土重()-环刀重(小时左右带土环刀重(浸水100g g g g 6?

[注:在数值上,土壤总孔隙度(%)=土壤饱和持水量(%)×土壤容量(g/cm 3)]

⑦非毛管孔隙度(%)=土壤总孔隙度(体积%)—毛管孔隙度(%)

⑧土壤三相比(自然状态下单位体积土壤中所含水分、空气、固体物质百分数)

土壤固体物质%=l —总孔隙度%

土壤含水量(体积%)=土壤含水量(重量%)×容量(g/cm 3)

土壤空气含量(%)=土壤总孔隙度(%)—土壤含水量(体积%)

⑨单位面积某土层土壤毛管最大贮水量(m 3/hm 2)

=毛管孔隙度(%)×土层厚度(m)×10000m 2

单位面积某土层土壤毛管最大贮水量(mm)=毛管孔隙度(%)×土层厚度(mm)

⑩单位面积某土层饱和贮水量(m 3/hm 2)

=土壤总孔隙度(%)×土层厚度(m)×10000m2

单位面积某土层饱和贮水量(mm)=土壤总孔隙度(%)×土层厚度(mm) [注所用工具:环刀、卡尺、锨、小刀、锤子、木块、滤纸

土壤电导率的测定实验报告

竭诚为您提供优质文档/双击可除土壤电导率的测定实验报告 篇一:土壤学实验 1.1土壤样品的采集与处理 (7) 1.1.1土壤样品的采集 (7) 1.1.2土壤样品的处理 (8) 1.2土壤水分的测定 (10) 1.2.1土壤吸湿水的测定 (10) 1.2.2土壤田间持水量的测定 (10) 1.3土壤容重和孔度的测

定............................................................... . (12) 1.3.1土壤容重的测定................................................................... . (12) 1.3.2土壤孔度的测定......................................................................(:土壤电导率的测定实验报告). (12) 1.4土壤有机质的测定...................................................................14附录A土壤农化分析基本知识..........................................................119附录b土筛号与筛孔直径对照表.........................................................127附录c 电导仪温度校正系数.. (1) 28附录D折射率的温度校正及换算为可溶性固形物含量 (130) 实验一土壤样品制作 1.1土壤样品的采集与处理 土壤是农业生产的基础,土壤的理化性质直接影响农产品的数量和质量。对土壤样品进行分析,首先须对土壤样品

溶解度的测定

硝酸钾溶解度得测定(方法1:结晶析出法) 实验原理: 先设计好不同溶质与溶剂得量,称量、混合、加热、搅拌使其溶解,降温并用温度计分别测定其开始析出晶体时得温度,即所得溶液为该温度下得饱与溶液,计算该温度下得溶解度。实验用品: 托盘天平(J0160,200g,0.2g),烧杯(J6124),大试管(J6104),玻璃棒(J6453),温度计(J6071,量程0~100℃),酒精灯(J6201),量筒(J6001,10ml),方座支架(J1102,带铁圈),石棉网(J6432),药匙(J6442),试管刷(J6471),硝酸钾(化学纯),蒸馏水。 实验步骤: 一、检查实验用品就是否齐全、完好。 二、硝酸钾得称取与溶解。 1、用托盘天平分别准确称取硝酸钾3.5g、1.5g、1.5g、2.0g、2.5g,称量过程详见分组实验三得步骤二。将称好得5份硝酸钾放在实验台上,并做标记。 2.在一支大试管中加入上面称取得3.5g硝酸钾。 3.用量筒准确量取10.0m1蒸馏水,加入大试管中。 4.在水浴中加热大试管,边加热边搅拌,至硝酸钾完全溶解(水浴温度不要太高,以刚好使硝酸钾溶解为宜,否则会使下一步结晶析出操作耗时过长) 三、硝酸钾得结晶。 1.自水浴中取出大试管,插入一支干净得温度计,用玻璃棒轻轻搅拌并摩擦试管壁,同时观察温度计得读数。当刚开始有晶体析出时,立即记下此时得温度t1,并填入下表中。 2.把试管再放入水浴中加热,使晶体全部溶解,然后重复两次上述实验步骤得操作,分别测定开始析出晶体时得温度t2、t3。将读数填入表格。 四、溶解度曲线得绘制。 1.依次向试管中再加入1.5g、1.5g、2.0g、2.5g硝酸钾(使试管中依次共有硝酸钾5.0g、6.5g、8.5g、11.0g),每次加入硝酸钾后都重复溶解、结晶实验步骤得操作,并将晶体开始析出时得温度读数填人表格。

土壤容重、孔隙度、含水率等测定方法

1.土壤含水量(含水率)测定 采用酒精燃烧法测定。 操作步聚: (1)取小铝盒若干,洗净后烘干,用天平称出每—铝盒重量(逐一标量记录) (2)在标准地内挖土壤剖面,分20cm 一层。在分层的土壤剖面上用铝盒自下而上刮一层土(约半盒、注意避开根系和石砾等杂物),马上称重(得出湿土重十铝盒重) (3)倒入酒精8-12ml ,振荡铝盒使与土壤混合均匀(如土壤很湿要用小刀拌匀成泥浆),点燃酒精,在火焰将熄灭时,用小刀轻拔土壤,使其充分燃烧,烧完后再加入3~4ml 进行第二次燃烧(如土壤粘重、含水量较大,再加入2~3ml 酒精进行第三次燃烧)。 冷却后,马上称出重量(得干土重十盒重)。每层重复三次。 (4)土壤含水量及现有贮水量计算 ①土壤含水量(重量)=%重(干土重+盒重)-盒干土重+盒重)(湿土重+盒重)-(100? =水分重/干土重×l00% ②土壤含水量(体积)=) ()容重(土壤含水量(重量%)33g/cm 1g/cm ? =%土壤体积 水分体积100? (注:水的容重一般取lg /cm 3) 2.土壤物理性质测定 采用环刀法 操作步聚: (1)首先量取环刀的高度和内径,计算出其容积(标记、做好记录): V =πr 2H 式中:V —环刀体积(cm 3) R —环刀内半径(cm) H —环刀高度(cm) 将环刀在天平上称重(做好标记、记录)。 (2)选择标准地,在测定地点做一平台(山地),挖土壤剖面,分层取样测定(按20cm —层),每层设三个重复。 (3)打入环刀(一定要垂直打入,且不能晃动),待土壤至环刀下沿齐平时,在环刀上垫—滤纸层后把盖盖好,挖出环刀,用刀削平底部土壤,垫好滤纸,盖好下盖。迅速称重(得:自然土重十环刀重)

