武汉大学2010-2011数理统计考试
- 格式:pdf
- 大小:143.44 KB
- 文档页数:2
一、(满分12分)设X X X n ,,,12为来自均匀分布θU (0,)的随机样本,θθ,ˆˆ12分别为未知参数θ的矩估计量和最大似然估计量。
(1)证明nT n =+θθ和ˆˆ112都是未知参数θ的无偏估计; (2)比较两个估计量的优劣性.二、(满分14分)设X 服从伽玛分布Γαβ(,),其特征函数为=−−βϕαt itX ()(1).(1) 利用特征函数法求X 的数学期望和方差; (2)设X X X n ,,,12是独立同分布的随机变量,其概率密度为,⎩≤⎨=>⎧λλx f x e x x 0,0.(),0-试用特征函数法证明:∑=Γ=λY X n i i n~(,)1 三、(满分14分)从两个独立的正态总体中抽取如下样本值: 甲(X ) 4.4 4.0 2.0 4.8 乙(Y )5.01.03.20.4经计算得x s y s ====3.8, 1.547, 2.4, 4.45312*2*2,在显著性水平=α0.05下,能否认为两个总体同分布? 四、(满分10分)设X X X ,,,129是总体μσX N ~(,)2的一个样本.记Y X Y X k k k k ∑∑===63,=,11171269SS X Y Z Y Y k k ∑=−=−=2(),12()7212229求统计量 Z 的分布。
五、(满分14分)设X X X n ,,,12是总体X 的一个样本,X 的密度函数为f x x x ⎩⎨=<<⎧−θθθ他其0,.(;),01,1>θ0求未知参数g =θθ()1的最大似然估计量gθ()ˆ,并求g θ()的有效估计量.六、 (满分20分)观测某种物质吸附量y 和温度x 时,得到数据如下:x i 1.5 1.8 2.4 3.0 3.5 3.9 4.4 4.8 5.0 y i4.85.77.08.310.912.413.113.615.3应用线性模型N y a bx ⎩⎨⎧=++εσε~(0,)2(1) 求a 和b 的最小二乘估计及回归方程;(2) 在显著性水平=α0.05下,检验原假设=H b :00;(3)在温度x =60时,求吸附量y 0的置信水平为α−=10.95的预测区间; (4) 若要使吸附量在5-10之间,温度应该如何控制(=α0.05).七、 (满分16分) 为了观察燃烧温度是否对砖块的密度有显著性影响,今在4种温度下做试验,得砖块密度的观察值如下: 温度(摄氏度) 砖块密度100 21.8 21.9 21.7 21.6 21.7 125 21.7 21.4 21.5 21.4 150 22.9 22. 8 22.8 22.6 22.5 17521.9 21.7 21.8 21.4试问燃烧温度对砖块密度是否有显著影响?(=α0.01) 附注:计算中可能用到的数据如下:t r F F t F F ===Φ=====5(7) 2.3646,(7)0.6664,(1,7) 5.59,(1.96)0.976(3,3)15.5,(6) 2.4469,(2,15) 3.68,(3,14) 5.50.9750.050.950.9750.9750.950.99一、(满分12分)解:(1)总体X 的密度函数为总体X 的分布函数为0,0(),01,x x F x x x θθθθ≤⎧⎪⎪=<<⎨⎪≥⎪⎩;由于2θ=EX ,得X 2ˆ1=θθ的矩估计量为 1ˆ[2]2θθ===E E X EX ,故的无偏估计量。
第一卷(2011年)一、(12分)设两个独立样本X 1,…,X n , Y 1,…,Y n 分别来自总体N(μ1,σ2)和N(μ2,σ2),令222211111111,,(),()11n n n n i i X i Y i i i i i X X Y Y S X X S Y Y n n n n =======-=---∑∑∑∑, 及2,11()()1n X Y i i i S X X Y Y n ==---∑。
(1)当n=17时,求常数k使得12(0.95P X Y μμ->-+=(2)求概率22(1)XYS P S >。
二、(15分)设总体X 的密度函数为(;)f x θ=,1θ>(1)求参数θ的矩估计量θ;(2)求参数()g θ=的极大似然估计g;(3)试分析g的无偏性、有效性和相合性。