测树学复习材料

测树学 题型:填空10题40分、选择10题20分、概念10分、简答2题10分、论述2题20分 计算约占50%,参考材料结合书本复习。 第1章 伐倒木材积测定 一、树干材积测定 (1)干形:树干的形状通称干形,研究树干形状的目的是测定材积。 通式:V=f o *g o *h (2)树干横断面的计算公式为: 式中:g —树干横断面; d —树干平均直径 (3)树干纵断面 干曲线:表示树干纵断面轮廓的对称曲线通常称为干曲线。 树干纵断面形状:截顶凹曲线体、圆柱体、截顶抛物线体和圆锥体 孔兹干曲线式为:(记住符号的含义) 式中:y 一树干横断面半径; x 一树干梢头至该横断面的长度; P —参数; r —形状指数。 二、伐倒木材积的测定技术 (1)伐倒木近似求积式 ①平均断面积近似求积式 ②中央断面积近似求积式 (2)区分求积式 概念:将树干区分成若干段,分别测算各分段材积,再把各段材积合计可得全树干材积.该法称为区分求积法。在树干的区分求积中,梢端不足一个区分段的部分视为梢头,用圆锥体公式计算其材积。 式中:g '—梢头底端断面积; l '一梢头长度。 (区分段个数一般≥5 ,区分段个数越多,精度越高) 分为: 1.中央断面区分求积式V=L*∑g i +1/3g ’L ’ ''3 1l g v =2 4 g d π=2r y Px =l d d l g g V n n )2(4)(212200+=+=π2 11 22 4V g L d L π==

2.平均断面区分求积式V=[1/2(g o+g n)+∑g i]*L+1/3g n*L (关于区分求积式,若考简述只需写概念,若考论述要加上公式。) 三、直径和长度的量测误差对材积计算的影响 P v=2P d+P L 式中:P v为材积误差率,P d为直径误差率,P L为长度误差率。 ①当长度测量无误差,即P L=0时,则P v=2P d ②当直径测量无误差,即P d=0时,则P v=P L ③当长度误差率与直径误差率相等时,直径测量的误差对材积计算的影响比长度测量误差的影响大一倍。 四、伐倒木造材 (1)原条:伐倒木剥去树皮且截去直径(去皮)不足6cm的梢头部分称作原条。 (2)原木:经过造材后形成的木段称作原木。 原条测定直径2.5米处,原木测定小头去皮直径。 (3)削度:树干自下而上直径逐渐减小,其单位长度直径减少的程度称为削度。 第二章立木材积的测定P27 1、测定胸径时注意事项: ①在我国森林调查工作中,胸高位置在平地是指距地面1.3m处。在坡地以坡上方1.3m处为准。在树干解析或样木中,取在根颈以上1.3m处。 ②胸高处出现节疤、凹凸或其他不正常的情况时,可在胸高断面积上下距离相等而干形较正常处,测直径取平均数作为胸径值。 ③胸高以下分叉的树,可以当作分开的两株树分别测定每株树胸径。 ④胸高断面积不圆的树干,应测相互垂直方向的胸径取其平均数。 2、胸高形数与实验形数关系 树干材积与比较圆柱体体积之比称为形数。 胸高形数:以胸高断面积为比较圆柱体的横断面的形数,以f1.3表示。(优点:测定容易(胸高断面是确定的)缺点:不能脱离树高单株反映干形)实践上作用:作为立木材积的换算系数V=G*H*F。 正形数:树干材积与树干某一相对高处的比较圆柱体的体积之比,记为f n。(消除胸高形数的缺点,其优缺点与胸高形数相反。) 实验形数:实验形数的比较圆柱体的断面积为胸高断面积,其高度为树高(h)加3m。(已知f1.3、H,可算出实验形数。) 3、立木材积三要素 胸高形数f1.3、胸高断面积g1.3、全树高h 4、形率 胸高形率:树干中央直径(d1/2)与胸径(d1.3)之比称之为胸高形率。表达式q2=(d1/2)/ d1.3形数与形率的关系: ①f1.3=q22前提条件是把树干当作抛物线体。 ②f1.3=q2-c前提条件树干抛物线体,且树高在18m以上。 ③形数、形率、树高有关系:在形率相同时,树干的形数随树高的增加而减小;在树高相同时则形数随形率的增加而增加。 5、用形率法求立木材积:根据形数与形率之间的关系推算胸高形数,再按下式计算单株立木材积:V=g1.3*h*f1.3 6、望高法(记住两个概念) 望点:树干上部直径恰好等于1/2胸径处的部位称作望点。

岩石孔隙度的测定

岩石孔隙度的测定 一、实验目的 1.巩固岩石孔隙度的概念,掌握其测定原理; 2.掌握气测孔隙度的流程和操作步骤。 二、实验原理 根据玻义尔定律,在恒定温度下,岩心室体积一定,放入岩心室岩样的固相体积越小,则岩心室中气体所占的体积越大,与标准室连通后,平衡压力就越低;反之,当放入岩心室内的岩样体积越大,平衡压力越高。 绘制标准块的体积(固相体积)与平衡压力的标准曲线,测定待测岩样平衡压力后,根据标准曲线反求岩样的固相体积。按下式计算岩样的孔隙度: 三、实验流程 (a)流程图 (b)控制面板 图1 QKY-Ⅱ型气体孔隙度仪 四、实验操作步骤 1.用游标卡尺测量各个钢圆盘和岩样的直径与长度(为了便于区分,将钢圆盘从小到大编号为1、2、3、4),并记录在数据表中; 2.将2号钢圆盘装入岩心杯,并把岩心杯放入夹持器中,顺时针转动T形转柄,使之密封。打开样品阀及放空阀,确保岩心室气体压力为大气压; 3.关样品阀及放空阀,开气源阀和供气阀。调节调压阀,将标准室气体压力调至某一值,如560kPa。待压力稳定后,关闭供气阀,并记录标准室气体压力; 4.开样品阀,气体膨胀到岩心室,待压力稳定后,记录平衡压力; 5.发开放空阀,逆时针转动T形转柄,将岩心杯向外推出,取出钢圆盘;

6.用同样的方法将3号、4号及全部(1~4号)钢圆盘装入岩心杯中,重复步骤2~5,记录平衡压力; 7.将待测岩样装入岩心杯中,按上述方法测定装岩样后的平衡压力; 8.将上述数据填入原始记录表 五、实验数据处理 1.计算各个铜圆盘体积和岩样的外表体积 取编号为2的钢圆盘进行分析,其直径d=2.50cm,长度L=2.030cm; 所以,由得: 同理,可得表1中V f数据。 2.绘制标准曲线:以钢圆盘体积为横坐标,相应的平衡压力为纵坐标绘制标准曲线,并根据待测岩样测得的平衡压力,在标准曲线上反查出岩样的固相体积 由下表1中数据,可绘制标准曲线图如下: 图2 标准曲线图 所以,有上图2得:岩样固相体积V s=25.0cm3 4.计算岩样孔隙度 所以岩样孔隙度为20.10% 钢圆盘编 号2号3号4号1-4号 自由组合钢圆盘岩样编号 2,4 3,4 2,3,4 A15-1B 直径 d(cm) 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.482 长度 L(cm) 2.030 2.484 5.000 10.014 7.030 7.484 9.514 6.468 体积V f9.96 12.19 24.54 49.16 34.51 36.74 46.70 31.29

土壤电导率测定方法(精)

土壤电导率测定方法 土壤电导率是测定土壤水溶性盐的指标, 而土壤水溶性盐是土壤的一个重要属性, 是判定土壤中盐类离子是否限制作物生长的因素。上壤中水溶性盐的分析, 对了解盐分动态, 对作物生长的影响以及拟订改良措施具有十分重要的意义。土壤水溶性盐的分析一般包括全盐量测定, 阴离子 (Cl - 、 SO 2- 3 、 CO 2- 3 、 HCO - 3 、 NO - 3 和阳离子 (Na + 、 K + 、 Ca 2+ 、 Mg 2+ 的测定, 并常以离子组成作为盐碱土分类和利用改良的依据。下面把测定方法告诉你, 你应该更能理解土壤电导率与土壤性质的关系了。 测定方法为: 1 实验方法、原理 土壤水溶性盐的测定分水溶性盐的提取和浸出液盐分的测定两部分。在进行土壤水溶性盐提取时应特别注意水土比例、振荡时间和提取方式, 它们对盐分溶出量都有一定影响。目前在我国采用 5 :1 浸提法较为普遍。盐分的测定主要采用电导法和烘干法,其中以电导法较简便,快速,烘干法较准确,但操作繁琐费时。本实验采用水土比 5 :1 浸提,电导法测定水溶性盐总量。电导法测定原理是土壤水溶性盐是强电解质, 其水溶液具有导电作用, 在一定浓度范围内, 溶液的含盐量与电导率呈正相关, 因此通过测定待测液电导率的高低即可测出土壤水溶性盐含量。 2 仪器试剂 250ml 三角瓶,漏斗、电导仪、电导电极。 0.01M KCl , 0.02M KCL 标准溶液。 3 操作步骤 土壤水溶性盐的提取, 称取过 1mm 筛风干土 20.00g , 置于 250ml 干燥三角瓶中,加入蒸馏水 100m1( 水土比 5 :1 ,振荡 5 分钟,过滤于干燥三角瓶中,需得到清壳滤

实验6 电导法测定难溶盐的溶解度

实验10 电导法测定难溶盐的溶解度 一、实验目的 1. 掌握电导法测定难溶盐溶解度的原理和方法。 2. 学会电导率仪的使用方法。 二、基本原理 第二类导体导电能力的大小,常以电阻的倒数表示,即电导: (10.1) 式中G称为电导,单位是西门子S、 导体的电阻与其长度成正比,与其截面积成反比,即: (10.2) 是比例常数,称为电阻率或比电阻。根据电导与电阻的关系,则有: (10.3) k称为电导率或比电导,它相当于两个电极相距1m,截面积为导体的电导,其单位是。 对于电解质溶液,若浓度不同,则其电导亦不同。如取1mol电解质溶液来量度,即可在给定条件下就不同电解质来进行比较。1mol电解质全部置于相距为1m的两个电极之间,溶液的电导称之为摩尔电导,以Λ表示之。如溶液的浓度以C表示,则摩尔电导可以表示为: (10.4) 式中Λm的单位是;C的单位是。Λm的数值常通过溶液的电导率k,经(10.4)式计算得到。而k与电导G有下列关系,由(10.3)式可知: (10.5) 对于确定的电导池来说,是常数,称为电导池常数。电导池常数可通过测定已知电导率的电解质溶液的电导(或电阻)来确定。

溶液的电导常用惠斯顿电桥来测定,线路如图10.1所示。其中S为信号发生器;R1、R2和R3是三个可变电阻,R x为待测溶液的阻值;H为检流计,C1是与R1并联的一个可 变电容,用于平衡电导电极的电容。测定时,调节R1、R2、R3和C1,使检流计H没有电流通过。此时,说明B、D两点的电位相等,有下面的关系式成立: (10.6) Rx的倒数即为该溶液的电导。 本实验测定硫酸铅的溶解度。直接用电导率仪测定硫酸铅饱和溶液的电导率(K溶液)和配制溶液用水的电导率(K水)。因溶液极稀,必须从溶液的电导率(K溶液)中减去水的电导率(K水),即为: K硫酸铅=K溶液-K水(10.7) 根据10.4式,得到: (10.8) 式中:C是难溶盐的饱和溶液的浓度。由于溶液极稀,Λm可视为Λm∞。因此: (10.9) 硫酸铅的极限摩尔电导可以根据数值求得。因温度对溶液的电导有影响,本实验在恒温下测定。 电导测定不仅可以用来测定硫酸铅、硫酸钡、氯化银、碘酸银等难溶盐的溶解度,还可以测定弱电解质的电离度和电离常数,盐的水解度等。 三、仪器和试剂 仪器:恒温槽,电导率仪,电炉一个,锥形瓶两只,试管三支,电导电极。 试剂:二次蒸馏水配制 四、操作步骤