三、(10分)某生产商关心PC 机用的电源的输出电压,假设输出电压服从标准差为0.25V 的正态分布N(μ,σ2),(1)问样本容量n 为多大时,才能使平均输出电压的置信度为0.95的置信区间的长度不超过0.2V ;(2)设X 1,…,X n 是来自总体X~N(0,θ)的样本,()1max n i i nX X ≤≤=。
统计假设:H 0:θ≥3,H 1:θ<3的拒绝域为{}0() 2.5n K X =<,求假设检验犯第Ⅰ类错误的最大概率max α。
四、(10分)一药厂生产一种新的止痛片,厂方希望验证服用新药片后至开始起作用的时间间隔较原止痛片至少缩短一片,因此厂方提出检验假设: 012112:2,:2H H μμμμ=>。
此处12,μμ分别是服用原止痛片和新止痛片后至开始起作用的时间间隔的总体均值。
设两总体均为正态分布且方差分别为已知值21σ和22σ,X 1,…,X n 和 Y 1,…,Y n 是分别来自两个总体分布的相互独立样本。
试分析上述假设检验的检验统计量和拒绝域。
{1,(0,1)0,(0,1)x x ∈∈五、(15分)设样本(,)(1,2,...,)i i x y i n =满足,01ln i i i y x ββε=++,且12,,...,n εεε相互独立。
2011年1月全国自考概率论与数理统计(经管类)试题全国2011年4月高等教育自学考试 概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A ,B ,C 为随机事件,则事件“A ,B ,C 都不发生”可表示为( ) A .B.BC C .ABCD.2.设随机事件A 与B 相互独立,且P(A)=,P(B)=,则P(A B)=( )A . B.C . D.3.设随机变量X ~B(3,0.4),则P{X≥1}=( ) A.0.352 B.0.432 C.0.784 D.0.9364.已知随机变量X 的分布律为P{-2<X≤4 }=( )A.0.2 C.0.55 D.0.8 5.设随机变量X 的概率密度为f(x)=,则E(X),D(X)分别为 ( )A.-3,B.-3,2C.3,D.3,26.设二维随机变量(X,Y)的概率密度为f(x,y)=则常数c=( )A. B.C.2D.47.设随机变量X~N(-1,22),Y~N(-2,32),且X 与Y 相互独立,则X-Y~( )A.N(-3,-5)B.N(-3,13)C.N (1,)D.N(1,13)8.设X,Y为随机变量,D(X)=4,D(Y)=16,Cov(X,Y)=2,则XY=( )A. B.C. D.9.设随机变量X~2(2),Y~2(3),且X与Y相互独立,则( )A.2(5)B.t(5)C.F(2,3)D.F(3,2)10.在假设检验中,H0为原假设,则显著性水平的意义是( )A.P{拒绝H0| H0为真}B. P {接受H0| H0为真}C.P {接受H0| H0不真}D. P {拒绝H0| H0不真}二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
2010年10月真题讲解(一)单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设随机事件A与B互不相容,且P(A)>0,P(B)>0,则()A.P(B|A)=0B.P(A|B)>0C.P(A|B)=P(A)D.P(AB)=P(A)P(B)『正确答案』分析:本题考察事件互不相容、相互独立及条件概率。
解析:A:,因为A与B互不相容,,P(AB)=0,正确;显然,B,C不正确;D:A与B相互独立。
故选择A。
提示:① 注意区别两个概念:事件互不相容与事件相互独立;② 条件概率的计算公式:P(A)>0时,。
2.设随机变量X~N(1,4),F(x)为X的分布函数,Φ(x)为标准正态分布函数,则F(3)=()A.Φ(0.5)B.Φ(0.75)C.Φ(1)D.Φ(3)『正确答案』分析:本题考察正态分布的标准化。
解析:,故选择C。
提示:正态分布的标准化是非常重要的方法,必须熟练掌握。
3.设随机变量X的概率密度为f(x)=则P{0≤X≤}=()『正确答案』分析:本题考察由一维随机变量概率密度求事件概率的方法。
解析:,故选择A。
提示:概率题目经常用到“积分的区间可加性”计算积分的方法。
4.设随机变量X的概率密度为f(x)=则常数c=()A.-3B.-1C.-D.1『正确答案』分析:本题考察概率密度的性质。
解析:1=,所以c=-1,故选择B。
提示:概率密度的性质:1.f(x)≥0;4.在f(x)的连续点x,有F’(X)=f(x);5.5.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是()A.f(x)=-e-xB. f(x)=e-xC. f(x)=D.f(x)=『正确答案』分析:本题考察概率密度的判定方法。
解析:① 非负性:A不正确;② 验证:B:发散;C:,正确;D:显然不正确。
故选择C。
提示:判定方法:若f(x)≥0,且满足,则f(x)是某个随机变量的概率密度。
数理统计考试题及答案一、选择题1. 下列哪个选项是中心极限定理的主要内容?A. 样本均值的分布趋近于正态分布B. 样本方差的分布趋近于正态分布C. 样本中位数的分布趋近于正态分布D. 样本最大值的分布趋近于正态分布答案:A2. 假设检验中的两类错误是什么?A. 第一类错误和第二类错误B. 系统误差和随机误差C. 测量误差和估计误差D. 抽样误差和非抽样误差答案:A二、填空题1. 总体均值的估计量是_________。
答案:样本均值2. 在进行假设检验时,如果原假设被拒绝,则我们犯的是_________错误。
答案:第一类三、简答题1. 简述什么是置信区间,并说明其在统计分析中的作用。
答案:置信区间是指在一定置信水平下,用于估计总体参数的一个区间范围。
它的作用是在统计分析中提供对总体参数估计的不确定性度量,帮助我们了解估计值的可信度。
2. 解释什么是点估计和区间估计,并给出它们的区别。
答案:点估计是用样本统计量来估计总体参数的单个值。
区间估计是在一定置信水平下,给出总体参数可能落在的区间范围。
它们的区别在于点估计提供了一个具体的数值,而区间估计提供了一个包含该数值的区间,反映了估计的不确定性。
四、计算题1. 某工厂生产的零件长度服从正态分布,样本均值为50mm,样本标准差为1mm,样本容量为100。
求95%置信水平下的总体均值的置信区间。
答案:首先计算标准误差:\( SE = \frac{\sigma}{\sqrt{n}} =\frac{1}{\sqrt{100}} = 0.1 \)。
然后根据正态分布的性质,95%置信水平下的置信区间为:\( \bar{x} \pm 1.96 \times SE \)。
计算得到:\( 50 \pm 1.96 \times 0.1 = (49.84, 50.16) \)。
2. 假设某公司员工的日均工作时长服从正态分布,样本均值为8小时,样本标准差为0.5小时,样本容量为36。
《应用数理统计》2010年期末考试试题参考答案1、 因为"NQlt) , Xn+1~N (内,且两者相互独立,所以 n-X-N(0,(l + :)。
2),又因为 当~x?(n -1),且两者相互独立,由t 分布的定义 2、(2)计算0的矩估计:EX = e ,令8 =又,解得0 = X ; 1 1 计算0的极大似然估计:L(o) = n :i f(xj = 1' Q ~2- X ⑴-x ^-0 + ?整理得 O others,i i L(0) = f(x J = 1, X(n ;1-2-0-X ⑴+ 2,从而e 的极大似然估计不唯一,取值 。
others,[X (n) - X (1) + ;]的任意统计量都是其极大似然估计; (3 )由上一问可知,T 为8的极大似然估计。
(1 ) E|XJ = 2 V 皋改=六(。
%一亲)广(T = JI 。
,从而有Ea = E (i BX :]|XJ )=二 R弟 2。
=。
,故为无偏估计。
U - 94 - 1414 cor - 32 彳。
彳 - 94+141+92 ―。
6、Yi = ~ = 18.8 , y2 = 5 = 28.2 , Y3 = ~ = 18.4 , y =~ = 21.8 ,X = X"库](% - /言"冷国- 15评 =(1794 + 4259 + 1770)- 15 X 21.82=694.4 ,3 51=1j=l=5[(18.8 — 21.8)2 + (28.2 - 21.8)2 + (18.4 - 21.8)2]=307.6 , S e = Sy — S A = 694.4 — 307.6 = 386.8 ,Xjj+i 得到 但…一沁/。
;(呜) 丁舄四…)。
4、得到方差分析表如下:平方和自由度均方和组间307.6 2 153.8 组内386.8 12 32.23 总和694.4 14 检验统i+«4.772由于F=4.772>3.89 ,落入拒绝域,从而认为三种类型电路的响应时间有显著差异。