土含水率的检测方法汇总

土的含水量试验(烘干法、酒精燃烧法)土的含水量试验(烘干法、酒精燃烧法) 烘干法 一、定义 土的含水量是在105-110℃下烘至恒量时所失去的水分质量和达恒量后干土质量的比值,以百分数表示,本法是测定含水量的标准方法。 二、适用范围 粘质土、粉质土、砂类土和有机质土类。 三、主要仪器设备 烘箱:可采用电热烘箱或温度能保持105-110℃的其他能源烘箱,也可用红外线烘箱 天平:感量0.01g。 称量盒(定期调整为恒质量) 四、计算公式 含水量=(湿土质量-干土质量)/干土质量×100% 注:计算至0.1%。 五、允许差值 本试验须进行二次平行测定,取其平均算术平均值,允许平行差值应符合如下规定 含水量(%)允许平行差值(%) 5以下0.3 40以下≤1 40以上≤2 酒精燃烧法 一、适用范围 本法适用于快速简易测定细粒土(含有机质的除外)的含水量。 二、主要仪器设备 称量盒(定期调整为恒质量)。 天平:感量0.01g。 酒精:纯度95%。 三、其余同"烘干法" 土的颗粒分析试验(筛分法、比重计法) 筛分法 一、适用范围 适用于分析粒径大于0.074mm的土。 二、主要仪器设备 标准筛:粗筛(圆孔):孔径为60mm、40mm、20mm、10mm、5mm、2mm;细筛:孔径为

2mm、0.5mm、0.25mm、0.074mm。 天平:称量5000g,感量5g; 称量1000g,感量1g; 称量200g,感量0.2g。 三、试样 从风干、松散的土样中,用四分法按照下列规定取出具有代表性的试样: 小于2mm颗粒的土100-300g。 最大粒径小于10mm的土300-900g。 最大粒径小于20mm的土1000-2000g。 最大粒径小于40mm的土2000-4000g。 最大粒径大于40mm的土4000g以上。 四、计算公式 按下式计算小于某粒径颗粒质量百分数: X=(A/B)×100 式中:X-小于某粒径颗粒的质量百分数,%; A-小于某粒径的颗粒质量,g; B-试样的总质量,g。 当小于2mm的颗粒如用四分法缩分取样时,试样中小于某粒径的颗粒质量占总质量的百分数:X=(a/b)×p×100 式中:a-通过2mm筛的试样中小于某粒径的颗粒质量,g; b-通过2mm筛的土样中所取试样的质量,g; p-粒径小于2mm的颗粒质量百分数。 关于不均匀系数的计算: Cu=d60/d10 式中:Cu-不均匀系数; d60-限制粒径,即土中小于该粒径的颗粒质量为60%的粒径,mm; d10-有效粒径,即土中小于该粒径的颗粒质量为10%的粒径,mm; 比重计法 一、适用范围 本法适用于分析粒径小于0.074mm的土。 二、主要仪器设备 比重计:(1)甲种比重计:刻度单位以摄氏20℃时,每1000 ml悬液内所含土质量的克数表示,刻度为-5~50,最小分度值为0.5。 (2)乙种比重计:刻度单位以摄氏20℃时悬液的比重表示,刻度为 0.995~1.020,最小分度值为0.0002。 量筒:容积为1000ml,内径为60mm,高度为350±10mm,刻度为0~1000ml。 细筛:孔径为2mm,0.5mm,0.25mm; 洗筛:孔径为0.074mm。 天平:称量100g,感量0.1g; 称量100g(或200g),感量0.01g。 温度计:测量范围0~50℃,精度0.5℃。 洗筛漏斗:上口径略大于洗筛直径,下口直径略小于量筒直径。 煮沸设备:电热板或电砂浴。 搅拌器:底板直径50mm,孔径约3mm。 三、试样

测树cha02

第二章林分调查 第一节林分调查因子 第二节标准地调查 第一节林分调查因子 本节重点: 概念 本节目录 一.林分 二.林分调查因子 一、林分Stand 将大面积的森林按其本身的特征和经营管理的需要, 区划成若干个 内部结构相同 且与四周相邻部分有显著区别的小块森林, 这种小块森林称为林分。 二、林分调查因子 林分调查因子 一.Stand description factor 二.能反映林分数量和质量特征的因子 林分调查因子 林分起源 林层(林相) 树种组成 林分年龄 平均胸径 平均高 林分密度 立地质量 林分蓄积量 林木质量 (一)Stand origin 1.分类 天然林 natural stand(forest) 人工林 artificial stand (planted forest) 飞播林:单列,或人工 2.确定 1)访问,考察已有资料 2)现地:林分特征 1.意义 (二)Storey 1.定义 林分中乔木树种的树冠所形成的树冠层次。 2.分类 单层林 single-storied stand 复层林 multi-storied stand

3.表示 4.划分标准 2、分类 ①单层林single-storied stand 明显地只具有一个林层 同龄、喜光的纯林、立地差 ②复层林multi-storied stand 具有两个或两个以上明显林层 3、表示 上→下,Ⅰ→Ⅱ→Ⅲ(罗马数字)… 主林层:蓄积量最大,经济价值最高的林层 次林层 4、划分标准 《森林资源规划设计调查主要技术规定》(2003)中规定划分林层的标准是: (1)各林层每公顷蓄积量大于30m3; (2)相邻林层间林木平均高相差20%以上; (3)各林层平均胸径在8cm以上; (4)主林层郁闭度大于0.3,其它林层郁闭度大于0.2。 (三)Species Composition 1.定义 组成林分的树种成分 林分内各林层、各树种蓄积量所占的比重 2.树种组成系数 某树种的M(或G)/林分总M(或总G) 3.写法 4.应用 5.分类 5、分类 ①纯林 pure stand 由一个树种组成的的林分 ②混交林 mixed stand 由两个或更多个树种组成的林分 实践上65% 4、写法 ①十分法表示 ②复林层分林层写 ③优势树种写在前 优势树种:蓄积量比重最大的树种 ④M相等,主要树种写在前 主要树种:或目的树种,在一个地区既定的立地条件下,最适合经营目的的树种。 ⑤组成系数2%≤ <-5%“+”表示

孔隙度测定

一.孔隙度定义: 岩石的总体积V b ,是由孔隙的体积V p 及固体颗粒体积(基质体积)V s 两部分组成。孔隙度(?)是指岩石中孔隙体积V p 与岩石总体积V b 的比值。表达式为 ?=V p V b ×100% 它是说明储集层储集能力的相对大小的基本参数。 二.孔隙度的分类 1.岩石的绝对孔隙度(?a ) 岩石的绝对孔隙度(?a )指掩饰的总孔隙体积(V a )与岩石外表体积(V b )之比,即 ?a =V a V b ×100% 2.岩石的有效孔隙度(?e ) 有效孔隙度是指岩石中有效孔隙的体积(V e )与岩石外表体积(V b )之比,即: ?e =V e V b ×100% 计算储量和评价油气层特性时一般之有效孔隙度。 3.岩石的流动孔隙度(?f ) 微毛细管孔隙虽然彼此连通,但未必都能让流体流过。例如对于喉道半径极小的孔隙来说,通常的开采压差难以使流体流过;亲水岩石孔壁表面附着的水膜使得孔隙通道大大缩小。所以流动孔隙度是指含油岩石中,可流动的孔隙体积(V f )与岩石外表体积(V b )之比,即: ?f =V f b ×100% 流动孔隙度与有效孔隙度不同,它既排除了死孔隙,又排除了微毛细管孔隙体积。流动孔隙度不是一个定值,它随地层中的压力梯度和液体的物理化学性质而变化。在油气田开发中,流动孔隙度具有一定的实用价值。 三者的关系为:绝对孔隙度>有效孔隙度>流动孔隙度 三.孔隙度分级标准 四.双重介质岩石空孔隙度 双重孔隙介质储层具有两种孔隙系统。第一类是岩石颗粒之间的孔隙空间构成的粒间孔隙构成的孔隙度,称为原生孔隙度;第二类是裂缝和空洞的空隙空间形成的系统构成的孔隙度,称为次生孔隙度。 总孔隙度?t 、裂缝孔隙度?f 和岩石原生孔隙度?p 之间有如下关系: ?p =?p +?f

土壤理化性质分析方法

测定土壤理化指标有很多标准文件,部分指标有国家标准,部分用农业行业标准,由于指标太多,故列出土壤测定的一些方法,通过方法可以搜索到行业标准或国家标准的具体内容,供参考: 土壤质地国际制;指测法或密度计法(粒度分布仪法)测定 土壤容重环刀法测定 土壤水分烘干法测定 土壤田间持水量环刀法测定 土壤pH土液比1:2.5,电位法测定 土壤交换酸氯化钾交换——中和滴定法测定 石灰需要量氯化钙交换——中和滴定法测定 土壤阳离子交换量EDTA-乙酸铵盐交换法测定 土壤水溶性盐分总量电导率法或重量法测定 碳酸根和重碳酸根电位滴定法或双指示剂中和法测定 氯离子硝酸银滴定法测定 硫酸根离子硫酸钡比浊法或EDTA间接滴定法测定 钙、镁离子原子吸收分光光度计法测定 钾、钠离子火焰光度法或原子吸收分光光度计法测定 土壤氧化还原电位电位法测定。 土壤有机质油浴加热重铬酸钾氧化容量法测定 土壤全氮凯氏蒸馏法测定 土壤水解性氮碱解扩散法测定 土壤铵态氮氯化钾浸提——靛酚蓝比色法(分光光度法)测定 土壤硝态氮氯化钙浸提——紫外分光光度计法或酚二磺酸比色法(分光光度法)测定 土壤有效磷碳酸氢钠或氟化铵-盐酸浸提——钼锑抗比色法(分光光度法)测定 土壤缓效钾硝酸提取——火焰光度计、原子吸收分光光度计法或ICP法测定 土壤速效钾乙酸铵浸提——火焰光度计、原子吸收分光光度计法或ICP法测定 土壤交换性钙镁乙酸铵交换——原子吸收分光光度计法或ICP法测定 土壤有效硫磷酸盐-乙酸或氯化钙浸提——硫酸钡比浊法测定 土壤有效硅柠檬酸或乙酸缓冲液浸提-硅钼蓝比色法(分光光度法)测定 土壤有效铜、锌、铁、锰DTPA浸提-原子吸收分光光度计法或ICP法测定 土壤有效硼沸水浸提——甲亚胺-H比色法(分光光度法)或姜黄素比色法(分光光度法)或ICP法测定 土壤有效钼草酸-草酸铵浸提——极谱法测定 全量铅、镉、铬干灰化法处理——原子吸收分光光度计法或ICP法测定 全量汞湿灰化处理——冷原子吸收(或荧光)光度计法 全量砷干灰化处理——共价氢化物原子荧光光度法或ICP法测定

郁闭度及其测定方法

郁闭度及其测定方法 郁闭度及其测定方法2010-05-21 16:24郁闭度及其测定方法郁闭度是森 林资源调查中的一个重要调查因子,也是一个反映森林结构和森林环境的重要因子。在森林经营管理中,郁闭度作为小班区划、确定抚育采伐强度的重要指标, 并成为通过遥感图像进行森林蓄积量估测不可或缺的因子。郁闭度也是判定森 林的重要因子,我国《森林资源规划设计调查主要技术规定》中规定有林地的技术标准为郁闭度0.2以上(包括0.2),FAO对森林的定义也要求郁闭度大于10%, 森林的判定需要更为准确的郁闭度测定。然而,长期以来,郁闭度的基本内涵与 调查方法却没有受到足够的重视,存在着概念模糊、测定方法粗放等问题,不能 满足林业生产与生态建设的需要。 郁闭度是描述森林生态系统的状态与环境指标的最重要的特征之一。近年来,与郁闭度及其测定方法研究与应用相关的森林经营管理与生态研究不断深入,郁闭度也受到更多的关注与重视。郁闭度在水土流失、水源涵养、林分质量评价、森林景观建设等方面得到广泛的应用,并应用于林中光照研究、幼苗形态与解剖的影响、与溪流温度相关的森林经营管理、反映垂直和水平森林结构的林 冠多样性指数、与野生动植物生境相关的森林经营管理如在斑点猫头鹰、鹟鸟 栖息的森林管理等方面。同时,随着研究和应用的深入,对于郁闭度概念的认识、调查方法与仪器等的研究也在不断地完善和发展。但是,国内对郁闭度的基本内涵、测定方法与仪器等方面的研究报道甚少,在一定程度上制约了林业生产与生态研究的发展。 郁闭度是反映林分结构和密度的重要指标。由于应用领域与目的不同,与郁闭度相近或相似的概念很多,但概念的内涵并不明确,在某些情况下会造成混淆 甚至错误。在林学与生态中,从用途与调查方式上来看,与郁闭度相关的概念主 要有盖度(coverage)、透光孔隙度(canopy openness)、林冠密度(canopy density)、林冠开阔度(canopy openness)等。林冠的投影面积与林地面积之比称为郁闭度,其可以反映树冠的闭锁程度和树木利用生活空间的程度。由于树冠重叠,调查时要注意到林冠的投影面积并不总是等于林分中树冠的投影面积之和。

岩石孔隙度测定

中国石油大学(油层物理)实验报告 实验日期 成绩: 班级 学号: 姓名: 教师: 同组者 实验一 岩石孔隙度的测定 一. 实验目的 1. 掌握气测孔隙度的流程和操作步骤。 2. 巩固岩石孔隙度的概念,掌握其测定原理。 二.实验原理 根据玻义尔定律,在恒定温度下,岩心室一定,放入岩心 杯岩样的固相(颗粒)体积越小,则岩 心室中气体所占体积越大,与标准室连通后,平衡压力越低;反之,当放入岩心室内的岩样固相体 积越大,平衡压力越高。根据平衡压力的大小就可测得岩样的固相体积。 %100?=-f s f V V V φ 测定岩石骨架体积可以用①气体膨胀法 )12(211)(V V Vo P V P Vs Vo Po +-=+- ②气体孔隙度仪 三.实验流程

(a)流程图 仪器有下列部件组成: 1气源阀:供给孔隙度仪调节器低于1000Pa的气体,当供气阀开启时,调节器通过常泄,使压力保持恒定。 2调节阀:将1000Pa的气体压力准确地调节到指定压力(小于1000Pa)。 3供气阀:连接经调节阀调压后的气体到标准室和压力传感器。 4压力传感器:测量体系中气体压力,用来指示准确标准室的压力,并指示体系 的平衡压力。 5样品阀:能使标准室内的气体连接到岩心室。 6放空阀:使岩心室中的初始压力为大气压,也可使平衡后的岩心室与标准室的气体放入大气。 图1-1 QKY-Ⅱ型气体孔隙度仪流程图及外观图 图1-1 QKY-Ⅱ型气体孔隙度仪流程图及外观图 四.实验步骤 1.将钢圆盘从小到大编号为1、2、3、4; 2.用游标卡尺测量各个钢圆盘和岩样的直径与长度,并记录在数据表 中; 3.打开样品阀及放空阀,确保岩心室气体为大气压; 4.将2号钢圆盘装入岩心杯,并把岩心杯放入夹持器中,顺时针转动T 形转柄,使之密封。 5.关样品阀及放空阀,开气源阀、供气阀,调节调压阀,将标准室压 力调至某一值,如560kPa。待压力稳定后,关闭供气阀,并记录标准室气体压力。 6..开样品阀,气体膨胀到岩心室,待压力稳定后,记下此平衡压力。 7.开放空阀至大气压,关样品阀,逆时针转动T形转柄一周,将岩心 室向外推出,取出钢圆盘。 8.用同样方法将3号、4号、全部(1号-4号)及两两组合的三组钢 圆盘装入岩心室中,重复步骤2-5,记下平衡压力。

常规土壤检测项目及方法 土壤检测机构

常规土壤检测项目及方法土壤检测机构 1.水解性氮(碱解氮)LY/T1229-1999《森林土壤水解性氮的测定》。碱解-扩散法。如果测定值>200mg/kg,允许绝对偏差<10mg/kg;测定值200mg/kg~50mg/kg,允许绝对偏差10mg/kg~ 2.5mg/kg;测定值<50mg/kg,允许绝对偏差<2.5mg/kg。用1.8mol/L氢氧化钠处理土壤,土壤于碱性条件下水解,使易水解态氮转化为氨态氮,由硼酸吸收,用标准酸滴定计算碱解氮的含量。 2.全氮NY/T53-1987《土壤全氮测定法》。半微量凯氏法。平行测定结果的允许差:土壤含氮量>0.1%时,不得>0.005%,含氮0.1-0.06%时,不得>0.004%,含氮<0.06%时,不得>0.003%。土壤中的全氮在硫酸铜、硫酸钾与硒粉的存在下,用浓硫酸消煮,各种含氮有机化合物经过高温分解转化为铵态氮,然后用氢氧化钠碱化,加热蒸馏出氨,经硼酸吸收,用标准酸滴定其含量。 3.全磷LY/T1232-1999《森林土壤全磷的测定》。酸溶-钼锑抗比色法。测定值>2g/kg,绝对偏差>1016g/kg;测定值2g/kg~1g/kg,绝对偏差0.06~0.03g/kg;测定值<1,绝对偏差<0.03。以硫酸-高氯酸溶解土壤中的磷,用钼锑抗比色法测定。 4.有效磷L Y/T1233-1999《森林土壤有效磷的测定》。 4.1盐酸-硫酸浸提法。测定值>25mg/kg,绝对偏差>2.5mg/kg;测定值25mg/kg~10mg/kg,绝对偏差2.5mg/kg~1.0mg/kg;测定值<10mg/kg~2.5mg/kg,绝对偏差 1.0mg/kg~0.5mg/kg,测定值<2.5mg/kg,绝对偏差<0.5mg/kg。盐酸和硫酸溶液浸提法:用盐酸和硫酸的混合溶液浸提溶解出土壤中的磷酸铁、铝盐,再用钼锑抗比色法可以测定出浸提液中的磷。 4.20.5mol/L碳酸氢钠浸提法。测定值>25mg/kg,绝对偏差>2.5mg/kg;测定值25mg/kg~10mg/kg,绝对偏差2.5mg/kg~1.0mg/kg;测定值<10mg/kg~2.5mg/kg,绝对偏差1.0mg/kg~0.5mg/kg,测定值<2.5mg/kg,绝对偏差<0.5mg/kg。碳酸氢钠浸提土壤,可以抑制溶液中的钙离子活度,使某些活性较大的碳酸钙被浸提出来,同时也可使活性磷酸铁、铝盐水解被浸出,浸出液中的磷不会次生沉淀,可用钼锑抗比色法定量。 5.有效磷NY/T149-1990《石灰性土壤有效磷测定方法》。碳酸氢钠浸提-钼锑抗比色法。平行测定结果的允许差:测定值<10mg/kg P时,绝对差值<0.5mg/kg P;测定值为10-20mg/kg P时,绝对差值<1.0mg/kg P;测定值>20mg/kg P时,相对差<5%。用0.5mol/L碳酸氢钠浸提土壤有效磷。碳酸氢钠可以抑制溶液中Ca2+离子的活度,使某些活性较大的磷酸钙盐被浸提出来;同时液可以使活性磷酸铁、铝盐水解二被浸出。浸出液中的磷不致次生沉淀;可

实训5 药物溶解度测定

实训5 药物溶解度测定 一、目的要求 1.了解药典对药物近似溶解度的规定。 2.理解药物结构特点(极性)与溶解性的关系。 3.了解CTC的形成对药物溶解度的影响及CTC在药剂学中的应用。 二、实验原理 药物的溶解度是指在一定的温度下,在一定体积的溶剂中药物形成饱和溶液时的浓度。溶解度的大小,表明一种药物在某一种溶剂中被分散的难易程度。药物溶解时,药物的分子结构不会改变,是一种物理性质。 溶剂一般分为三类:以水为代表的极性溶剂、以甲醇和乙醇为代表的亲水性有机溶剂和以苯、石油醚为代表的亲脂性有机溶剂。溶解的经验规则:相似相溶。 为了适应某种制剂的要求而将药物制成盐或加入助溶剂形成电子转移复合物(CTC),这是增加药物在水中溶解度的常用方法。 三、实验方法 (一)不同药物在水中的溶解度测定 1.“极易溶”药物的溶解:称取1.50克的药物于合适的试管中,加入纯化水1.0~1.5毫升,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 2.“易溶”药物的溶解:称取1.0克的药物于合适的试管中,加入纯化水1.0~10毫升,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 3.“溶解”药物的溶解:称取0.1克的药物于合适的试管中,加入纯化水1.0~3.0毫升,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 4.“略溶”药物的溶解:称取0.1克的药物于合适的试管中,加入纯化水3.0~10.0毫升,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 5.“微溶”药物的溶解:称取0.1克的药物于合适的试管中,加入纯化水10.0~100.0毫升,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 (注:以上实验是根据药典对药物溶解度定义设计的,药物在所加的溶剂范围内均可溶解,实验时原则上加入最小溶剂量即可,如果出现不溶的现象,则可能是药物的纯度差、药物的称量和溶剂的取量不准确等因素引起。将实验结果折算为标准溶解度。) (二)同一种药物在不同溶剂中的溶解度测定 1.取三支试管,一支加入0.01克的维生素C,加入乙醚10.0毫升,另两支均加入0.1克的维生素C,再分别加入10.0毫升乙醇和1.0毫升纯化水,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 2.取三支试管,一支加入0.1克的水杨酸,加入纯化水10.0毫升,另两支均加入0.1克的水杨酸,再分别加入1.0毫升乙醇和1.0毫升丙酮,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 思考题: 1.药物的极性与药物在水中的溶解性有什么关系? 2.什么是药物溶解度? 3.简述药典对药物近似溶解度的规定和溶解度的实验方法。 1

土壤含水量测定方法小结

土壤含水量测定方法小结 1,烘干称重; 这个不多说了。准确度最高,但测定得到的是质量含 水量,与其他方法所得数据进行比较是注意换算。 2,中子仪; 技术比较成熟,准确性极高,是烘干法以外的第二标 准方法。 但是中子仪测定需要安装套管,理论上可达任何深度,设备昂贵,投入很大。中子射线对操作者身体有损害,严格来说需要相关证件才可以操作。无法测定表层土 壤。 3,电阻法; 一般使用石膏块作为介质埋设地下,石膏块中埋设两根导线,导线之间的石膏成分组成电阻,石膏块电阻与土壤含水量相关。石膏块制作简单,哪怕进口的成品成本也是非常低廉,可以作很多重复,可以不破坏土壤在田间连续自动监测。存在问题,石膏块滞后时间较长,所以不可能用来做移动式测定和自动灌溉系统。石膏块只适合用于非盐碱土壤中,同时石膏块不适合使用直流电(文献查得,表示怀疑,因为所有的石膏块读书表都是用干电池作为电源),测定受土壤类型影响很大,标定结果会随时间改变,达到一定年 限后,石膏会逐渐溶解到土壤中。 4,TDR(Time Domain Reflectometry) TDR有两种时域反射仪和时域延迟,两者均简称TDR。TDR技术是当前土壤水分测定装置的主流原理,可以连续、快速、准确测量。可以测量土壤表层含

水量。一般的TDR原理的设备响应时间约10-20秒,适合移动测量和定点监测。测定结果受盐度影响很小,TDR缺点是电路比较复杂,设备较昂贵。 5,FDR(Frequency Domain Reflectometry)几乎具有TDR的所有优点,探头形状非常灵活。比较夸张的甚至可以放在做成犁状放在拖拉机后面运动中 测量。FDR相对TDR需要更少的校正工作。 TDR和FDR同样有一个缺点,当探头附近的土壤有空洞或者水分含量非常不均匀时,会影响测定结果。 非常奇怪的是,基于FDR原理的往往是低端的仪器设备,根据笔者实际使用经验,FDR技术可能在精度上存在瓶颈,经常在5%的误差左右,写文章时候数据基本上不好用。

土壤生理生化参数测定方法大全

土壤过氧化氢酶活性的测定 土壤过氧化氢酶,高锰酸钾滴定法(周礼恺,张志明.土壤酶活性的测定方法[J].土壤通报,1980,11(5):37-38.) (1)所用试剂 ①0.3%的过氧化氢(现配):1ml过氧化氢(30%)定容至100ml ② 1.5M硫酸:80ml浓硫酸定容至1L ③0.02M高锰酸钾(最多保存2周):3.16g高锰酸钾定容至1L (2)测定步骤 ①取2g过1mm筛的风干土样,置于100ml锥形瓶中,然后注入40ml蒸馏水和5ml0.3%过氧化氢。另设对照(往瓶中注入40ml蒸馏水和5ml0.3%过氧化氢,不加土样)。 ②将瓶塞紧,置于120次/分钟往返式摇床上(温度调至25度,放干水),震荡20min。停止震荡,注入5ml1.5M硫酸以终止反应。将瓶中内容物用定量滤纸过滤。 ③取25ml滤液用0.02M高锰酸钾滴定至微红色。(对照,将5ml0.3%过氧化氢与40ml水、5ml1.5M的硫酸混合,取25ml该混合液,用0.02M的高锰酸钾滴定至微红色)。 (3)结果计算 从用于滴定原始的过氧化氢所消耗的高锰酸钾的量(A)中,减去用于滴定土壤滤液的高锰酸钾的量(B),获得的差(考虑高锰酸钾滴定度的校正值T)即为土壤的过氧化氢酶活性:(A-B)﹡T。 过氧化氢酶活性以20min1g干土的0.02M 的高锰酸钾的ml数表示,单位0.02M MnkO4ml/20min·g

蔗糖酶,3,5二硝基水杨酸比色法(关松荫.土壤酶及其研究法[M].北京:农业出版社,1986:275-276.) (1)所用试剂 ①3,5二硝基水杨酸溶液:称2.5g二硝基水杨酸,溶于100ml2M氢氧化钠(8gNaOH溶 于100ml水)和250ml水中,再加150g酒石酸钾钠,用水稀释至500ml(不能超过7d)②PH5.5磷酸缓冲液:1/15 mol/L磷酸氢二钠(23.87 g Na2HPO4·12H2O溶于1 L蒸馏水 中)25mL加1/15 mol/L磷酸二氢钾(9.078 g KH2PO4 溶于1 L蒸馏水中)475mL即成。 ③8%蔗糖溶液:8g蔗糖用蒸馏水定容至100ml ④甲苯 ⑤标准葡萄糖溶液:将葡萄糖先在50-58 ℃条件下,干燥至恒重。然后取500 mg溶于100 mL苯甲酸溶液中(5 mg/mL),即成标准葡萄糖溶液。再用标准液制成1 mL含0.3-1.3 mg 葡萄糖的工作溶液。(即吸取5mg/ml的标准液3、5、7、9、11、13ml定容至50ml)标准曲线绘制:取1ml不同浓度的工作液,并按与测定蔗糖酶活性同样的方法进行显色,比色后以光密度值为纵坐标,葡萄糖浓度为横坐标绘制成标准曲线。 (2)操作步骤 ⑥称5 g风干土,置于50 mL三角瓶中,注入15 mL8%蔗糖溶液,5 mL pH 5.5磷酸缓冲 液和5滴甲苯。 ⑦摇匀混合物后,放入恒温箱,在37 ℃下培养24 h。到时取出,迅速过滤。从中吸取滤 液l mL,注入50 mL容量瓶中,加3 mL 3,5-二硝基水杨酸并在沸腾的水浴锅中加热10min,随即将容量瓶移至自来水流下冷却3 min。 ⑧溶液因生成3-氨基-5-硝基水杨酸因而呈橙黄色,最后用蒸馏水稀释至50 mL,并在分 光光度计上于波长508 nm处进行比色。 ⑨为了消除土壤中原有的蔗糖、葡萄糖而引起的误差,每一土样需做无基质对照,整个 试验需做无土壤对照。 (3)结果计算 蔗糖酶活性以24h后1g土壤葡萄糖的毫克数表示:葡萄糖(mg)=a﹡4 式中a表示从标准曲线查得得葡萄糖毫克数4表示换算成1g土的系数

溶解度的测定

硝酸钾溶解度的测定(方法1:结晶析出法)实验原理: 先设计好不同溶质和溶剂的量,称量、混合、加热、搅拌使其溶解,降温并用温度计分别测定其开始析出晶体时的温度,即所得溶液为该温度下的饱和溶液,计算该温度下的溶解度。 实验用品: 托盘天平(J0160,200g,0.2g),烧杯(J6124),大试管(J6104),玻璃棒(J6453),温度计(J6071,量程0~100℃),酒精灯(J6201),量筒(J6001,10ml),方座支架(J1102,带铁圈),石棉网(J6432),药匙(J6442),试管刷(J6471),硝酸钾(化学纯),蒸馏水。 实验步骤: 一、检查实验用品是否齐全、完好。 二、硝酸钾的称取和溶解。 1. 用托盘天平分别准确称取硝酸钾3.5g、1.5g、1.5g、 2.0g、 2.5g,称量过程详见分组实验三的步骤二。将称好的5份硝酸钾放在实验台上,并做标记。 2.在一支大试管中加入上面称取的3.5g硝酸钾。 3.用量筒准确量取10.0m1蒸馏水,加入大试管中。 4.在水浴中加热大试管,边加热边搅拌,至硝酸钾完全溶解(水浴温度不要太高,以刚好使硝酸钾溶解为宜,否则会使下一步结晶析出操作耗时过长) 三、硝酸钾的结晶。 1.自水浴中取出大试管,插入一支干净的温度计,用玻璃棒轻轻搅拌并摩擦试管壁,同时观察温度计的读数。当刚开始有晶体析出时,立即记下此时的温度t1,并填入下表中。

2.把试管再放入水浴中加热,使晶体全部溶解,然后重复两次上述实验步骤的操作,分别测定开始析出晶体时的温度t2、t3。将读数填入表格。 四、溶解度曲线的绘制。 1.依次向试管中再加入1.5g、1.5g、2.0g、2.5g硝酸钾(使试管中依次共有硝酸钾 5.0g、6.5g、8.5g、11.0g),每次加入硝酸钾后都重复溶解、结晶实验步骤的操作,并将晶体开始析出时的温度读数填人表格。 2.根据所得数据,以温度为横坐标,溶解度为纵坐标,绘制溶解度曲线图。 五、整理实验用品。 1.用试管刷清洗玻璃仪器。 2.整理实验用品,恢复实验前的摆放位置。 注意事项: 1.为了使测量结果准确,称取硝酸钾晶体的质量和量取倒入试管的蒸馏水的体积应尽量准确。 2.水浴加热时,烧杯里的水面不能低于试管里的液面。温度计应插在溶液的中部,使所示的温度具有代表性。 3.使试管里的液体升温时应采用水浴加热,而不能用酒精灯直接加热。

相关主题
文本预览
相关文档 最新文档